On the extension functors of certain modules of small dimension

Document Type : Research Paper

Authors

Department of Basic Sciences, Arak University of Technology, P. O. Box 38135-1177, Arak, Iran.

Abstract

Let $R$ be a commutative Noetherian ring with nonzero identity, $I$ an ideal of $R$, and $M$ an $R$-module such that ${\rm Ext}^i_R(R/I,M)$ is minimax for all $i\leq \dim M$. We prove that if ${\rm Supp}_R(M)\subseteq V(I)$, then for every finitely generated $R$-module $N$ with $\dim N/IN \leq 1$, the $R$-module ${\rm Ext}^i_R(N,M)$ is $I$-cominimax for all $i\geq 0$. In particular, for a finitely generated $R$-module $N$ with ${\rm Supp}_R (N/IN)\subseteq {\rm Max}(R)$, we show that ${\rm Ext}^i_R (N,M)$ is Artinian and $I$-cofinite for all $i \geq 0$.

Keywords


[1] R. Abazari and K. Bahmanpour, Cofiniteness of extension functors of cofinite modules, J. Algebra, 330 No. 1 (2011) 507-516.
[2] A. Abbasi and H. Roshan Shekalgourabi, Serre subcategory properties of generalized local cohomology modules, Korean Annals of Math, 28 No. 1 (2011) 25-37.
[3] M. Aghapournahr, Cominimaxness of local cohomology modules, Czechoslovak Math. J., 69 No. 1 (2019) 75-86.
[4] M. Aghapournahr and K. Bahmanpour, Cofiniteness of weakly laskerian local cohomology modules, Bull. Math. Soc. Sci. Math. Roumanie, 105 No. 4 (2014) 347-356.
[5] M. Aghapournahr and K. Bahmanpour, Cofiniteness of general local cohomology modules for small dimensions, Bull. Korean Math. Soc., 53 No. 5 (2016) 1341-1352.
[6] J. Azami, R. Naghipour, and B. Vakili, Finiteness properties of local cohomology modules for a-minimax modules, Proc. Amer. Math. Soc., 137 No. 2 (2009) 439-448.
[7] K. Bahmanpour, A study of cofiniteness through minimal associated primes, Comm. Algebra, 47 No. 3 (2019) 1327-1347.
[8] K. Bahmanpour and R. Naghipour, On the cofiniteness of local cohomology modules, Proc. Amer. Math. Soc., 136 No. 7 (2008) 2359-2363.
[9] K. Bahmanpour and R. Naghipour, Cofiniteness of local cohomology modules for ideals of small dimension, J. Algebra, 321 (2009) 1997-2011.
[10] K. Bahmanpour, R. Naghipour and M. Sedghi, On the category of cofinite modules which is abelian, Proc. Amer. Math. Soc., 142 No. 4 (2014) 1101-1107.
[11] K. Bahmanpour, R. Naghipour and M. Sedghi, Modules cofinite and weakly cofinite with respect to an ideal, J. Algebra Appl., 17 No. 3 (2018) 1850056.
[12] M. P. Brodmann and R. Y. Sharp, Local Cohomology: An Algebraic Introduction with Geometric Applications, Cambridge Studies in Advanced Mathematics 60, Cambridge University Press, Cambridge, 1998.
[13] K. Divaani-Aazar and A. Mafi, Associated primes of local cohomology modules, Proc. Amer. Math. Soc., 133 No. 3 (2005) 655-660.
[14] K. Divaani-Aazar and A. Mafi, Associated primes of local cohomology modules of weakly Laskerian modules, Comm. Algebra, 34 (2006) 681-690.
[15] A. Grothendieck, Cohomologie Locale des Faisceaux et Theoremes de Lefshetz Locaux et Globaux (SGA2), North Holland, 1968.
[16] R. Hartshorne, Affine duality and cofiniteness, Invent. Math, 9 (1969/1970) 145-164.
[17] D. Hassanzadeh-Lelekaami and H. Roshan-Shekalgourabi, Extension functors of cominimax modules, Comm. Algebra, 45 No. 2 (2017) 621-629.
[18] Y. Irani, Cominimaxness with respect to ideals of dimension one, Bull. Korean Math. Soc., 54 No. 1 (2017) 289-298.
[19] Y. Irani and K. Bahmanpour, Finiteness properties of extension functors of cofinite modules, Bull. Korean Math. Soc., 50 No. 2 (2013) 649-657.
[20] H. Karimirad and M. Aghapournahr, Cominimaxness with respect to ideals of dimension two and local cohomology, J. Algebra Appl., 20 No. 05 (2021) 2150081.
[21] T. Marley, The associated primes of local cohomology modules over rings of small dimension, Manuscripta Math., 104 (2001) 519-525.
[22] T. Marley and J. Vassilev, Cofiniteness and associated primes of local cohomology modules, J. Algebra, 256 (2002) 180-193.
[23] H. Matsumura, Commutative Ring Theory, Cambridge University Press, Cambridge, UK, 1986.
[24] L. Melkersson, On asymptotic stability for sets of prime ideals connected with the powers of an ideal, Math. Proc. Camb. Phil. Soc., 107 (1990) 267-271.
[25] L. Melkersson, Modules cofinite with respect to an ideal, J. Algebra, 285 (2005) 649-668.
[26] R. Naghipour, K. Bahmanpour, and I. Khalili Gorji, Cofiniteness of torsion functors of cofinite modules, Colloq. Math., 136 No. 2 (2014) 221-230.
[27] H. Roshan-Shekalgourabi, Cominimaxness of local cohomology modules with respect to ideals of dimension one, Honam Mathematical J., 40 No. 2 (2018) 211-218.
[28] H. Roshan-Shekalgourabi and D. Hassanzadeh-Lelekaami, On the generalized local cohomology of minimax modules, J. Algebra Appl., 15 No. 8 (2016) 1650147.
[29] H. Zöschinger, Minimax-moduln, J. Algebra, 102 (1986) 1-32.
[30] H. Zöschinger, Über die maximalbedingung für radikalvolle untermoduh, Hokkaido Math. J., 17 No. 1 (1988) 101-116.