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EXPLORING SOME MODULES THROUGH INCLUSION HYPERGRAPHS

SOHEYLA BADIRI, ALI REZA MONIRI HAMZEKOLAEE∗ AND SAMIRA ASGARI

Abstract. Recent studies have shown that hypergraphs are useful in solving real-life prob-

lems. Hypergraphs have been successfully applied in various fields. Inspired by the impor-

tance, we introduce a new hypergraph assigned to a given module. In particular, vertices of

this hypergraph (which we call inclusion hypergraph, denoted by InHR(M)) are all nontrivial

submodules of a module M and a subset E of the vertices is a hyperedge in case each two

elements of E are comparable by inclusion and E is maximal with respect to this condition.

We prove that the inclusion hypergraph of an R-module M is disconnected if and only if

M can be written as a direct sum of its each two nontrivial submodules. The diameter of

InHR(M) is shown to be at most 3.

1. Introduction

Based on [4, 5], a hypergraph H is composed of a set of vertices V = {v1, . . . , vn} and a
collection of hyperedges E = {Ej | 1 ≤ j ≤ m}. Each hyperedge is a non-empty subset of
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vertices, and the union of all hyperedges equals the entire vertex set V . This means that in
a hypergraph, each hyperedge links two or more vertices. There are several works related to
various graphs and fuzzy graphs ([17], [24]).

Hypergraphs generalize traditional graphs by allowing edges called hyperedges to connect
any number of vertices, rather than just pairs. In graphs, vertices typically represent individual
elements of a set, and edges are limited to pairs of these elements. In contrast, hyperedges can
represent subsets of any size or, more broadly, express complex relationships involving arbi-
trary subsets. Due to this flexibility, hypergraphs serve as powerful tools for modeling intricate
structures and interactions among nodes. Over the last ten years, research has demonstrated
the effectiveness of hypergraphs in addressing practical problems across diverse domains. They
have found successful applications in areas such as network analysis, data structuring, engi-
neering system modeling, cellular communications, image processing, machine learning, data
mining, soft set theory, social network analysis, chemistry, and beyond. Notable studies in
these applications include works such as [21], [11], [15], [7, 8, 9, 10], [12], [3], [16], [6, 13, 22],
and [23].

From a theoretical standpoint, hypergraphs provide a natural extension of numerous graph
theory results, often consolidating various graph theorems into a single statement within the
hypergraph framework. For instance, Berge�s weak perfect graph conjecture which character-
izes a graph as perfect if and only if its complement is also perfect was established through the
use of normal hypergraphs. On the practical side, hypergraphs are becoming more prominent
than traditional graphs because they offer enhanced expressive capabilities. In graph theory,
complete graphs play a fundamental role. Addressing this, the notions of co-intersection hy-
pergraphs [19] and intersection hypergraphs [20] were introduced to describe particular classes
of modules. These studies also quantified the number of complete subgraphs found in the co-
intersection and intersection graphs constructed on modules. Additionally, in [14], the authors
proposed a novel hypergraph defined on a module M , called the sum hypergraph. Its vertices
consist of all nontrivial submodules of M , and a subset A of these vertices forms a hyperedge
if the sum of any two elements in A equals M , with A being maximal under this condition.
The authors characterized some semisimple modules via sum hypergraphs.

In the past twenty years, algebraic graph theory has attracted significantly increased interest
from researchers (see [1, 2]). Recently, Mahdavi and Talebi defined the inclusion graph of
submodules of a module M , denoted by In(M) (see [18]). The graph’s vertices consist of all
nontrivial submodules of M , with two distinct vertices N and K connected if one is contained
within the other. They investigated properties such as the connectivity, girth, and diameter
of In(M) ([18]).
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In this work, we focus on the inclusion hypergraph associated with the submodules of a mod-
ule M , which serves as a valuable tool for exploring the structure of certain module classes.
Our goal is to gain deeper insights into modules by examining their corresponding inclusion
hypergraphs. Alongside this, we also investigate fundamental characteristics of these hyper-
graphs, such as connectedness, diameter, and independence number. Notably, we establish
that the inclusion hypergraph of an R-module M is null if and only if M can be expressed as
a direct sum of every pair of its nontrivial submodules.

Note throughout the text, R denotes an associative ring with identity 1 ̸= 0 and all modules
will be assumed as unitary right R-modules.

2. Inclusion hypergraph of submodules of a module

Inclusion graph of submodules of a module has been introduced and studied in [18]. Let M

be a module. Then InR(M) is a simple undirected graph where the vertices are all nontrivial
submodules of M and two distinct vertices N and K are adjacent in case N ⊂ K or K ⊂ N .
Inspired by [18], we shall introduce a new hypergraph on a module via inclusion. Note that
the inclusion graph of a module M is itself the inclusion hypergraph of M .

Definition 2.1. Suppose that M is an R-module. Then the inclusion hypergraph on M ,
which we denote by InHR(M), can be defined in the same way as the intersection hypergraph
on M . In this way, the set of all nontrivial submodules of M is the set of vertices and a set A

of some vertices of InHR(M) forms a hyperedge provided each pair of elements of A is strictly
comparable by inclusion and A is maximal with respect to this property.

Note that by the definition, any hyperedge in InHR(M) forms a chain of submodules of
M , and the converse also holds. In fact, any hyperedge of InHR(M), introduces a complete
subgraph of InR(M).

Throughout this manuscript, we consider modules with at least two nontrivial submodules.
The first challenge is to determine when the inclusion hypergraph contains an isolated

vertex. We address this problem.

Theorem 2.2. Let M be a module. Then the following statements are equivalent:
(1) InHR(M) has an isolated vertex N ;
(2) N is a simple maximal submodule of M ;
(3) For each nontrivial submodule K of M distinct from N , we have M = N ⊕K;
(4) M can be written as a direct sum of every pair of its nontrivial submodules;
(5) The hypergraph InHR(M) is null.

Proof. (1) ⇒ (2) Suppose that N is an isolated vertex in InHR(M). If N is strictly contained
in a proper submodule of M , namely K, then {N,K} will be contained in a hyperedge of
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InHR(M), while N is isolated. This shows that N is a maximal submodule of M . In other
words, if N contains a nontrivial submodule T of M , then N can not be isolated. In fact, N
is a simple maximal submodule.

(2) ⇒ (3) Consider an arbitrary submodule K of M distinct from N . Then N ∩K = {0},
as N is simple. Being N a maximal submodule of M implies N +K = M , hence M = N ⊕K.

(3) ⇒ (4) The assumption implies each submodule of M is simple. Hence for each pair of
nontrivial submodules D and T of M , we have M = D ⊕ T .

(4) ⇒ (5) If InHR(M) contains a hyperedge Ei where | Ei |≥ 2, then for each pair of
elements of Ei we must have a direct decomposition. This provide a contradiction.

(5) ⇒ (1) Obvious.

Recall that by lR(M), we mean the length lR(M) of the R-module M . In other words,
we say M has length n ∈ N, provided n is the length of the largest chain of submodules of
M . If no such largest chain exists, then lR(M) = ∞. From the definition of a hyperedge in
InHR(M), we can say lR(M) =| Em | +1 where Em is a hyperedge with maximum number of
elements.

Following Theorem 2.2, InHR(M) is null if and only if M is a semisimple module with
length 2.

Example 2.3. (1) The hypergraph InHZ(Zn) is null if and only if n = pq where p and q are
two distinct prime numbers.

(2) The inclusion hypergraph of the Z-module Zp ⊕ Zp is null where p is a prime.

Recall that a module M is uniserial if its submodules are linearly ordered by inclusion.
We next characterize modules M for which InHR(M) has just one hyperedge containing all
vertices.

Proposition 2.4. The hypergraph InHR(M) has exactly one hyperedge containing all vertices
if and only if M is uniserial.

Proof. Suppose that InHR(M) has exactly one hyperedge containing all vertices. It follows
that any two submodules of M are comparable by inclusion. Hence, M is uniserial. The
converse is obvious.

From Proposition 2.4, the inclusion hypergraph of the Z-modules Zpn (n ≥ 2) and Zp∞ have
just one hyperedge.

Example 2.5. Let p be a prime. Now, consider Z-module M = Zp5 . Then K1 =< p >,
K2 =< p2 >, K3 =< p3 > and K4 =< p4 > are all nontrivial submodules of M . As M
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is uniserial, we have V = {K1,K2,K3,K4}, E = {{K1,K2,K3,K4}} and the hypergraph
InHZ(M) has the following form:

K1

K2

K3

K4

We shall investigate, when InHR(M) is connected.

Theorem 2.6. For an R-module M , the hypergraph InHR(M) is disconnected if and only if
InHR(M) is null.

Proof. Let InHR(M) be disconnected. To the contrary, suppose that there is no isolated
vertices (InHR(M) has at least one hyperedge). Then we can assume that there are two
vertices A and C in InHR(M) such that there are no paths between them (note that if
InHR(M) contains an isolated vertex, then it must be null by Theorem 2.2). By the definition,
there are two hyperedges E1 and E2 with at least two elements. Suppose A,B ∈ E1 and
C,D ∈ E2. Now, consider the submodule A ∩ C. Since, there is no path between A and C

so A ∩ C ̸= A and A ∩ C ̸= C. As A ∩ C is contained in both A and C, then by assumption
A ∩ C = {0}. By same argument, A + C = M . In fact, A ⊕ C = M . Hence we will have
M = A⊕C = A⊕D = B⊕C = B⊕D. Note also that A ⊂ B or B ⊂ A. If each of these two
cases holds, then A = B a contradiction. Therefore, InHR(M) is null. Other side is obvious.

The following is immediate from Theorems 2.2 and 2.6.

Corollary 2.7. The hypergraph InHR(M) is disconnected if and only if M can be written as
a direct sum of its each two nontrivial submodules.

A hypergraph H is said to be k-uniform in case the cardinal of all hyperedges of H is k.
The following includes a module M where InHR(M) is 2-uniform.

Example 2.8. Suppose that M = Zp2q as an Z-module where p, q are distinct prime numbers
and p < q. The list of all nontrivial submodules of M is K1 =< pq >, K2 =< p2 >, K3 =< q >

and K4 =< p >. Then InHZ(M) has three hyperedges E1 = {K1,K3}, E2 = {K1,K4} and
E3 = {K2,K4}.

K3

K4

K1

K2
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The following example introduces a module M such that InHR(M) is a 3-uniform hyper-
graph.

Example 2.9. Let M = Zp3q as an Z-module. All nontrivial submodules are M1 =< p2q >,
M2 =< p3 >, M3 =< pq >, M4 =< p2 >, M5 =< q > and M6 =< p >. Then InHZ(M)

has four hyperedges E1 = {M2,M4,M6}, E2 = {M1,M3,M5}, E3 = {M1,M3,M6}, E4 =

{M1,M4,M6}. The corresponding inclusion hypergraph has the following figure:

M1

M2

M3M4

M5

M6

Note that a Berge’s cycle in a hypergraph is a sequence x − E1 − y1 − . . . − yn − En − x

where x, y1, . . . , yn are distinct vertices and E1, . . . , En are distinct hyperedges. The girth of
a hypergraph is the length of a shortest Berge’s cycle if such a cycle exists. Unlike graphs,
the girth of a hypergraph can be 2. This happens when there exist two distinct hyperedges
with at least two common elements. If there is no Berge’s cycle, then the girth is defined to
be infinite. We try to compute the girth of InHR(M).

Theorem 2.10. For an R-module M , assume that InHR(M) contains a Berge’s cycle. Then
gr(InHR(M)) is either 2 or 5.

Proof. Assume that InHR(M) has at least two distinct hyperedges Ei and Ej such that |
Ei ∩ Ej |≥ 2. Set A,B ∈ Ei ∩ Ej . Then A− Ei − B − Ej − A is a cycle. Otherwise, suppose
the intersection of each two distinct hyperedges of InHR(M) has at most one element. Now
assume A−Ei −B −Ej − C −Et −A is a Berge’s cycle with length 3. Now, eight cases can
occur:

(1) A ⊂ B,B ⊂ C,C ⊂ A;
(2) A ⊂ B,B ⊂ C,A ⊂ C;
(3) A ⊂ B,C ⊂ B,A ⊂ C;
(4) A ⊂ B,C ⊂ B,C ⊂ A;
(5) B ⊂ A,B ⊂ C,C ⊂ A;
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(6) B ⊂ A,B ⊂ C,A ⊂ C;
(7) B ⊂ A,C ⊂ B,A ⊂ C;
(8) B ⊂ A,C ⊂ B,C ⊂ A.
Some of the above cases are impossible and some of them introduce a chain.
Hence, InHR(M) can not include a cycle with length 3. Applying same arguments,

InHR(M) can not include cycles of length 4 or 6, 7, . . ..
Therefore, the girth of InHR(M) is either 2 or 5.

A subset I of V (H) where H is a hypergraph, is said to be independent if for any two elements
A,B in I, there does not exist a hyperedge including them. The independent number of a
hypergraph H (denoted by α(H)) is the cardinal number of a maximal independent set of H.

Proposition 2.11. Let M be an R-module. Then:
(1) Both the sets of minimal and maximal submodules of M are independent in InHR(M).
(2) α(InHR(M)) ≥ max{| Max(M) |, | Min(M) |}.

Proof. (1) This follows from the fact that any two maximal (minimal) submodules of M cannot
be comparable by inclusion.

(2) Can be derived from (1).

Recall that in a hypergraph H, the distance between two distinct vertices N and K is
the length of the shortest path between them. In this way, diameter of H is defined as
diam(H) = max{d(N,K) | N,K ∈ V (H)}. It can be of interest to compute the diameter of
InHR(M).

Theorem 2.12. Let M be an R-module such that InHR(M) is connected. Then
diam(InHR(M)) ≤ 3.

Proof. Let N and K be two nontrivial submodules of M including two distinct hyperedges Ei

and Ej . Consider N∩K. If N∩K is a nonzero submodule of M , then N−Ei−(N∩K)−Ej−K

is a path with length 2. Otherwise, assume N ∩ K = {0}. Now, we can consider N + K as
a submodule of M . Here, we shall check two possibilities. One case is N +K ̸= M . Hence,
N−Ei−(N+K)−Ej−K will be a path. Suppose that N+K = M . In this way, M = N⊕K. If
both N and K are maximal submodules of M , then both are simple submodules of M implying
that InHR(M) has isolated vertex and consequently InHR(M) is null. Therefore, one of N
and K is not maximal; assume N is not maximal. Then N is contained in another proper
submodule L of M . Now, L and K have two possibilities: either they are comparable by
inclusion, or they are not. If first case happens, there is the path N − Ei − L − Ej − K.
Otherwise, we have two following cases:
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Case 1: K ∩L = {0}. Then L = L∩ (N ⊕K) = N +(K ∩L) = N , which is a contradiction.
Case 2: K ∩L ̸= {0}. Then there exists another hyperedge including K ∩L and L, say Es.

Therefore, K − Ej − (K ∩ L)− Es − L− Ei −N is a path with length 3.
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