Algebraic AS TA Structures

Algebraic Structures and Their Applications

Algebraic Structures and Their Applications Vol. X No. X (20XX) pp XX-XX.

Research Paper

ON PRIME IDEALS ON A SEMI-RING ASSOCIATED WITH A NEXUS

VAJIHEH NAZEMI NIYA, HOJAT BABAEI AND AKBAR REZAEI*

ABSTRACT. In this study, we explore prime ideals and prime elements within a semi-ring constructed over a nexus. We characterize these elements using panels and quasi-panels. Furthermore, we establish conditions under which a semi-ring associated with a nexus N becomes unitary. The concept of homomorphism for these semi-rings is introduced, and several of their properties are examined. Additionally, by analyzing their characteristics, we demonstrate that a quotient semi-ring can be induced by an ideal of a semi-ring over a nexus, and localization is successfully defined. To illustrate these concepts, we provide specific examples.

1. Introduction

In 1980, Haristchain [14] introduced a sophisticated database structure called a *plenix* to efficiently manage the diverse data defining spatial structures (see also [5, 16]). The concepts of *formex* (plural: formices) and plenix (plural: plenices) trace their origins to the 1970s, when

DOI: 10.22034/as.2025.23198.1796

MSC(2010): Primary: 06F35, Secondary: 16Y60.

Keywords: (prime) Ideal, Localization, Nexus, Prime element, Semi-ring.

Received: 26 May 2025, Accepted: 20 October 2025.

*Corresponding author

© 20XX Yazd University.

H. Nooshin led an extensive research program at the Space Structures Research Center of the University of Surrey. This program culminated in the development of *formex algebra* [7, 11, 19, 20], which laid the groundwork for further algebraic explorations. Many classical algebraic concepts have since been deeply studied in the context of *nexus algebra* [1, 6, 8, 12, 13, 21].

In 1984, Nooshin [19] formally defined a nexus as a mathematical object representing the structure of a plenix, using the concept of an address set for its axiomatic construction. Later, in 2009, Bolourian [5] introduced nexus algebras as an abstract algebraic structure and investigated their properties. This was followed by Afkhami et al. [1] in 2012, who explored soft nexuses. Over the years, numerous authors have contributed to the study of nexuses and subnexuses. For instance, Norouzi [22] investigated subnexuses in the context of N-structures in 2018, and Norouzi et al. [21] extended this work in 2020. In 2019, Bolourian et al. [6] constructed a moduloid over a nexus, and in 2020, Kamrani et al. [12, 13] further developed this by introducing submoduloids, finitely generated submoduloids, and prime submoduloids on a nexus.

In 2024, the authors of this paper constructed a semi-ring over a nexus and explored its fuzzifications ([18]). For further preliminary and applications of semi-rings and rings, see [3, 4, 9, 10, 15, 17, 23, 24]. In this work, we begin by presenting preliminary results on semi-rings constructed over a nexus. We then establish conditions under which such a semi-ring is unitary or a principal ideal domain (PID). For a semi-ring N, we define st(N) and investigate prime ideals and prime elements, characterizing them using panels and quasi-panels. Additionally, we introduce the notion of homomorphism for these semi-rings and examine their properties. Finally, we demonstrate that a quotient semi-ring can be induced by an ideal of a semi-ring over a nexus, and we establish the concept of localization.

2. Preliminaries

Now, we review the basic definitions and some elementary aspects that are necessary for this paper.

An address is a sequence of $\mathbb{N}^* = \mathbb{N} \cup \{0\}$ such that $a_k = 0$ implies that $a_i = 0$, for all $i \geq k$. The sequence of zero is called the empty address and denoted by (). In other words, every non-empty address is of the form $(a_1, a_2, \ldots, a_n, 0, 0, \ldots)$, where a_i and $n \in \mathbb{N}$, and it is denoted by (a_1, a_2, \ldots, a_n) .

Definition 2.1. ([1]) A set N of addresses is called a nexus if

- (I) $(a_1, a_2, \dots, a_{n-1}, a_n) \in N$ implies $(a_1, a_2, \dots, a_{n-1}, t) \in N, \forall 0 \le t \le a_n$
- (II) $\{a_i\}_{i=1}^{\infty} \in N, a_i \in \mathbb{N} \text{ implies } \forall n \in \mathbb{N}, \forall \ 0 \leqslant t \leqslant a_n, (a_1, \dots, a_n t) \in N.$

Let $a \in N$. The level of a is said to be:

- (I) n, if $a = (a_1, a_2, \ldots, a_n)$, for some $a_k \in \mathbb{N}$,
- (II) ∞ , if a is an infinite sequence of N,
- (III) 0, if a = ().

The level of a is denoted by l(a) and $stem\ a = a_1$. We put $st(N) = sup\{i \in \mathbb{N} : (i) \in N\}$. Let $a = \{a_i\}$ and $b = \{b_i\}$, $i \in \mathbb{N}$, be two addresses. Then $a \leq b$, if l(a) = 0 or if one of the following cases is satisfied:

- (I) if l(a) = 1, that is $a = (a_1)$, for some $a_1 \in N$ and $a_1 \leq b_1$,
- (II) if $1 < l(a) < \infty$, then $l(a) \le l(b)$ and $a_{l(a)} \le b_{l(a)}$ and for any $1 \le i < l(a)$, $a_i = b_i$,
- (III) if $l(a) = \infty$, then a = b.

A subset S of N is called a sub-nexus of N provided that S itself is a nexus. Let $\emptyset \neq A \subseteq N$. Then the smallest sub-nexus of N containing A is called the sub-nexus of N generated by A and is denoted by $\langle A \rangle$. If $A = \{a_1, a_2, \ldots, a_n\}$, then instead of $\langle A \rangle$ one can write $\langle a_1, a_2, \ldots, a_n \rangle$. If A has only one element a, then the sub-nexus $\langle a \rangle$, is called a cyclic sub-nexus of N. It is clear that () and N are trivial sub-nexuses of the nexus N.

Definition 2.2. ([1]) Let N be a nexus and let $a = (a_1, a_2, \ldots, a_k)$ be an address of N. The set $\{(a_1, a_2, \ldots, a_k, a_{k+1}, \ldots, a_n) \in N : a_{k+i} \in \mathbb{N}, \text{ for } i = 1, 2, \ldots, n-k\}$ is called the panel of a and is denoted by q_a . In other words, if $a = (a_1, a_2, \ldots, a_k)$, then every address b of N is an address in q_a , provided that the first k terms of b are the same as the corresponding terms of a.

Notice that the panel of a does not include a. Also, $q_{()}$ include all the addresses of N except for the empty address itself. We denoted $M_a = q_a \bigcup \{a\}$.

Definition 2.3. ([1]) Let N be a nexus and a be an address of N. The set $\{b \in N : a \leq b\}$ is called the quasi panel of a and is denoted by Q_a . Let $A \subseteq N$.

Also, we define
$$Q_A = \{b \in N : \exists a \in A, a \leq b\} = \bigcup_{a \in A} Q_a$$
. Clearly, $A \subseteq Q_A$.

Example 2.4. ([6]) Consider a nexus:

$$N = \{(), (1), (2), (1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (2, 2, 1), (2, 2, 2), (2, 3, 1), (2, 3, 2)\}$$

with the following diagram.

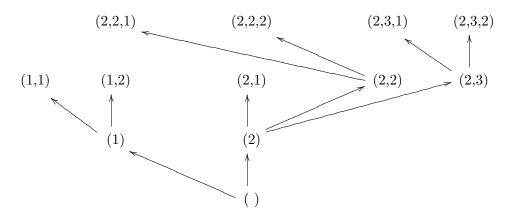


Fig. 1. Diagram of N.

Let a = (2,2) be an address of N and $A = \{(1,1),(2,2)\} \subseteq N$. Then $q_a = \{(2,2,1),(2,2,2)\},$ $Q_a = \{(2,2),(2,2,1),(2,2,2),(2,3),(2,3,1),(2,3,2)\},$ $M_a = \{(2,2),(2,2,1),(2,2,2)\},$ $Q_A = \{(1,1),(1,2),(2,2),(2,2,1),(2,2,2),(2,3),(2,3,1),(2,3,2)\}.$

For $() \neq a, b \in N$, let $a = \{a_t\}_{t=1}^n$ and $b = \{b_t\}_{t=1}^m$. We define binary operations "+" and "·" on N as following:

- (I) () + a = a + () = a,
- (II) $a + b = (a_1 \lor b_1),$
- (III) $a \cdot b = (a_1, \dots, a_{i-1}, a_i \wedge b_i),$

where $i\{a,b\} = \min\{t : a_t \neq b_t\}$ (briefly, $i\{a,b\} := i$). If there is no such that i, then a = b and $i\{a,a\} = l(a)$.

Lemma 2.5. ([18]) Let $a = \{a_t\}_{t=1}^n$, $b = \{b_t\}_{t=1}^n$, $c = \{c_t\}_{t=1}^n \in \mathbb{N}$. Then

- (I) if $i\{a,b\} = i\{a,c\} = r$, then $i\{b,c\} \ge r$,
- (II) if $i\{a,b\} = r$, $i\{a,c\} = s$ and $r \neq s$, then $i\{b,c\} = \min\{r,s\}$.

Theorem 2.6. ([18]) The algebra $(N, +, \cdot, ())$ is a semi-ring.

Example 2.7. ([18]) Let $N = \{(), (1), (2), (1, 1), (2, 1)\}$. By defined the binary operations "+" and "·" on N, we have: for every $a \in N$

$$a + () = () + a = a, (1) + (1) = (1) + (1, 1) = (1, 1) + (1, 1) = (1), (2) + a = (2, 1) + a = (2),$$

$$a \cdot () = () \cdot a = (), a \cdot (1) = (1) \cdot a = (1), (2) \cdot (2) = (2) \cdot (2, 1) = (2), (1, 1) \cdot (1, 1) = (1, 1),$$

$$(2) \cdot (1, 1) = (1, 1) \cdot (2, 1) = (1), (2, 1) \cdot (2, 1) = (2, 1).$$

Then $(N, +, \cdot, ())$ is a semi-ring.

Remark 2.8. ([18]) Notice that the semi-ring $(N, +, \cdot, ())$ can not be a ring. Since, if for every $0 \neq a \in N$, there exists $() \neq b \in N$, such that a + b = b + a = (), then a = b = (), which is a contradiction.

In the sequel, for briefly, we denote the semi-ring $(N, +, \cdot, ())$ related to a nexus N only by N. Let $a, b \in N$, we say that a|b, if there exist $c \in R$ such that $a \cdot c = b$. An element $p \in N$ is prime if for every $a, b \in N$, $p|a \cdot b$ empies p|a or p|b.

Let $() \in I \subseteq N$. We say that I is an ideal of N, if it satisfies the following conditions:

- (I) for every $a, b \in I$, $a + b \in I$,
- (II) for every $a \in I$ and every $b \in N$, $a \cdot b \in I$.

An ideal I of N is prime if for every $a,b\in I$, $a\cdot b$ implies $a\in I$ or $b\in I$. Let I be an ideal of N and $a\in N$. Consider the set $a+I=\{a+b:b\in I\}$ and define $\frac{N}{I}=\{a+I:a\in N\}$.

Lemma 2.9. ([18]) Let I be an ideal of N and $a, a' \in N$. Then

- (I) a + I = I if and only if a = ().
- (II) a + I = a' + I if and only if stem a = stem a'.

Example 2.10. ([18]) Consider a nexus:

$$N = \{(), (1), (2), (3), (4), (1, 1), (1, 2), (1, 1, 1), (1, 1, 2), (1, 1, 3), (2), (2, 1), (2, 1, 1), (2, 1, 2), (3, 1), (3, 2), (3, 3), (4, 1)\}$$

with the following diagram.

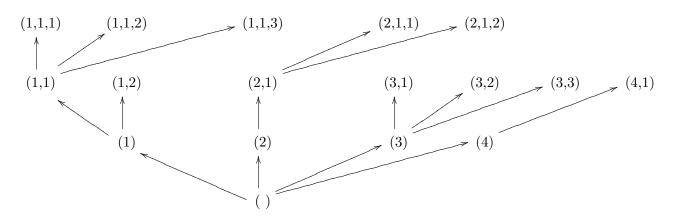


Fig. 2. Diagram of N.

If $I := \{(), (1), (2), (1, 1), (1, 2), (2), (2, 1)\}$, then I is an ideal of N. Using Lemma 2.9, we can see that

$$() + I = (1, 1) + I = (1, 2) + I = (1, 1, 1) + I = (1, 1, 2) + I = (1, 1, 3) + I,$$

$$(2) + I = (2,1) + I = (2,1,1) + I = (2,1,2) + I,$$

$$(3) + I = (3,1) + I = (3,2) + I = (3,3) + I,$$

$$(4) + I = (4,1) + I.$$
 Then $\frac{N}{I} = \{I, (1) + I, (2) + I, (3) + I, (4) + I\}.$

Definition 2.11. ([18]) For every a+I, $b+I \in \frac{N}{I}$, we define the binary operations "*" and " \circ " on $\frac{N}{I}$ with the following:

- (I) (a+I)*(b+I) = a+b+I,
- (II) $(a+I) \circ (b+I) = a \cdot b + I$.

Theorem 2.12. ([18]) Let I be an ideal of N. Then $(\frac{N}{I}, *, \circ, I)$ is a semi-ring.

3. Prime elements of a semi-ring $(N, +, \cdot, ())$

In this section, at first we verify when a semi-ring N is a unitary, then we characterize all prime elements of N.

Proposition 3.1. Let N be a semi-ring. N is unitary if and only if N is a cyclic nexus. In this case $N = \langle 1 \rangle$.

Proof. It is easy to see that for every $a, b \in N$, $a \cdot b = a$, implies $a \leq b$. At first, we assume that N be unitary. Hence $a \cdot 1 = 1 \cdot a = a$ and so $a \leq 1$. Since N is a nexus and $1 \in N$, for every $a \leq 1$, $a \in N$. Therefore, $N = \langle 1 \rangle$.

Conversely, let $N = \langle b \rangle$ be a cyclic nexus. Hence for every $a \in N$, $a \leq b$ and so $a \cdot b = b \cdot a = a$. Therefore, N is unitary and b = 1.

Proposition 3.2. Let $N = \langle 1 \rangle$ be a unitary semi-ring. Then

- (I) N is a principal ideal domain (briefly, PID),
- (II) every ideal of N is a prime ideal,
- (III) every element of N is a prime element.

Proof. (I) Let I be an ideal of N. Since N is a cyclic nexus, for every $a, b \in N$, we have $a \leq b$ or $b \leq a$. Hence there exist $c \in I$, such that for every $a \in I$, $a \leq c$ and so $I = \langle c \rangle$ is a principal ideal. Therefore, N is a PID.

- (II) Let I be an ideal of N and $a, b \in N$ such that $a \cdot b \in I$. Since $a \leq b$ or $b \leq a$, we have $a \cdot b = a$ or $a \cdot b = b$. Hence $a \in I$ or $b \in I$. Therefore, I is a prime ideal of N.
- (III) Let p be an element of N and $a, b \in N$ such that $p|a \cdot b$. Since $a \cdot b = a$ or $a \cdot b = b$, p|a or p|b. Therefore, p is a prime element of N. \square

Proposition 3.3. Let N be a semi-ring and $a, b \in N$. Then a|b if and only if $b \leq a$.

Proof. Let $b \leq a$. Then $a \cdot b = b$ and so a|b.

Conversely, let a|b. Then there exist $c \in N$ such that $a \cdot c = b$. Let $i\{a,c\} = i$. Hence $b = (a_1, \ldots, a_{i-1}, a_i \wedge c_i)$ and so $b \leq a$.

Note: Let N be a semi-ring and $p \in N$. Hereafter, by Proposition 3.3, p is prime if and only if for every $a, b \in N$, $a \cdot b \leq p$, implies $a \leq p$ or $b \leq p$.

Definition 3.4. Let N be a semi-ring and $p = (p_1, \ldots, p_n) \in N$. We put

$$A(p) = \{k : 1 \le k \le n \text{ such that there exist } a = (p_1, \dots, p_{k-1}, a_k) \in N, \text{ with } a_k > p_k\}.$$

Also, we put

$$B(p) = \{a \in N : \text{ there exist } 1 \leq k \leq n, a = (p_1, \dots, p_{k-1}, a_k) \in N, \text{ with } a_k < p_k \text{ and } q_a \neq \emptyset\}.$$

Lemma 3.5. Let N be a semi-ring and $p = (p_1, ..., p_n) \in N$ and p be a prime element of N. Then

- (I) if $A(p) \neq \emptyset$, then there exist a unique $k(1 \leq k \leq n)$ such that $A(p) = \{k\}$,
- (II) if $B(p) \neq \emptyset$, then there exist a unique $a \in N$ such that $B(p) = \{a\}$.

Proof. (I) Let $k, r \in A(p)$, $k \neq r$ and k < r. Then there exist $a = (p_1, \ldots, p_{k-1}, a_k) \in N$ such that $a_k > p_k$ and $b = (p_1, \ldots, p_k, \ldots, p_{r-1}, b_r) \in N$ such that $b_r > p_r$. Then $a \cdot b = (p_1, \ldots, p_k) \leq p$, but $a \nleq p$ and $b \nleq p$, which is a contradiction. Hence there exist a unique k such that $A(p) = \{k\}$.

(II) Suppose that $a, b \in B(p)$, $a \neq b$ and $a = (p_1, \ldots, p_{k-1}, a_k), k \leqslant n, a_k < p_k, q_a \neq \emptyset$ and $b = (p_1, \ldots, p_k, \ldots, p_{r-1}, b_r), k \leqslant r \leqslant n, b_r < p_r, q_b \neq \emptyset$. Let $\alpha = (p_1, \ldots, p_{k-1}, a_k, x) \in q_a$ and $\beta = (p_1, \ldots, p_k, \ldots, p_{r-1}, b_r, y) \in q_b$. If k = r, we have $\alpha \cdot \beta = (p_1, \ldots, p_{k-1}, a_k \wedge b_k) \leqslant p$ and if k < r, we have $\alpha \cdot \beta = (p_1, \ldots, p_{k-1}, a_k) \leqslant p$, but $\alpha \nleq p$ and $\beta \nleq p$, which is a contradiction. Hence there exist a unique $a \in N$ such that $B(p) = \{a\}$. \square

Theorem 3.6. Let N be a semi-ring and $p = (p_1, ..., p_n) \in N$. Then p is prime element of N if and only if one of the fallowing conditions is true:

- (I) if $q_p \neq \emptyset$, then $N = \langle p \rangle \cup q_p$,
- (II) if $q_p = \emptyset$ and $A(p) = \{k\}$, then $N = \langle p \rangle \bigcup (\bigcup M_{(p_1, \dots, p_{k-1}, a_k)})$,
- (III) if $q_p = \emptyset$, $A(p) = \emptyset$ and $B(p) = \{a\}$, then $N = \langle p \rangle \cup q_a$,
- (IV) if $q_p = \emptyset$, $A(p) = \emptyset$ and $B(p) = \emptyset$, then $N = \langle p \rangle$.

Proof. (I) Assume p is a prime ideal and $a=(p_1,\ldots,p_n,x)\in q_p$. Let $b=(b_1,\ldots,b_n)\in N$. If $b_1>p_1$, then $a\cdot b=(p_1)\leqslant p$, but $a\nleq p$ and $b\nleq p$, which is a contradiction. Hence $b_1\leqslant p_1$. If $b_1< p_1$ and $b_2\neq 0$, then $a\cdot b=(b_1)\leqslant p$, but $a\nleq p$ and $b\nleq p$, which is a contradiction. Hence for every $b_1< p_1$, we have $q_{(b_1)}=\emptyset$. Let $b=(b_1,\ldots,b_n)\in q_{(p_1)}$. If $b_2>p_2$, then $a\cdot b=(p_1,p_2)\leqslant p$, but $a\nleq p$ and $b\nleq p$, which is a contradiction. Hence $b_2\leqslant p_2$. If we improve this method, we have:

For every $b = (b_1, \ldots, b_n) \in N$, $b_1 \leqslant p_1$ and for every $1 \leqslant b_1 < p_1$, we have $q_{(b_1)} = \emptyset$.

For every $b = (b_1, \ldots, b_n) \in q_{(p_1)}, b_2 \leqslant p_2$ and for every $1 \leqslant b_2 < p_2$, we have $q_{(p_1,b_2)} = \emptyset$.

For every $b = (b_1, \ldots, b_n) \in q_{(p_1, p_2)}, b_3 \leq p_3$ and for every $1 \leq b_3 < p_3$, we have $q_{(p_1, p_2, b_3)} = \emptyset$.

For every $b = (b_1, ..., b_n) \in q_{(p_1, ..., p_{n-1})}, b_n \leqslant p_n$ and for every $1 \leqslant b_n < p_n$, we have $q_{(p_1, ..., p_{n-1}, b_n)} = \emptyset$.

Therefore, $N = \{\} \bigcup (\bigcup_{b_1=1}^{p_1} \{(b_1)\}) \bigcup (\bigcup_{b_2=1}^{p_2} \{(p_1, b_2)\}) \bigcup \cdots \bigcup (\bigcup_{b_n=1}^{p_n} \{(p_1, \dots, p_{n-1}, b_n)\}) \bigcup q_p$. Hence $N = \langle p \rangle \bigcup q_p$.

Conversely, let $N = \langle p \rangle \bigcup q_p$ and $a \cdot b \leqslant p$. If $a, b \in q_p$, then $a \cdot b \nleq p$, which is a contradiction. Hence $a \notin q_p$ or $b \notin q_p$ and so $a \in \langle p \rangle$ or $b \in \langle p \rangle$. Hence $a \leqslant p$ or $b \leqslant p$. Therefore, p is a prime element of N.

(II) Let p be prime and $a=(p_1,\ldots,p_{k-1},a_k)$ such that $a_k>p_k$. Alike the proof of (I), we can abtain $N=\langle p\rangle\bigcup(\bigcup_{a_k>p_k}M_{(p_1,\ldots,p_{k-1},a_k)})$.

Conversely, let $a \cdot b \leq p$. If $a, b \in \bigcup_{a_k > p_k} M_{(p_1, \dots, p_{k-1}, a_k)}$, then $a \cdot b \nleq p$, which is a contradiction. Hence $a \in \langle p \rangle$ or $b \in \langle p \rangle$ and so $a \leqslant p$ or $b \leqslant p$. Therefore, p is a prime element of N.

(III) Let p be prime and $a = (p_1, \ldots, p_{k-1}, a_k)$ such that $a_k < p_k$ be the unique element of B(p). Alike the proof of (I) and by the proof of Lemma 3.5 (II), we can abtain $N = \langle p \rangle \cup q_a$. Conversely, let $b \cdot c \leq p$. If $b, c \in q_a$, then $b \cdot c \not\leq p$, which is a contradiction. Hence $b \in \langle p \rangle$ or $c \in \langle p \rangle$ and so $b \leq p$ or $c \leq p$. Therefore, p is a prime element of N.

(IV) It is clear. \Box

Example 3.7. Consider a nexus:

 $N = \{(), (1), (1, 1), (1, 2), (1, 2, 1), (1, 2, 2), (1, 2, 3), (1, 2, 1, 1), (1, 2, 1, 2)\},\$ with the following digram.

- (I) If p = (1, 2, 1). Since $q_{(1,2,1)} = \{(1, 2, 1, 1), (1, 2, 1, 2)\}$ and $N \neq \langle (1, 2, 1) \rangle \bigcup q_{(1,2,1)}$, by Theorem 3.6 (I), (1, 2, 1) is not a prime element of N.
- (II) If p = (1, 2, 1, 2). We have $q_{(1,2,1,2)} = \emptyset$ and $A((1,2,1,2)) = \{3\}$. Now since we have $N = \langle (1,2,1,2) \rangle \bigcup M_{(1,2,2)} \bigcup M_{(1,2,3)}$, by Theorem 3.6 (II), (1,2,1,2) is a prime element of N.

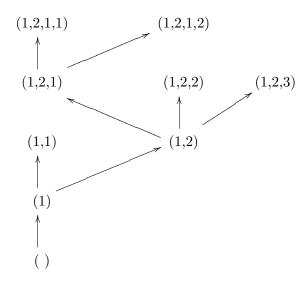


Fig. 3. Diagram of N.

(III) If p = (1, 2, 3). We have $q_{(1,2,3)} = \emptyset$, $A((1,2,3)) = \emptyset$ and $B((1,2,3)) = \{(1,2,1)\}$. Now since $N = \langle (1,2,3) \rangle \bigcup q_{(1,2,1)}$, by Theorem 3.6 (III), (1,2,3) is a prime element of N.

4. Prime ideals of a semi-ring $(N, +, \cdot, ())$

In this section we characterize all prime ideals of semi-ring $(N, +, \cdot, ())$ related to a nexus N.

Definition 4.1. An ideal I of N is prime if for every $a, b \in I$, $a \cdot b$ implies $a \in I$ or $b \in I$.

Proposition 4.2. Let N be a semi-ring and $() \in I \subseteq N$. Then I is an ideal of N, if and only if it is a sub-nexus of N.

Proof. Assume I is a sub-nexus of N, $a,b \in I$ and $c \in N$. Clearly, $a+b \in I$. If a=c, then $a \cdot c = a \in I$. Let $a \neq c$. Then $a \cdot c \leq a$. This shows that $a \cdot c \in I$.

Conversely, suppose I be an ideal of N, $a \in I$ and $b \leq a$. Then $a \cdot b = b \in I$. Therefore, I is a sub-nexus of N. \square

Example 4.3. Consider a nexus:

$$N = \{(), (1), (2), (3), (1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (2, 3, 1), (3, 1)\},\$$

with the following diagram.

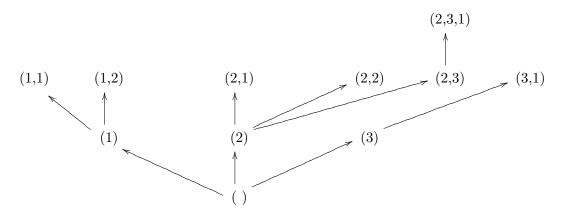


Fig. 4. Diagram of N.

If $I := \{(), (1), (2), (1, 1), (1, 2), (2, 1), (2, 2)\}$, then it is an ideal of semi-ring N. Also, if $J := \{(), (1), (2), (3, 1)\}$, then it is not an ideal of semi-ring N, since $(3) \cdot (3, 1) = (3)$, but $(3) \notin J$.

Hereafter in this section, N is a finite semi-ring.

Remark 4.4. For every proper ideal I of N, we put $st(I) = \max\{l : (l) \in I\}$. If st(I) = st(N) = t, then there exist $i_1 \leq t$ and $a \in N \setminus I$ such that $stem \, a = i_1$.

Lemma 4.5. If N is a semi-ring and P is a prime ideal of N such that st(P) = st(N) = t and i_1 as in Remark 4.4, then i_1 is unique.

Proof. If $s, s' \leq t$, $s \leq s'$ and $a \in M_{(s)} \setminus P$ and $a' \in M_{(s')} \setminus P$, then we have $a \cdot a' = (s) \in P$. Since P is a prime ideal, we get $a \in P$ or $a' \in P$, which is a contradiction. Therefore, i_1 is unique. \Box

Proposition 4.6. Let P be a proper ideal of N, $() \in P$, $st(N) \neq st(P)$ and st(P) = t. Then P is a prime ideal of N if and only if $P = \bigcup_{s \leq t} M_{(s)} \bigcup \{()\}$.

Proof. Assume P is a prime ideal of N, $s \leq t$ and $b \in M_{(s)}$. Since P is a proper ideal, there exist t < l and $a \in N \setminus M_{(l)}$. Since $a \notin P$ and $b \cdot a = (s) \in P$, we get $b \in P$. Consequently, $M_{(s)} \subseteq P$. Clearly, for every t < l, $M_{(l)} \cap P = \emptyset$. Therefore, $P = \bigcup_{s \leq t} M_{(s)} \bigcup \{()\}$.

Conversely, let $P = \bigcup_{s \leq t} M_{(s)} \bigcup \{()\}$, $a, b \in N$ and $a \cdot b \in P$. If $stem \, a = a_1 > t$ and $stem \, b = b_1 > t$, then $stem \, a \cdot b > t$. Let $stem \, a \cdot b = r$. Thus, $(r) \in P$, which is a contradiction. If $a_1 \leq t$, then $a \in M_{(a_1)} \subseteq P$. Therefore, P is a prime ideal of N. \square

Lemma 4.7. Suppose P is a prime ideal of N, st(P) = st(N) = t, i_1 as in Remark 4.4 and $Q = \bigcup_{l \neq i_1} M_{(l)} \bigcup \{()\}$. Then $Q \subseteq P$.

Proof. Let $l \neq i_1$ and $b \in M_{(l)}$. Since $P \neq N$, there exist $a \in N \setminus P$ with $stem a = i_1$. Hence $a \cdot b = (l \wedge i_1) \in P$, and so $b \in P$. Therefore, $Q \subseteq P$. \square

Proposition 4.8. If P is a prime ideal of N and st(P) = st(N) = t and i_1 as in Remark 4.4 and Q as in Lemma 4.7. Put $i_2 := \max\{r \in \mathbb{N}^* : (i_1, r) \in P \text{ and } (i_1, r+1) \notin P\}$. Then

- (I) if $i_2 = 0$, then $P = Q \bigcup \{(i_1)\},\$
- (II) if $i_2 \neq 0$ and $(i_1, i_2 + 1) \in N$, then $P = Q \bigcup \{(i_1)\} \bigcup_{1 \leq r \leq i_2} M_{(i_1, r)}$.

Proof. (I) Since $i_2 = 0$, we have $q_{(i_1)} \cap P = \emptyset$. Hence by Lemma 4.7, we get $P = Q \bigcup \{(i_1)\}$.

(II) Let $1 \leqslant r \leqslant i_2$ and $b \in M_{(i_1,r)}$. Then $b(i_1,i_2+1)=(i_1,r) \in P$. This shows that $b \in P$. Therefore, $\bigcup_{1 \leqslant r \leqslant i_2} M_{(i_1,r)} \subseteq P$. Now, it is easy to see that $M_{(i_1,i_2+1)} \cap P = \emptyset$. Therefore, $P = Q \bigcup \{(i_1)\} \bigcup_{1 \leqslant r \leqslant i_2} M_{(i_1,r)}$. \square

Remark 4.9. By using the notation of Proposition 4.8, let $(i_1, i_2 + 1) \notin N$. Since $P \neq N$, there exist $1 \leqslant r \leqslant i_2$ such that $q_{(i_1,r)} \cap P \neq \emptyset$. We put

$$i_{r3} = \max\{s \in \mathbb{N}^* : (i_1, r, s) \in P \text{ and } (i_1, r, s + 1) \notin P\},\$$

where $1 \le r \le i_2$. Let $A = \{1 \le r \le i_2 : i_{r,3} = 0\}$ and $B = \{1 \le r \le i_2 : i_{r,3} \ne 0\}$.

Proposition 4.10. Let P be a prime ideal of N and st(P) = st(N) = t and i_1, i_2, A, B as in Remark 4.9, and for every $r \in B$, $(i_1, r, i_{r3} + 1) \in N$. Then

$$P = Q \bigcup \{ \bigcup_{r \in A} \langle (i_1, r) \rangle \} \bigcup \{ \bigcup_{r \in B, 1 \leq s \leq i_{r3}} M_{(i_1, r, s)} \}.$$

Proof. For every $r \in A$, since $i_{r3} = 0$, $q_{(i_1,r)} \cap P = \emptyset$. Now, let $r \in B$, $1 \leqslant s \leqslant i_{r3}$ and $b \in M_{(i_1,r,s)}$. Then $b(i_1,r,i_{r3}+1)=(i_1,r,s)\in P$. So, $b\in P$. This complete the proof. \square

Remark 4.11. Suppose $r \in B$ and $(i_1, r, i_{r3} + 1) \notin N$. For every $1 \leqslant s \leqslant i_{r3}$, we put $i_{rs4} = \max\{m \in \mathbb{N}^* : (i_1, r, s, m) \in P, \text{ and } (i_1, r, s, m + 1) \notin P\}$. If we improve this method to end, since N is finite, we can find all prime ideals of N. See the following example:

Example 4.12. Consider a nexus:

 $N = \{(), (1), (2), (3), (1, 1), (1, 1, 2), (1, 1, 3), (1, 2), (2, 1), (2, 2), (2, 3), (2, 3, 1), (3, 1)\},$ with the following diagram.

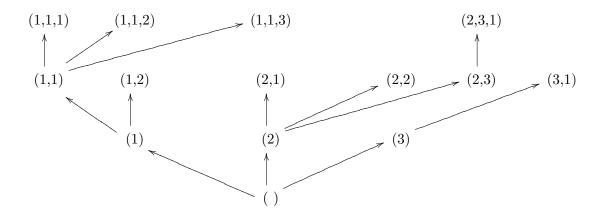


Fig. 5. Diagram of N.

In the following, we list all prime ideals of N.

```
If st(P) = 0, then P_0 = \{0\}.

If st(P) = 1, then P_1 = \{0, (1), (1, 1), (1, 1, 2), (1, 1, 3), (1, 2)\}.

If st(P) = 2, then P_2 = \{0, (1), (2), (1, 1), (1, 1, 2), (1, 1, 3), (1, 2), (2, 1), (2, 2), (2, 3), (2, 3, 1)\}.

If st(P) = 3, i_1 = 1 and i_2 = 0, then P_3 = \{0, (1), (2), (3), (2, 1), (2, 2), (2, 3), (2, 3, 1), (3, 1)\}.

If st(P) = 3, i_1 = 1 and i_2 = 1, then P_4 = P_3 \bigcup \{(1, 1), (1, 1, 1), (1, 1, 2), (1, 1, 3)\}.

If st(P) = 3, i_1 = 1, i_2 = 2 and i_{13} = 0, then P_5 = P_3 \bigcup \{(1, 1), (1, 1, 1), (1, 2)\}.

If st(P) = 3, i_1 = 1, i_2 = 2 and i_{13} = 1, then P_6 = P_3 \bigcup \{(1, 1), (1, 1, 1), (1, 1, 2), (1, 2)\}.

If st(P) = 3, i_1 = 1, i_2 = 2 and i_{13} = 2, then P_7 = P_3 \bigcup \{(1, 1), (1, 1, 1), (1, 1, 2), (1, 2)\}.

If st(P) = 3, i_1 = 2, i_2 = 0, then P_8 = \{0, (1), (2), (3), (1, 1), (1, 1, 1), (1, 1, 3), (3, 1)\}.

If st(P) = 3, i_1 = 2, i_2 = 1, then P_9 = P_8 \bigcup \{(2, 1)\}.

If st(P) = 3, i_1 = 2, i_2 = 3 and i_{33} = 0, then P_{11} = P_8 \bigcup \{(2, 1), (2, 2), (2, 3)\}.

If st(P) = 3, i_1 = 3, i_2 = 0, then P_{12} = \{0, (1), (2), (3), (1, 1), (1, 1, 2), (1, 1, 3), (1, 2), (2, 1), (2, 2), (2, 3), (2, 3, 1)\}.
```

5. Localization of a semi-ring $(N, +, \cdot, ())$

As usual we can define a semi-ring homomorphism on two given semi-rings N and M, the function $f:(N,+_1,\cdot_1,()) \longrightarrow (M,+_2,\cdot_2,())$ is called a semi-ring homomorphism ([18]) if it satisfies the following conditions: for all $a = \{a_t\}_{t=1}^n$, $b = \{b_t\}_{t=1}^n \in N$

(I)
$$f(()) = (),$$

(II)
$$f(a +_1 b) = f(a) +_2 f(b)$$
,

(III)
$$f(a \cdot_1 b) = f(a) \cdot_2 f(b)$$
.

Proposition 5.1. Let $(N, +_1, \cdot_1, ())$ and $(M, +_2, \cdot_2, ())$ be two semi-rings related two nexuses N and M, and $f: (N, +_1, \cdot_1, ()) \longrightarrow (M, +_2, \cdot_2, ())$ be a semi-ring homomorphism, $a, b \in N$ and $c \in M$. Then

- (I) f is a nexus homomorphism,
- (II) $Imf \setminus \{0\} \subseteq Q_{f(1)}$,
- (III) f(stem a) = stem f(a),
- (IV) if $stem a \ge stem b$, then $stem f(a) \ge stem f(b)$,
- (V) $f(M_a) \subseteq M_{f((stem \, a))}$,
- (VI) $f(Q_a) \subseteq Q_{f(a)}$,
- (VII) $f^{-1}(Q_c) = \bigcup_{c \le c'} Q_{f^{-1}(c')}.$

Proof. (I) Assume $a, b \in N$ and $a \leq b$. Hence $a \cdot_1 b = a$. So, we have $f(a) = f(a \cdot_1 b) = f(a) \cdot_2 f(b)$. This shows that $f(a) \leq f(b)$. Therefore, f is a nexus homomorphism.

- (II) Suppose () $\neq y \in Imf$. Then there exist () $\neq x \in N$ such that f(x) = y. Since (1) $\leq x$, using (I) we get $f((1)) \leq f(x) = y$. Thus $y \in Q_{f((1))}$.
 - (III) Let f(a) = c, $stem a = a_1$ and $stem c = c_1$. Then

$$f((a_1)) = f(a +_1 a) = f(a) +_2 f(a) = c +_2 c = (c_1).$$

(IV) Assume f(a) = c, f(b) = d, $stem \, a = a_1$, $stem \, b = b_1$, $stem \, c = c_1$ and $stem \, d = d_1$. By (III), $f((a_1)) = (c_1)$ and $f((b_1)) = (d_1)$. Then

$$(c_1 \lor d_1) = c +_2 d = f(a) +_2 f(b) = f(a +_1 b) = f((a_1 \lor b_1)) = f((a_1)) = (c_1).$$

Thus $c_1 \geqslant d_1$.

- (V) Let f(a) = c, $stem a = a_1$ and $stem c = c_1$. Using (III) we get $f((a_1)) = c_1$. Assume $b \in M_a$. Then $stem b = b_1 = a_1$, and so $stem f(b) = f(stem b) = f(b_1) = c_1$. This shows that $f(b) \in M_{(c_1)} = M_{f(a_1)}$.
- (VI) Let $b \in Q_a$. Then $a \leq b$, and so $a \cdot_1 b = a$. If f(a) = c and f(b) = d, we have $c = f(a) = f(a \cdot_1 b) = f(a) \cdot_2 f(b) = c \cdot_2 d$. Thus $f(a) = c \leq d = f(b)$. Therefore, $f(b) \in Q_{f(a)}$.
- (VII) Let $x \in \bigcup_{c \leqslant c'} Q_{f^{-1}(c')}$. Then there is $c' \in M$ such that $c \leqslant c'$ and $x \in Q_{f^{-1}(c')}$. Hence there exists $y \in f^{-1}(c')$ such that $y \leqslant x$. Now, by (I), $c \leqslant c' = f(y) \leqslant f(x)$, and so $f(x) \in Q_c$.

there exists $y \in f^{-1}(c')$ such that $y \leqslant x$. Now, by (I), $c \leqslant c' = f(y) \leqslant f(x)$, and so $f(x) \in Q_c$. Therefore, $x \in f^{-1}(Q_c)$.

Conversely, let $x \in f^{-1}(Q_c)$. Hence $f(x) \in Q_c$. Put f(x) = c'. Then we have $c \leqslant c' = f(x)$. Therefore, $x \in f^{-1}(c') \subseteq Q_{f^{-1}(c')}$ and the proof is complete. \square

Proposition 5.2. Let $(N, +_1, \cdot_1, ())$ and $(M, +_2, \cdot_2, ())$ be two semi-rings related two nexuses N and M, and $f: (N, +_1, \cdot_1, ()) \longrightarrow (M, +_2, \cdot_2, ())$ be a map, $a \in N$ and $c \in M$ such that

f(()) = () and for every $a \in N$, f(a) = c. Then f is a semi-ring homomorphism if and only if l(c) = 1.

Proof. Let f be a semi-ring homomorphism and $a \in N$ with l(a) = 1. Since f(a) = c, by Proposition 5.1 (III), l(c) = 1.

Conversely, let l(c) = 1, then $c +_2 c = c$ and $c \cdot_2 c = c$. Hence for every $a, b \in N$, we have $f(a +_1 b) = c = c +_2 c = f(a) +_2 f(b)$ and $f(a \cdot_1 b) = c = c \cdot_2 c = f(a) \cdot_2 f(b)$. It follows that f is a semi-ring homomorphism. \square

Remark 5.3. Let N and M be two semi-rings and $f:(N,+_1,\cdot_1,())\longrightarrow (M,+_2,\cdot_2,())$ be a semi-ring homomorphism. We say that f satisfy in property (*) if for every $a,a'\in N$, f(a)=f(a') if and only if, $stem\ a=stem\ a'$.

Example 5.4. Consider Example 2.10 and put $M := \{(), (1), (2), (3), (4)\}$. Define $f : N \longrightarrow M$ be by $f(a) = (a_1)$, for $a = (a_1, \ldots, a_n) \in N$. Let $a = (a_1, \ldots, a_n)$, $a' = (a'_1, \ldots, a'_n) \in N$. Since $stem(a + a') = a_1 \vee a'_1$ and $stem(a \cdot a') = a_1 \wedge a'_1$, we have $f(a + a') = (a_1 \vee a'_1) = (a_1) + (a'_1) = f(a) + f(a')$ and $f(a \cdot a') = (a_1 \wedge a'_1) = (a_1) \cdot (a'_1) = f(a) \cdot f(a')$. Hence f is a semi-ring homomorphism. Now, we have f(a) = f(a') if and only if $(a_1) = (a'_1)$ if and only if stem(a) = stem(a'). Therefore, f satisfy in property (*).

Definition 5.5. Let I be an ideal of N. We define $stem(I) = \{(i)\} \cup \{(i) : (i) \in I\}$.

Example 5.6. Consider Example 2.10 and let

 $I = \{(), (1), (2), (3), (1, 1), (1, 2), (1, 1, 1), (1, 1, 2), (2), (2, 1), (2, 1, 1), (2, 1, 2), (3, 1)\}.$ Then we can see that I is an ideal of N, and $stem(I) = \{(), (1), (2), (3)\}.$

Proposition 5.7. Let $(N, +_1, \cdot_1, ())$ and $(M, +_2, \cdot_2, ())$ be two semi-rings related to nexuses N and M and $0 \neq I, J$ be two ideals of N. Then

- (I) if $f: N \longrightarrow M$ is a semi-ring epimorphism, then $\overline{f}: \frac{N}{I} \longrightarrow M$ such that for every $a \in N$, $\overline{f}(a+_1 I) = f(a)$ is a semi-ring isomorphism if and only if f satisfy in property (*),
- (II) the map $g: \frac{N}{I} \longrightarrow \frac{N}{J}$ such that for every $a \in N$, $g(a +_1 I) = a +_1 J$ is a semi-ring isomorphism,
- isomorphism, $(\text{III}) \ \ \textit{the map } h: \frac{N}{I} \longrightarrow \textit{stem}\,(I) \ \ \textit{such that for every } a \in N, \ h(a+_{1}I) = (\textit{stem}\,a), \ \textit{is a semi-ring isomorphism}.$

Proof. (I) Since f is onto, we get \overline{f} is onto. Also, since f satisfy in property (*), by Lemma 2.9, f(a) = f(a') if and only if $stem\ a = stem\ a'$ if and only if $a +_1 I = a' +_1 I$. Hence \overline{f} is one to one. Clearly, \overline{f} is a semi-ring homomorphism. Therefore, \overline{f} is a semi-ring isomorphism.

- (II) Clearly, g is a semi-ring homomorphism and onto. Now, by Lemma 2.9, for every $a, a' \in N$, $a +_1 I = a' +_1 I$ if and only if stem a = stem a' if and only if $a +_1 J = a' +_1 J$. Hence g is one to one. Thus, it is a semi-ring isomorphism.
 - (III) The proof is similar to the proof (II). \Box

Now, we verify the concept localization of semi-ring N.

The subset S of N is a multiplicatively closed subset of N or (m.c.s), if every $a, b \in S$ implies $a \cdot b \in S$.

Let $X \subseteq N$. We put $\langle X \rangle_s := \{\prod_{i=1}^n a_1 \cdot a_2 \cdot \dots \cdot a_n : \{a_1, a_2, \dots, a_n\} \subseteq X, i \in \mathbb{N}\}$. Since for every $a \in N$, $a \cdot a = a$, it is easy to see that $\langle X \rangle_s$ is a (m.c.s) of N. Conversely, let S be a (m.c.s) of N. Clearly, $S = \langle S \rangle_s$. Hence for every (m.c.s) S of N, there exist a subset X of N such that $S = \langle X \rangle_s$ and X is called generated set of S. X is called the minimal generated set of S, if for every generated set Y of S, $X \subseteq Y$. Hereafter $S = \langle X \rangle_s$ it means that S is a (m.c.s) and X is a minimal generated set of S.

For every $a \in N$, $\{a\} = \langle a \rangle_s$ is a (m.c.s) of N.

For every $a,b \in N, S = \{a,b,a \cdot b\}$ is a (m.c.s) of N and $X = \{a,b\}$.

Now, we define a relation on $N \times S$. For every $a, a' \in N$ and $t, t' \in S$, $(a, t) \sim (a', t')$, if and only if there exist $s \in S$ such that $s \cdot t' \cdot a = s \cdot t \cdot a'$. It is easy to see that \sim is an equivalence relation on $N \times S$.

For every $(a,t) \in N \times S$, put $\frac{a}{t} = \{(a',t') : (a,t) \sim (a',t')\}.$

Remark 5.8. Let S be a (m.c.s) of N. We put $\sigma = \prod_{s \in S} s$. For every $a \in N$ and $s \in S$, $\frac{a}{\sigma} = \frac{a}{s}$. Also, for every $a \in N$, $\frac{a}{\sigma} = \frac{()}{\sigma}$ if and only if a = ().

Lemma 5.9. Let $S \subseteq N$ be a (m.c.s) of N. Then for every $a, a' \in N$, $\frac{a}{\sigma} = \frac{a'}{\sigma}$ if and only if $\sigma \cdot a = \sigma \cdot a'$.

Proof. Since for every $s \in S$, we get $\sigma \cdot s = \sigma$, the proof is clear. \Box

Theorem 5.10. Let $S \subseteq N$ be a (m.c.s) of N, $a, a' \in N$, σ as in Remark 5.8 and stem $\sigma = k$. Then

- (I) $if \min\{stem\ a, stem\ a'\} > k$, then $\frac{a}{\sigma} = \frac{a'}{\sigma}$,
- (II) $\max\{stem\ a, stem\ a'\} < k, \ \frac{a}{\sigma} = \frac{a'}{\sigma} \ if \ and \ only \ if \ stem\ a = stem\ a',$
- (III) if $\sigma = (k)$ and $\min\{stem\ a, stem\ a'\} \geqslant k$, then $\frac{a}{\sigma} = \frac{a'}{\sigma}$,
- (IV) if $\sigma \neq (k)$, then $\frac{(k)}{\sigma} = \frac{a}{\sigma}$ if and only if (k) = a or stem a > k,

- (V) if $\sigma \neq (k)$, then $\frac{\sigma}{\sigma} = \frac{a}{\sigma}$ if and only if $\sigma \leqslant a$,
- (VI) if $\sigma \neq (k)$ and $a, a' < \sigma$, then $\frac{a}{\sigma} = \frac{a'}{\sigma}$, if and only if a = a'.

Proof. Let $a, a' \in N$, $stem a = a_1$ and $stem a' = a'_1$. If $a_1, a'_1 > k$, then $i\{a, \sigma\} = i\{a', \sigma\} = 1$ and $a \cdot \sigma = a' \cdot \sigma = (k)$. Now, by Lemma 5.9, we get $\frac{a}{\sigma} = \frac{a'}{\sigma}$.

- (II) Let $a, a' \in N$, $stem \ a = a_1$ and $stem \ a' = a'_1$. If $a_1, a'_1 < k$, then $i\{a, \sigma\} = i\{a', \sigma\} = 1$. Using Lemma 5.9, we get $\frac{a}{\sigma} = \frac{a'}{\sigma}$ if and only if $a \cdot \sigma = a' \cdot \sigma$ if and only if $(a_1) = (a'_1)$ if and only if $a_1 = a_1'$.
- (III) Let $a, a' \in N$, $stem\ a = a_1$ and $stem\ a' = a'_1$. If $a_1, a'_1 \geqslant k$, then $i\{a, \sigma\} = i\{a', \sigma\} = 1$ and $a \cdot \sigma = a' \cdot \sigma = (k)$. Now, by Lemma 5.9, we get $\frac{a}{\sigma} = \frac{a'}{\sigma}$.
- (IV) Let $a \in N$, by Lemma 5.9, $\frac{(k)}{\sigma} = \frac{a}{\sigma}$ if and only if $\sigma \cdot (k) = \sigma \cdot a$. Since $\sigma \neq (k)$ and $stem \ \sigma = k, \ \sigma \cdot (k) = (k), \ \text{we get} \ \sigma \cdot a = (k).$ Now, we prove $\sigma \cdot a = (k)$ if and only if $stem \ a > k$ or a=(k). If $a_1=stema>k$, then $i\{a,\sigma\}=1$, and so $\sigma\cdot a=(a_1\wedge k)=(k)$. If a=(k), then $i\{a,\sigma\}=1$, and so $\sigma \cdot a=\sigma \cdot (k)=(k)$.

Conversely, let $\sigma \cdot a = (k)$ and $a_1 = stem \ a \leq k$. We show that a = (k). Since $\sigma \cdot a = (k)$ and $a_1 = stem \ a \leq k, \ k = stem \ (\sigma \cdot a) = a_1 \wedge k = a_1$. Let $l(a) \geq 2$. Since $\sigma \neq (k), \ l(\sigma) \geq 2$, and hence $l(a \cdot \sigma) \ge 2$. Since $\sigma \cdot a = (k)$, $l((k)) \ge 2$, which is a contradiction. Therefore, $stem \, a > k \text{ or } a = (k)$. Hence the proof is complete.

- (V) Let $a \in N$, by Lemma 5.9, $\frac{\sigma}{\sigma} = \frac{a}{\sigma}$ if and only if $\sigma \cdot \sigma = a \cdot \sigma$ if and only if $a \cdot \sigma = \sigma$ if and only if $\sigma \leqslant a$.
- (VI) Let $a, a' \in N$ and $a, a' < \sigma$, by Lemma 5.9, $\frac{a}{\sigma} = \frac{a'}{\sigma}$ if and only if $\sigma \cdot a = a' \cdot \sigma$ if and only if a = a'. \square

Example 5.11. Consider a nexus:

 $N = \{(), (1), (1, 1), (1, 1, 2), (1, 2), (1, 2, 1), (1, 2, 2), (2), (2, 1), (2, 2), (3), (3, 1), (3, 2), (4)\}$ with the following diagram.

$$\frac{(1,1)}{(1,1)} = \frac{(1,1,2)}{(1,1)} = \frac{(1,2)}{(1,1)} = \frac{(1,2,1)}{(1,1)} = \frac{(1,2,2)}{(1,1)} \varepsilon$$

(I) Let
$$S := \langle (1,1), (1,1,2) \rangle_s$$
. Then $\sigma = (1,1)$. Using Theorem 5.10, we get: $\frac{(1,1)}{(1,1)} = \frac{(1,1,2)}{(1,1)} = \frac{(1,2)}{(1,1)} = \frac{(1,2,1)}{(1,1)} = \frac{(1,2,2)}{(1,1)}$ and $\frac{(1)}{(1,1)} = \frac{(2)}{(1,1)} = \frac{(2,1)}{(1,1)} = \frac{(2,2)}{(1,1)} = \frac{(3)}{(1,1)} = \frac{(3,1)}{(1,1)} = \frac{(3,2)}{(1,1)} = \frac{(4)}{(1,1)}$. Hence $N_s = \{\frac{0}{(1,1)}, \frac{(1)}{(1,1)}, \frac{(1,1)}{(1,1)}, \frac{(1,1)}{(1,1)}\}$.

(II) Let $S := \langle (1, 2, 1), (1, 2, 2) \rangle_s$. Then $\sigma = (1, 2)$.

Using Lemma 5.9 and Theorem 5.10, we get:

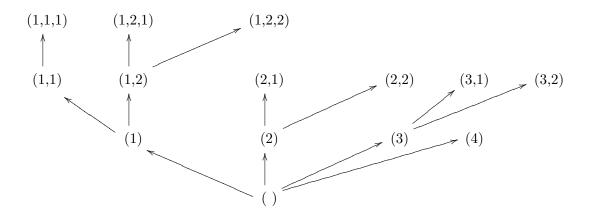


Fig. 6. Diagram of N.

$$\frac{(1,1)}{(1,2)} = \frac{(1,1,2)}{(1,2)}, \frac{(1,2)}{(1,2)} = \frac{(1,2,1)}{(1,2)} = \frac{(1,2,2)}{(1,2)} \text{ and}$$

$$\frac{(1)}{(1,2)} = \frac{(2)}{(1,2)} = \frac{(2,1)}{(1,2)} = \frac{(2,2)}{(1,2)} = \frac{(3)}{(1,2)} = \frac{(3,1)}{(1,2)} = \frac{(3,2)}{(1,2)} = \frac{(4)}{(1,2)}.$$
Hence $N_s = \{\frac{0}{(1,2)}, \frac{(1)}{(1,2)}, \frac{(1,1)}{(1,2)}, \frac{(1,2)}{(1,2)}\}.$

Definition 5.12. Let $S \subseteq N$ be a (m.c.s) of N and $\sigma = \prod_{s \in S} s$. We put

$$N_s := \{ \frac{a}{\sigma} : (a, \sigma) \in N \times S \}.$$

For every $a, a' \in N$, we define the binary operations " \oplus " and " \odot " on N_S with the following:

$$\frac{a}{\sigma} \oplus \frac{a'}{\sigma} = \frac{a+a'}{\sigma}$$
 and $\frac{a}{\sigma} \odot \frac{a'}{\sigma} = \frac{a \cdot a'}{\sigma}$.

Example 5.13. Consider Example 5.11 (II). We have
$$\frac{(1,1)}{(1,2)} \oplus \frac{(1,2)}{(1,2)} = \frac{(1,1) \cdot (1,2) + (1,2) \cdot (1,2)}{(1,2)} = \frac{(1,1) + (1,2)}{(1,2)} = \frac{(1)}{(1,2)},$$
$$\frac{(1,1)}{(1,2)} \odot \frac{(1,2)}{(1,2)} = \frac{(1,1) \cdot (1,2)}{(1,2)} = \frac{(1,1)}{(1,2)}.$$

Proposition 5.14. The algebra $(N_s, \oplus, \odot, \frac{0}{\sigma})$ is a semi-ring.

Proof. Let $a, a', b, b' \in N$ and $\frac{a}{\sigma} = \frac{b}{\sigma}$ and $\frac{a'}{\sigma} = \frac{b'}{\sigma}$. Then by Lemma 5.9, $\sigma \cdot a = \sigma \cdot b$ and $\sigma \cdot a' = \sigma \cdot b'$. It follows that $\sigma \cdot a + \sigma \cdot a' = \sigma \cdot b + \sigma \cdot b'$ and $\sigma \cdot a \cdot a' = \sigma \cdot b \cdot b'$. Therefore, $\frac{\sigma \cdot a + \sigma \cdot a'}{\sigma} = \frac{\sigma \cdot b + \sigma \cdot b'}{\sigma}$ and $\frac{a \cdot a'}{\sigma} = \frac{b \cdot b'}{\sigma}$. Also, we have $\frac{a}{\sigma} + \frac{()}{\sigma} = \frac{a}{\sigma}$. Since $(N, +, \cdot, ())$ is a completion for $a \cdot b = \sigma N$.

$$\frac{a}{\sigma} \oplus (\frac{b}{\sigma} \oplus \frac{c}{\sigma}) = \frac{a}{\sigma} \oplus \frac{b+c}{\sigma} = \frac{a+(b+c)}{\sigma} = \frac{(a+b)+c}{\sigma} = \frac{a+b}{\sigma} \oplus \frac{c}{\sigma} = (\frac{a}{\sigma} \oplus \frac{b}{\sigma}) \oplus \frac{c}{\sigma}.$$

$$\frac{a}{\sigma} \odot (\frac{b}{\sigma} \odot \frac{c}{\sigma}) = \frac{a}{\sigma} \odot \frac{b \cdot c}{\sigma} = \frac{a \cdot (b \cdot c)}{\sigma} = \frac{(a \cdot b) \cdot c}{\sigma} = \frac{a \cdot b}{\sigma} \odot \frac{c}{\sigma} = (\frac{a}{\sigma} \odot \frac{b}{\sigma}) \odot \frac{c}{\sigma}.$$

$$\frac{a}{\sigma}\odot(\frac{b}{\sigma}\oplus\frac{c}{\sigma})=\frac{a}{\sigma}\odot\frac{b+c}{\sigma}=\frac{a\cdot(b+c)}{\sigma}=\frac{(a\cdot b)+(a\cdot c)}{\sigma}=\frac{a\cdot b}{\sigma}\oplus\frac{a\cdot c}{\sigma}=(\frac{a}{\sigma}\odot\frac{b}{\sigma})\oplus(\frac{a}{\sigma}\odot\frac{c}{\sigma}).$$
 Therefore, $(N_s,\oplus,\odot,\frac{()}{\sigma})$ is a semi-ring. \Box

Example 5.15. Consider Example 5.11 (II). Hence $N_s = \{\frac{0}{(1,2)}, \frac{(1)}{(1,2)}, \frac{(1,1)}{(1,2)}, \frac{(1,2)}{(1,2)}\}$. Thus, by Proposition 5.14, $(N_s, \oplus, \odot, \frac{0}{\sigma})$ is a semi-ring.

6. Conclusions and future works

In this work, we have explored the construction and properties of semi-rings over a nexus, contributing to the broader understanding of algebraic structures in this context. We began by presenting preliminary results on semi-rings constructed over a nexus, establishing conditions under which such a semi-ring is unitary or a principal ideal domain (PID). For a semi-ring N, we introduced the concept of st(N) and characterized prime ideals and prime elements using panels and quasi-panels. For a proper ideal P of N, we defined $st(P) = \max\{l: (l) \in P\}$ and proved that if $st(P) \neq st(N)$ and st(P) = t, then P is a prime ideal of N if and only if $P = \bigcup_{s \leqslant t} M_{(s)} \cup \{0\}$. Furthermore, when st(P) = st(N), we utilized Remarks 4.9 and 4.11 to characterize all prime ideals of N. Additionally, for an ideal I of N and a multiplicatively closed subset S of N, we defined the quotient semi-ring $\frac{N}{I}$ and the local semi-ring N_S .

Furthermore, we defined homomorphisms for these semi-rings and investigated their fundamental properties. Finally, we demonstrated the construction of quotient semi-rings induced by ideals of a semi-ring over a nexus and established the concept of localization. These results extend the theoretical framework of nexus algebras and provide new tools for analyzing algebraic structures in this setting.

As a direction of this study, we will be investigating the relationship between semi-rings over a nexus and other algebraic structures, such as modules or lattices. Further, extending the concept of localization to more general settings or exploring its applications in solving equations over semi-rings could provide practical tools for both theoretical and applied research.

7. Acknowledgments

The authors wish to sincerely thank the referees for several useful comments.

References

- D. Afkhami Taba, A. Hasankhani and M. Bolourian, Soft nexuses, Comput. Math. Appl., 64 No. 6 (2012) 1812-1821.
- [2] D. Afkhami Taba, N. Ahmadkhah and A. Hasankhani, A fraction of nexuses, Int. J. Algebra, 5 No. 18 (2011) 883-896.

- [3] S. Alikhani and S. Mirvakili, Independent sets of some graphs associated to commutative rings, Alg. Struc. Appl., 1 No. 2 (2014), 85-103.
- [4] H. M. Alnoghashi, F. A. A. Alqrni and N. U. Rehman, Results on generalized derivations in prime rings, Alg. Struc. Appl., 10 No. 2 (2023) 87-98.
- [5] M. Bolourian, Theory of Plenices, Ph. D. Thesis, University of Surrey, Guildford, UK, 2009.
- [6] M. Bolourian, R, Kamrani and A. Hasankhani, The structure of moduloid on a nexus, Mathematics, 7 No. 1 (2019) 82.
- [7] P. Disney, Formian: The Programming Language of Formex Algebra, International Symposium on Membrane Structures and Space Frames, Osaka, Japan, September 1986.
- [8] A. A. Estaji and A. As. Estaji, Nexus over an ordinal, J. Uncertain Syst., 9 (2015) 183-197
- [9] Y. Q. Gno and F. Pastijn, Semirings which are unions of rings, SCI. CHINA. SER. A, 45 No. 2 (2002) 172-195.
- [10] J. S. Golan, Semirings and Their Applications, Kluwer Academic Publishers, Dordrecht, 1999.
- [11] D. Hadker and D. Tzourmakliotou, Formex configuration processing, Transactions on Information and Communications Technologies, 5 (1993) 253-268.
- [12] R. Kamrani, A. Hasankhani and M. Bolourian, Finitely generated submoduloids and prime submoduloids on a nexus, Mo. J. Math. Sci., 32 No. 1 (2020) 88-109.
- [13] R. Kamranialiabad, A. Hasankhani and M. Bolourian, On submoduloids of a moduloid on a nexus, Appl. Appl. Math., 15 No. 2 (2020) 1407-1435.
- [14] M. Haristchain, Formex and Plenix Structural Analysis, Ph. D. Thesis, University of Surrey, Guildford, UK, 1980.
- [15] U. Hebisch and H. J. Weinert, Semirings: Algebraic Theory and Applications in Computer Science, World Scientific, Singapore, 1998.
- [16] I. Hee, Plenix Structural Analysis, Ph. D. Thesis, University of Surrey, Guildford, UK, 1985.
- [17] P. Nasehpour, Some remarks on semiring and their ideals, Asian-Eur. J. Math., 13 No. 1 (2020) 2050002.
- [18] V. Nazemi Niya, H. Babaei and A. Rezaei, On fuzzy sub-semi-rings of nexuses, AIMS Mathematics, 9 No. 12 (2024) 36140-36157.
- [19] H. Nooshin, Formex Configuration Processing in Structural Engineering, Elsevier Applied Science Publishers, London, UK, 1984.
- [20] H. Nooshin, Algebraic representation and processing of structural configurations, Comput. Struct., 5 No. (2-3) (1975) 119-130.
- [21] M. Norouzi, A. Asadi and Y. B. Jun, A generalization of subnexuses based on N-structures, Thai J. Math., 18 (2020) 563-575.
- [22] M. Norouzi, A. Asadi and Y. B. Jun, Subnexuses based on N-structure, Armen. J. Math., 10 No. 10 (2018) 1-15.
- [23] M. K. Sen, S. K. Maity and K. P. Shum, Some aspects of semirings, Southeast Asian Bull. Math., 45 (2021) 919-930.
- [24] N. Sulochana, M. Amala and T. Vasanthi, A study on the classes of semiring and ordered semiring, Adv. Math., 9 No. 1 (2016) 11-15.

Vajiheh Nazemi Niya

Department of Mathematics,

Islamic Azad University of Kerman,

Kerman, Iran.

v.nazeminiya@iauk.ac.ir

Hojat Babaei

Department of Mathematics,

Islamic Azad University of Kerman,

Kerman, Iran.

6079728753@iau.ir

Akbar Rezaei

Department of Mathematics,

Payame Noor University, P.O. Box 19395-4697,

Tehran, Iran.

rezaei@pnu.ac.ir