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Abstract. Formal Concept Analysis (FCA) as a well-known method in data analysis, has

been widely noticed by researchers in pure and applied fields. Despite the increasing devel-

opment in the application area, more work needs to be done in the pure area. Designing a

theoretical system based on an algebraic-analytical structure is a significant help in enhancing

its power to meet the needs of researchers. Therefore, in this article, by designing a system

equipped with addition and multiplication, the development of Galois lattices will be dis-

cussed as the main goal. In the shadow of such extension, we will be able to achieve a special

category of partially ordered rings, by defining partial and complete approximations. Hence,

some fundamental results in FCA will be developed as induced properties from ring theory

intuition. Two significant results of this research will devote to provide the possibility of

combining concepts with each other, as well as breaking the space into much distinguished

components. As a result, this yields a new window in the subject of digital communication,

which provides the possibility of joining concepts. The long-term prospective of this study is

to assign a new observation in Big Data Analysis, based on FCA.
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1. Introduction

FCA is a method of deriving a concept hierarchy from a collection of objects and their
properties. Commonly, FCA method makes the possibiltiy to find the real-world meaning of
mathematical order theory. More specifically, the interpreted outcomes actually follow from
the data tables that can be transformed into ordered algebraic structures (called complete
lattices). A data table representing a heterogeneous relation between objects and attributes,
forms a basic data set, (i.e. an object a has an attribute b), and is referred to as a formal
context. The extent is a set A of elements called objects while the intent B includes sub-
sets having the common properties induced by objects, and is also called the attributes set.
Any formal concept, is a pair of the extent A and the intent B such that A consists of all
objects that share the attributes in B and dually, B consists of all attributes participated
by the objects in A. Formal concepts of any formal context can be ordered in a hierarchy,
called the context’s concept lattice. In fact, FCA combines the mathematical ideas of lattice
theory with philosophical concepts (in particular, that of intent and extent), ordering and
classification methods, and diverse algorithmic tools for applications, to generate the brilliant
ideas not only in mathematical but also in various medley-mathematical areas, from Technical
Engineering, Biology, Medicine, History and Social Sciences to Fine Arts and Music [6].
This modern, practice-oriented and mathematically founded theory has been initiated and
propagated by Rudolf Wille and his coworkers since the seventies of the last century. A com-
prehensive source telling the story can be [8], containing also a complete list of references to
see the research gates.

A long with many applications of FCA, there is a significant motivation to equip it with
extra algebraic operations. This implementing strengthens its computational methods in ap-
plied areas. On the other hand, the closer a process is to theoretical models, the higher the
possibility of development and accuracy in its estimating methods. Although the current
structure (without addition and multiplication) has a good ability to compute, but appending
the algebraic operations can enhance its performance to show the real capacity. Combining
the concepts is a bit confusing but at the same time, it yields a significant progress. There
are two algebraic structures known as partially ordered rings and lattice ordered rings with
convincing properties (see [9], [?]) nearly close to our goal but as a drawback for this purpose,
they have been presented completely abstract and do not have the necessary capacity to ful-
fill the practical objectives. So, we will choose an alternative model that has a constructive
approach.

Therefore, in the main result section, we define the concept ring to achieve an algebraic
machine, converting the items into words, and assigning related codes to add and multiply
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them as digital objects. In a completely premeasured way, formal objects can be obtained by
completing the approximant sequences from the objects of this basic collection. Performing
this goal, naturally adds topological capabilities which in turn will have a more serious impact
on the study. The formation of such a ring gives a set of ideals which can be viewed as a
simple graph. In the application section, we develop a fully structured theorem, named as the
existence result in FCA (see proposition 2.8). Also, we prove one of the most distinguished
results in attribute implications, based on the presented studies. Eventually, the last theorem
deals with the introducing of a computational algorithm with extra potential of accuracy and
speed. The consequence will save a lot of time and energy. In total, the general purpose of this
study can be summarized in two parts. First, adding speculative and constructive algebraic
operations to the body of Galois lattices providing the possibility of combined elements and
secondly, focusing on the discussion of approximation and showing how to achieve maximal
elements in the case of infinite order sets. This, can open a new window to Big Data Analysis.

2. Preliminaries

In this section, some preliminaries will be reminded to follow the other topics. Most of the
contents are extracted from [4].

A poset (partially ordered set) is a pair (P,�) where P is a set and � is a partial order
(i.e. � is reflexive, transitive and anti-symmetric). A poset P along with a partial order � is
called a linear poset if every two distinct elements p and q of P are comparable (i.e. p � q or
q � p).

Let (P,�) be a poset. An infinite sequence

p1 � p2 � · · · � pn � . . . ,

of elements in P is called a chain. Such a chain is called stationary if there is some positive
integer n such that pm = pm+1 for all m ≥ n·.

For S ⊆ P , an element p ∈ P is called an upper bound (lower bound) of S if and only
if x � p (p � x), for each x ∈ S. Furthermore, p ∈ P is called the least upper bound (the
greatest lower bound) of S and denoted by lub or sup (glb or inf) if and only if p is an upper
(lower) bound and for any other upper (lower) bound q of S, it is the case that p � q (q � p).
In this paper, we denote by

∨
S and

∧
S, the lub and glb of S, respectively. If S = P, they

are represented by > and ⊥, respectively.
We remind that, if p, q ∈ P and P be a poset, p is said to cover q, if p ≺ q (p � q and p 6= q),
and p � z ≺ q implies that z = p. the lattar condition is demanding that there be no element
z of P with p ≺ z ≺ q.
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Definition 2.1. A poset is called a complete partial order (CPO), if and only if any of its
chains has a lub.

A preorder is like partial order, but without anti-symmetry. A direction on a set S is a
preorder in which any finite subset has an upper bound.

Definition 2.2. A directed subset is a nonempty subset S of a poset P, with property that
every pair of elements has an upper bound.

Definition 2.3. A directed complete partial order (DCPO), is a poset in which every directed
subset has a supremum.

Definition 2.4. For a partial order � on a ring R, (R,�) is a partially ordered ring if, for
all x ∈ R, a � b implies a+ x � b+ x and a � b implies ax � bx, where 0 � x.

Definition 2.5. A map f : (R1,�1) −→ (R2,�2) of partially ordered rings is order-preserving,
if x �1 y, implies f(x) �2 f(y) and is order-reversing if x �1 y, implies f(y) �2 f(x).

Lattices as having the efficient structure to mathematical modelling, describe the patterns
that do not have the usual algebraic and analytical formations. The core of this study is
basically on complete lattices. We recall that the nonempty poset (P,�), is called a lattice, if
for any x, y ∈ P , x ∨ y and x ∧ y exist. If for any arbitrary subset S of P,

∨
S and

∧
S exist

then we say that (P,�) is a complete lattice.

Definition 2.6. A formal context is a triple (G,M, I) consisting of a set G, a set M and an
incidence relation I ⊆ G × M . The elements of G and M are called objects and attributes
respectively. As usual, instead of writing (g,m) ∈ I we write gIm and say “the object g has
the attribute m”.

For A ⊆ G and B ⊆ M , define

A′ = {m ∈ M |(∀g ∈ A)gIm},

B′ = {g ∈ G|(∀m ∈ B)gIm}.

So A′ is the set of attributes common to all the objects in A and B′ is the set of objects
possessing the attributes in B.

Definition 2.7. A formal concept of the formal context (G,M, I) is defined to be a pair
(A,B) where A ⊆ G,B ⊆ M,A′ = B and B′ = A. The extent of the formal concept (A,B) is
A while its intent is B.
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Note that a subset A of G is the extent of some formal concept if and only if A′′ = (A′)′ = A.
The set of all formal concepts of the formal context (G,M, I) is denoted by B(G,M, I). Let
(G,M, I) be a formal context. For any formal concepts (A1, B1) and (A2, B2) ∈ B(G,M, I)

we write (A1, B1) � (A2, B2), if A1 ⊆ A2 .
Also, A1 ⊆ A2 implies that A′

1 ⊇ A′
2 , and the reverse implication is valid too, because

A′′
1 = A1 and A′′

2 = A2. We therefore have

(A1, B1) � (A2, B2) ⇐⇒ A1 ⊆ A2 ⇐⇒ B1 ⊇ B2.

One can easily show that the relation � is an order on B(G,M, I). As we see in Proposition
2.8, (B(G,M, I),�) is a complete lattice; it is known as the concept lattice of the formal
context (G,M, I).

Proposition 2.8. Let (G,M, I) be a formal context. Then (B(G,M, I),�) is a complete
lattice in which join and meet are given by∨

j∈J
(Aj , Bj) = ((

∪
j∈J

Aj)
′′
,
∩
j∈J

Bj),

∧
j∈J(Aj , Bj) = (

∩
j∈J

Aj , (
∪
j∈J

Bj)
′′
),

respectively.

Definition 2.9. A Galois connection is an ordered quadruple

(f, (P,�P), (Q,�Q), g)

such that (P,�P) and (Q,�Q) are posets, f : P −→ Q and g : Q −→ P are order-reversing
functions such that for each p ∈ P and q ∈ Q:

p �P gf(p)andq �Q fg(q).

3. Main results

Among the miscellaneous requisitions, FCA has a huge capacity to play in a common
ground between Mathematics and Computer Science. Since 2014, its outstanding role in Data
Mining and Knowledge Discovery should be kept in mind, where its techniques has appealed
to analyze complex data sets, such as Medical Records and Social Media, by determining the
hidden patterns. Moreover, some of its tracks can be detected in developing new algorithms for
Text Mining, Natural Language Processing (NLP), Software Engineering and Programming (in
modeling software system and testing their functionality), Database Design and Management
(helping to structure and organize data). To see more details, please refer to [4], [3], [11], [1],
and [14].
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Undoubtedly any theoretical development in the body of FCA will greatly contribute to its
usable capabilities in the field of computer science. What brings us to this section, is relying
on the evolution of its notion and algebraic mathematical models. So far presented operations
on FCA, has been performed on pertained complete lattice and include union, intersection,
complementation and closure. The leading works can be followed in [4], [3], [11], [1], [14].
But to extend the power of system, adjoining addition and multiplication is strongly felt as
a necessity. This endowing can lift the domination of computational mathematics and logic
used in the subject. In contrast to costume representation, applying dynamical models require
to have formal contexts with infinite order or sets of attributes. As an example, consider
a context where the objects are real numbers and the attributes are sets of real numbers.
The creation of such a data matrix can be reproduced by a dynamic data generation system
(for instance in designing the active web pages). According to our new extension, this is an
infinite context which should still be analyzed using FCA techniques. Really it can be done
by breaking the big data context into finite frames and eventually analyzing the sectional data
in the framework of available tools. Similar to these circumstances, for example, can happen
when the data flow in social networks or deliver as output results form an active real-time
switcher. Therefore, in this section, the main goal will be enhancing the FCA to a more
flexible algebraic machine. As the first measure, let us to consider any formal context as a
triple C = (O,A,R) with infinite sets and the given relation.

Definition 3.1. Suppose that O = {Oi|i ∈ I} and A = {Aj |j ∈ J} are two indexed sets and
C = (O,A,R) a context with a given relation R. Any word on C can be considered as a net in
A. For any word W we say that it is a K-letter word, if the objects in O having the common
relation R in terms of W , be a subset of O with cardinal number K. In the case of finite
subsets in O, we refer to W as a finite word.

In finite contexts, a K-letter can be described as the outcome rate in comparison with the
whole transection, which is a number between zero and one. Here we intend to give the words,
an orderly ring structure. The advantage of the decision is expanding the more algebraic
operations on words.

Suppose that W = {Wk|k ∈ K} is the set of words on C. By considering two operations on
W, we turn it into a ring. For any Wi and Wj in W, let OWi and OWj be the corresponding
subsets of O respectively. Consider, OWi ∩ OWj and OWi ∪ OWj as having the minimum and
maximum cardinals respectively, and define:

Wi +Wj = WOWi
∩OWj

, Wi.Wj = WiWj = WOWi
∪OWj

·(1)
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A straightforward calculation shows that (W,+, .) is an ordinary ring because its algebraic
properties go back to the corresponding operations on cardinal numbers. It needs to equip this
ring with an order. We say that Wi � Wj , if OWj ⊆ OWi and Wi ≺ Wj , when OWj ⊂ OWi .

Under such operations, (W,+, .,�) is called a Concept Ring under O and denoted by CRO

. Each member of W will be called a concept word.

Definition 3.2. Let W be a set of words. The subset B of W is called a finite-word base, if
it is countable and every bounded finite subset X ⊆ B has a least upper bound in B.

Since W is in fact a poset, B can be considered as a poset with induced order by W. Noting
W (as the net of all elements) is a finite word, since its inverse image is empty, it is the least
upper bound which is denoted by ⊥B. This shows that B is a poset with bottom element ⊥B.
To simplify understanding the presented definitions, consider the following example.

Example 3.3. Let O = {a, b, c}, equiped with lexicographic order, be our objects. Take at
most three-letter words on O. In the following, you see the table of W:

Table 1. CRO of Example 3.3

0-word 1-word 2-word 3-word

∅ ×

a ×

b ×

c ×

ab ×

ac ×

bc ×

abc ×

Also as a directed graph, finite-word base can be illustrated follows:
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Diagram 2. Hasse diagram of a finite-word base on O.

A more beautiful way to describe the shape of this ring is to encode members of O. On
applying the use of maximum three-word combinations, we put in at most three-digits of 0
and 1, for each combination.

This method of representation is a vital tool in digital communication. Take a = 100,
b = 010 and c = 001. Then we have

a+ a = aa = a, b+ b = bb = b, c+ c = cc = c.

Furthermore

a+ b = a, a+ c = a, b+ c = b, ab = b, ac = c, bc = c.

A close observation by numerical coding method, trains us very simple rules in the construction:

a+ b = 100 + 010 = 100,
a+ c = 100 + 001 = 100,
b+ c = 010 + 001 = 010,
ab = (100)(010) = 010,
ac = (100)(001) = 001,
bc = (010)(001) = 001.

The result of these calculations shows that, addition always selects a notation which is in the
left most possible position, while the multiplication does the opposite operation. Therefore,
the sum must be thought as a contracting operator and multiplication as a developing one.
Some significant relations occur directly in the shadow of the fact that O is ruled by the linear
structure a � b � c. In order to discover a much more important ability, in numerical method,
let us show ⊥B by 000. A simple computation shows that for each word W , W⊥B = ⊥BW =

W . Then ⊥B plays the role of a neutral element. This encourages us to define a net like
W1 ⊥B W2 as a term on O for each W1,W2 ∈ B, which opens the way to define sentences.
Finally, due to special circumstance, the two ends of this diagram are closed from top and
bottom. In general, this does not necessarily happen (for example when O is an infinite set).
Formal Concept Ring (FCR)
A concept ring has the advantage of owning algebraic operations on concepts while maintaining
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the order. When the objects set O is infinite (even a countable set), the set of generated words
can increase dramatically. Therefore, one of the best key points is looking for an idea to
produce such a ring with a subset by smaller cardinal number. Maybe The leading option
should be the finite-word base. Another outstanding point, is the discussion of optimization.
Naturally ideals of a ring might be the best choice by considering the approximation induced
by its order, but the way to make it must be quite clear.

On the other hand, any cluster of words may not be necessarily ended in one point. In
computational processing, it is a very significant necessity to end a set of decisions at one or
more final points, i.e. any sub process has the start and end points. The next try is looking
for convincing answers in such a case. So, the initial objection is starting with finite-word
base and the sequential operations include a processing called approximating, to achieve a new
building which will be named the Formal Concept Ring (FCR) or Galois Concept Ring (GCR).
Graphically, each FCR will be a simple and directional closed graph with starting and ending
points if it exists, along with how to compound edges together. The approximation process
may be performed with a sequence of iterated operations. In the case of a finite set, there
will always be a FCR related to W. But infinite cases, require special conditions to reach the
solution through the fixed point or approximate fixed point theory.

Definition 3.4. Suppose that (W,+, .,�) is a Concept Ring (CR) and B is a finite-word base
in W . An implication on B will denote by a ⇒ b, for a, b ∈ B, and a ≤ b iff a ⇒ b or a = b. A
complete-word subset of W related to B, will be denoted by CWB and will be made as follows:
a bounded subset X ⊆ B is an element of CWB iff
i) For every x ∈ X and b ∈ B, if b � x then b ∈ X.
ii) For every x, y ∈ X,xy ∈ X (X is closed under multiplication).

This means that for any finite-word base B, CWB is constructed by all bounded subsets of
B that are closed under multiplication. For any x0 ∈ B, take

Ix0 =
∨

{x ∈ B : x � x0}.

This element is unique in CWB. Moreover, CWB contains elements corresponding to the
limits of all developing subsets of B. This yields a clear perspective to construct CWB from
B. There are two categories of members that are made up of approximations with finite or
infinite stages. We refer to this final products as ideals of B. So for any finite-word base B,
we complete B by adding limit elements of all developing directed subsets of B. It is clear
that B is in fact a subring of W with |B| � |W |. This gives us a constructive method starting
from B and its final product can be W . Here, one can observe that ideals have a relatively
more computational formation than a normal ring.
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Definition 3.5. For any finite-word base B, a subset I ⊆ B is an ideal in B iff
i) If i ∈ I then for each b ∈ B and b � i we have b ∈ I.

ii) For any two finite-words W1,W2 ∈ I, sup{W1,W2} ∈ I.

In definition 3.5, property (i) is called the downward closed property. So, by definition 3.5,
an ideal of B is a subring that has the property of downward closeness.

Now, there is productive method to form the CWB.

Definition 3.6. Suppose that B is a finite-word base of W . Then CWB generated by B,
includes (I,�I), where I is the ideals set of B and �I is the inclusion order.

An elementary and basic fact can be introduced by the following theorem.

Theorem 3.7. For any finite-word base B on W the followings hold:
i) If I1, I2 ∈ I and sup{I1, I2} exist then it is an ideal of B.
ii) (I,�I)is a CPO.

Proof. i) Suppose that α = {I1, I2} and

I3 = I1I2 = {x1x2 : x1 ∈ I1, x2 ∈ I2}.

We claim that I3 is an ideal of B and α = I3. With the help of (1) and a straight forward
calculation, one can prove that:∩

x∈I3

Ox = OI3 = OI1∪I2 =
∩

y∈I1∪I2

Oy.

Let i ∈ I3, b ∈ B and b � i, then Oi ⊆ Ob. But for some i1 ∈ I1 and i2 ∈ I2 we have
Oi = Oi1∪i2 . So Oi1 ⊆ Oi and Oi2 ⊆ Oi. This means that Oi1 ⊆ Ob and Oi2 ⊆ Ob and so
Oi1∪i2 ⊆ Ob. But this implies that b ∈ I3, since sup{I1, I2} exists. Also by hypothesis, I3

is closed under least upper bounds on finite subsets. We claim that α = I3. Since I1 � I3,
I2 � I3 then α � I3. On the other hand Oα ⊆ OI1 and Oα ⊆ OI2 . Then Oα ⊆ OI1∪I2 = OI3 .
The final two inequalities show that α = I3.

ii) Since �I is the inclusion order, then I is a poset. According to i) and by induction
property, for ideals I1, I2, . . . , In one can show that I1I2 . . . In is an ideal of B and

sup{I1, I2, . . . , In} = I1I2 . . . In.

Now, suppose that {In}∞n=1 be a sequence of ideals on B. Then imagine O∪∞
i=1Ii

=
∏∞

i=1 Ii.We
must show that

∏∞
i=1 Ii exists and is an ideal on B. Let us to use the notation,

∏∞
i=1 Ii =

limn→∞
∏n

i=1 Ii. Given that we have not yet defined any analytical structure on CRW and
FCR, this notation seems a little unfamiliar, but with help of Zorn’s lemma, such a definition
becomes objective. For any k, suppose that Wk be the set of at most k-words on B, i.e.
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Wk =
∏k

i=1 Ii. Then by given order on CR and noting this fact that CR is a directed set,
we implies that the set y = {W1,W2, . . . }, has a maximal element. We call this element
by

∏∞
i=1 Ii. On the other hand, a simple verification shows that O∪n

i=1Ii
=

∏n
i=1 Ii where

Oi = OIi . Again, by using the Zorn’s lemma on P (O) (power set of O), we infer that the set
V = {O1, O1 ∪O2, . . . ,

∪n
i=1Oi, . . . } has

∪∞
i=1Oi as the maximal element. Moreover

∞∪
i=1

Oi = lim
n→∞

(

n∪
i=1

Oi) = lim
n→∞

(

n∏
i=1

Ii) =

∞∏
i=1

Ii.

So it remains to show that
∏∞

i=1 Ii is an ideal. Suppose that
∏∞

i=1 Iik ∈
∏

i=1 Ii and b ∈ B be
such that b �

∏∞
k=1 Iik . By applying induction on i, one can show that for any n ∈ N and

b �
∏n

i=k Iik . We have
∏n

k=1 Iik ∈
∏n

i=1 Ii.
Now by using this fact,

∞∏
i=1

Iik = lim
n→∞

(

n∏
k=1

Iik) ∈ lim
n→∞

(

n∏
i=1

Ii) =

∞∏
i=1

Ii.

Finally, suppose that x =
∏∞

i=1 xi and y =
∏∞

i=1 yi be two elements of
∏∞

i=1 Ik. Then

xy = (
∏
i

xi)(
∏
j

yj) = lim
n→∞

lim
m→∞

(
n∏

i=1

xi)(
m∏
i=1

yi) ∈
∞∏
k=1

Ik,

and this completes the proof.

In the following, we intend to point out the pivotal role of a particular category of ideals
called the principal concept ideals.

What has done so far, is to constrain the clusters of a ring, by two end points and the
connection of edges (which are the nodes of the diagram) are composed of the ideals in the
ring. Now we want to emphasize the fact that every branch arises from the joining of more
elementary ideals called the main concept ideals.

For any finite-word base B of the ring CRO and any x0 ∈ B, the set

Ix0 = {y ∈ B : y � x0},

is an ideal of B (it is easy to check). This gives us the following definition:

Definition 3.8. For any given finite-word base (B,�), and any x0 ∈ B, Ix0 is called the
principal concept ideal generated by x0.
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⊥B

• • •

Ix Iy

{{
{{
{{
{{
{

CC
CC

CC
CC

C
Iz

IxIy

EE
EE

EE
EE

IyIz

yy
yy
yy
yy

• • •

...
...

...

• • •

>B

Diagram 3. The discrete topology of FCR generated by B and their concept ideals.

The diagram 3 tells us that the ring structure of a decision process based on a data context,
starts from an evolutionary point (⊥B) and (under decision making conditions) is broken down
into several branches of the principal concept ideals. When we are facing a distributive system
of decision-making processes, their interference leads to the combination of principal concept
ideals, and ultimately forms an end point to complete the process (>B). Suppose that {Si}∞i=1

be an indexed arbitrary directed subsets of a given FCR, on a finite-word base B. Define

∞∏
i=1

Si = {
∞∏
i=1

sij : sij ∈ Si , i, j ∈ N},

and also, take

OSi =
∩
s∈Si

Os , O∏∞
i=1 Si

=
∞∪
i=1

OSi .

Similar to the argument proposed in theorem 3.7, it can be proved that

∞∏
i=1

Si = sup{Si}∞i=1.
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Correspondingly, for any subsets {Si}∞i=1, one can show that if

+∞
i=1Si = {+∞

i=1sij : sij ∈ Si}andO+∞
i=1Si =

∞∩
i=1

OSi ,

then
+∞

i=1Si ∈ FCR, and+∞
i=1Si = inf{Si}∞i=1.

These yield the summation and production of words and subsets of FCR. Moreover, based on
definition 3.8 and theorem 3.7, there is a one-to-one corresponding between finite-words and
principal concept ideals on B, i.e. W ' IW = 〈W 〉 and W1W2 ' IW1IW2 = 〈W1〉〈W2〉, where
for any set X, 〈X〉 is the ideal generated by X. So the natural result of this argument can be
summarized as follows:

Theorem 3.9. Let IB, be the set of principal concept ideals over B. Then IB forms a
finite-word base under the subset ordering on concept ideals.

Theorem 3.9, will give us a lot of ability to create a new important ring called the Item Set
Ring (ISRB) or Attribute Ring (ARB). The complete ring generated by this, will be called
a Closed Item Set Ring (CISRB) or a Closed Attribute Ring (CARB). In the next step, we
see that CARB will play a main role in calculating the attributes implications. Here, let us to
remind the definition of a finite element in a CPO. An element of any CPO, (X,�) is called
finite iff for any directed subset S of X such that f =

∨
s∈S S one can implies that f ∈ S.

In ordered topological vector spaces, this can be imagined as the limit points of ascending
sequences in a closed subsets, especially think of end points in a closed bounded subset [a, b]

in R. For normal order on R, b is a finite point, while in the case of [a,+∞) there is no such
point. But one can write [a,+∞) =

∪
n∈N[a, n]. So, [a,+∞) =

∨
n∈N[a, n], at the same time∨

n∈N[a, n] is not a closed interval. In the case of partially ordered cases, this situation can be
thought of as a box of matchsticks that can be connected from top to bottom, under a given
topology. More precisely, this intuition will help to design the topology of attribute rings.

Theorem 3.10. All finite elements of IB are principal concept ideals and vise versa.

Proof. For any x0 ∈ B and 〈x0〉 = {y ∈ B : y � x0}, as the principal ideal, a simple
computation shows that x0 =

∨
y∈⟨x0⟩ y. Conversely, for any x0 ∈ CWB as a finite element,

take 〈x0〉 = {y ∈ B : y � x0} . By applying the definition 3.8, it can be proved that 〈x0〉 is a
principal concept ideal.

Next theorem clearly states how the principal ideals can be used as a tool to approximate
(by finite or infinite process) other concept ideals. Put

prIB = {Ia : Ia is a principal ideal in IB}.
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Theorem 3.11. For any ideal A on CWB,

A = sup{Ia : Ia ∈ prIB and Ia � I}.

Proof. Take α = sup{Ia : Ia ∈ prIB and Ia � I}. By theorem 3.9, IB is a poset and hence
α � A. On the other hand suppose that {In}∞n=1 be a sequence of ideals in prIB such that
In � A, ∀n ∈ N. So

∨∞
n=1 In � A. Also by theorem 3.7,

∨∞
n=1 In is an ideal on CWB. If

In = 〈xn〉, then
∨∞

n=1 In = 〈
∏∞

n=1 xn〉. Hence A =
∨∞

n=1 In is a principal concept ideal and we
have A � α. This shows that A = α.

The obtained results convince us to separate the elements with in CRB in two basic categories:
1. Elements that are complete themselves and do not need any approximation.
2. Elements that are generated by finite or infinite iterations of partial elements.

The elements of the first category are called the Complete elements and those of the second
type are called approximate elements. Remember that these elements can imagine as concepts
and formal concepts respectively, but here thought as the members of a topological space.

The final conclusion of this section is a fundamental theorem based on the ring isomorphism.
This will enable us to generalize the existence theorem of FCA and also it helps to find a
constructive method in computing the attribute implications. By IB = {Ib : b ∈ B}, equip IB
with the following operations as adding and multiplication:

Ia + Ib = IWOa∩Ob
, IaIb = IWOa∪Ob

,

and construct CRA = {
∏

a∈B Ia}. These operations, change CRA as a ring which will be called
the attribute ring. By theorem 3.9, IB is a finite-word base for CRA under the approximately
ordering of inclusion. The following assertion is our final result in theoretical section.

Theorem 3.12. CWCRA
is isomorphic to CWCRO .

Proof. It is clear that there is a one-to-one correspondening,

B −→ IB,

by
x0 7→ 〈x0〉, ∀x0 ∈ B,

and consider the embedding prIB −→ CWCRO . Now define

ϕ : CWCRO −→ CWCRA
,

by
ϕ(x) =

∨
{y ∈ prIB : y � x}, ∀x ∈ CWCRO .

Then ϕ is an isomorphism and the proof is complete.
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4. Applications to extend the results of FCA

So far, two main goals have been received:
1. Designing an algebraic-analytical machine that beside of maintaining a hierarchical rela-
tionship, can also perform operations such as addition and multiplication on concepts.
2. Development of the FCA notion by making a new ring that has been able to generalize all
previous results even in innumerable infinite set of objects.
We have already considered the results of first perspective, so in this section our focus will be
on the aftermaths of the second view.

As a basic fact, it should be noted that each finite-word base is essentially a lattice and
CRO is a complete lattice. So in this building, it practically starts from a lattice-like base (also
countable) and ends with its completion, which can end to even uncountable cases. In the
meantime, the ideals of the ring play an irreplaceable role, in fact, points filled by the process
of completion, which in the language of Galois lattice are called formal concepts. In order to
study the subject in more details, we will present the same digital tapes in finite dimension of
up to two-digit cases. Therefore, as a context in FCA, we have

O = {0, 1}, A = {⊥= 0− digits, 1− digit, 2− digits},

and we assume that the relation R induces a finite-word base. Suppose that R be such that
we have the following diagram (induced order is from down to up):

00

CC
CC

CC
CC

01 10 11

{{
{{
{{
{{

0 ⊥

BB
BB

BB
BB

1 ⊥

||
||
||
||

⊥

Diagram 4. A finite-word Hass diagram for digital strips.

The finite-word base of diagram 4 is actually a lattice, but not a complete lattice. Now, in
order to achieve a complete lattice, we calculate the ideals of the ring induced by finite-word
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base of diagram 4.

00 01 10 11

01 0 ⊥ 1 ⊥ 1 ⊥

⊥ ⊥ ⊥ ⊥

I00 I01 I10 I11

Diagram 5. Finite-word base of Diagram 4.

Our formal concepts are I00, I01,I10 and I11. Each concept ideals are principal with top points
00, 01, 10 and 11, as formal concepts. For example, I00 = 〈00〉 and as 〈00〉 ' 00, it is denoted
by 00. Also we have

extent(00) = {00},

intent(00) = {2− words}.

Each process is carried out in developing way, in the path of main concept ideals, starting from
bottom, and ending at a saturation (top) point called the generator of principal concept ideal.
The operations are performed by iteration method. Note that under multiplication, the process
is incremental, and decreasing by sum. At the same time, the result of both operations ends
at a fixed ordered pair. Another valuable inference bears that in the case of infinite order, this
process is turned into the calculation of a limit point. Method of calculation can be explained
by fixed point approach. If the goal is to be satisfied with a degree of accuracy, approximate
fixed point methods give us a reasonable solution. So the key points in modeling the Galois
lattice goe back to identify the principal concept ideals. At the end of this section, we will see
how the proved theorems help us to generalize the basic results in FCA.

As seen so far, each CR induces a lattice and each FCR induces a complete lattice re-
spectively. Despite more results, two types of applications in FCA will be discussed here,
existential and computational results. One of the basic consequences is to extend the proposi-
tion 2.8. Based on a constructive development, it begins from a countable subset (finite-word
base) and extends to a likely uncountable ring. The advantage of this method is to commence
with basic elements. But first, it is necessary to rewrite it with new notations.

Theorem 4.1. FCRO is a complete ring, where B is a finite-word base related to the context
((O, A,R),�). In addition, each member of FCRO can be written as {W ∗,W∗ : W∗ � W ∗},
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with
W ∗ = lim

n→∞
(

n∏
i=1

Wi) and W∗ = lim
n→∞

(+n
i=1Wi), ∀i : Wi ∈ B.

Proof. For each k ∈ N, suppose that Wk be the class of all finite-words that has the subsets
of O with k members as its extent and take BN = {Wk : k ∈ N}. One can see that BN is a
finite-word base by considering,

wiwj = extwi ∪ extwj , wi + wj = extwi ∩ extwj , ∀wi, wj ∈ BN.

By comparing subsets with a positive index to elements with even indices in B and subsets
with a negative index to odd ones, the rang of indices in B can be extended to the integers.
So, we write BZ = {Wk : k ∈ Z}. Now, consider the quotient of B ×B as:

quotient(BZ ×BZ) = {(Wk,Wl) : k, l ∈ Z, (k, l) = 1}.

Just like the previous case, it can be seen that the recent set will be correspondent to the
case where the indexes are chosen in Q. Therefore, without losing the generality and replacing
quotient (BZ ×BZ) with BQ, finally BZ can be considered as:

BQ = {Wq : q ∈ Q}.

But Q is a linear poset and as a subset of a topological space, Q is dense in R. So each α ∈ R
can be written as α = limt∈Q αt and {αt} is a monotone sequence in Q. For wt ∈ BQ, it is
enough to see that:

W ∗ =
∏
t∈Q

αt =
∪
t∈Q

extwt,

W∗ = +t∈QWt =
∩
t∈Q

extwt.

Now by using the Zorn’s lemma, the proof is complete.

Remark 4.2. In a rough language, from the previous theorem, we infer that in fact BQ is
simultaneously addition-dense and multiplication-dense subset of CRO and practically CRO

is the set of limit points, for all monotone and bounded sequences.

Attribute Implications (AI)

An attribute implication can be defined as an ordered pair (X,Y ) belongs to the subsets of
attributes collection A. Generally, it will denote by X −→ Y . The validity of an implications
means that in any context, the set of extents related to Y must be in that of X [13]. In the
world of interpretation, this yields many wonderful results. A logical consequence of such an
understanding can say that, ” in data modeling, X is more valid than Y ”. Therefore, in terms
of informative classification systems, it can be asserted that X contains information within Y .
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The logical result of this view states that, X has a higher (considering the hierarchy) degree
of information in comparison with Y . This new perception encourages us to arrive at a key
generalization of the definition:

Definition 4.3. Any ordered pair (W1,W2) ∈ CWCRO is called an attribute implication. Also
we say that W1 −→ W2 holds in CWCRO if W2 � W1.

Definition 4.3 can be recounted as follows:
Considering W1 as a more complete word, it is practically described (approximates) by W2

and with a degree of more error.
In extending this idea, suppose that W1 is obtained with a sequence of approximations

X1, X2, · · · , Xn that each stage of describing be more complete, then one can depict this
process by:

W2 −→ X1 −→ X2 · · · −→ Xn −→ W1,

or
W2 � X1 � X2 · · · � Xn � W1.

If this chain stops at some point, it means that the processing observation cannot be modified
further, and we keep it in mind as a complete or ideal attribute. As the lattice-element items,
we call the final entity as an indecomposable element, and the rest of the parts as decomposable
cases. In Hasse diagram, indecomposable objects are at the head of branches.

Definition 4.4. Suppose that x ∈ CWCRO and define

x∗ = {
∏
i∈I

xi : xi ≺ x},

x∗ = {+i∈Ixi : xi ≺ x}.

We say that x is product-indecomposable (p-indecomposable) if x∗ 6= x and dually, x is
called sum-indecomposable (s-indecomposable) if x∗ 6= x. Otherwise, x are called product-
decomposable (p-decomposable) and sum-decomposable (s-decomposable), respectively.
A subset X ⊆ CWCRO is called product-dense if for each y ∈ CWCRO there exists a net
{xi}i∈I of approximants in X such that y =

∏
i∈I xi. Sum-dense subset X ⊆ CWCRO can be

defined similarly .i.e. there exists {ti}i∈I ⊆ X such that y = +i∈Iti.

The following theorem is so crucial, because indecomposable elements will play a key role
in drawing the complete ring. In addition, rings with desired properties will be formed from
finite rings.

Theorem 4.5. In a finite CWCRO :
i) Any elements x0 is product-decomposable iff the ideal (attribute ideal) generated by x0 is
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principal .i.e. I = 〈x0〉 = Ix0. The similar case holds for sum-decomposable.
ii) Any ideal can be formed as product and sum-decomposable principal ideals.
iii) As in Hass-diagram, an element of CWCRO is product-indecomposable iff it covers exactly
one elements and sum-decomposable iff it is covered by exactly on element.
iv) The sets p − CWCRO and s − CWCRO of p and s-decomposable elements of CWCRO are
dense in CWCRO .

Proof. i) Suppose that x0 is p-decomposable. then by definition 4.4, there exists a net {xi}i∈I
such that x0 =

∏
i∈I xi. As we know, according to the induced order by finite-word definition,

if I1 and I2 be two subsets of I such that |I1| � |I2|, then
∏

i∈I1 xi �
∏

i∈I2 xi.
So by considering

T = {
∏
i∈I′

xi : I
′ ⊆ I},

we see that T is an ideal on CWCRO and T = 〈x0〉, conversely let Ix0 = 〈x0〉. Then for each
xi ∈ Ix0 , y � x0 and then

∏
i∈I1 xi � x0, for any subset I1 ⊆ I. So x∗ � x0. On the other

hand x0 ∈ Ix0 and hence x0 � x∗. Then x∗ = x0 and so x0 is product decomposable. The
second part will be proved similarly.

ii) We assume that I is any ideal in CWCRO . By Zorn’s lemma, there is a maximal subset
X ⊆ CWCRO such that I is generated by X, i.e. I = 〈X〉. Let X = {xj : j ∈ J}, and
Ixj = 〈xj〉. Then I =

∏
i∈J Ixj . The same argument can be presented for sum-decomposable

principal ideals by taking X as the minimal subset such that I = 〈X〉.
iii) First we note that x ∈ CWCRO is p-indecomposable iff x∗ ≺ x since by definition 4.4, x

is p-indecomposable iff x 6= x∗ and also x∗ is the supremum of all elements y ∈ CWCRO such
that y ≺ x. So x∗ � x. Now let x be a p-indecomposable element in CWCRO , and assume that
m is another element covered by x with m 6= x∗. Then m ≺ x and hence x∗ ≺ m. So we have
x∗ ≺ m ≺ x which is a contradiction. Hence x∗ is the only element covered by x. Conversely
assume that m is the unique element covered by x. Let

L = {y ∈ CWCRO : y ≺ x}.

Then m is an upper bound for L and hence m � x∗. Since m ≺ x this means that x∗ ≺ x and
then x is p-indecomposable. The second part can be shown by the same way.

iv) One can easily prove that 〈X1〉〈X2〉 = 〈X1 ∪ X2〉 and 〈X1〉 + 〈X2〉 = 〈X1 ∩ X2〉, for
any subsets X1, X2 of CWCRO . Now, an element x ∈ CWCRO has two cases. If x is p-
indecomposable then x ∈ P (CWCRO), otherwise x is the product limit of strictly smaller
elements. Again, any strictly smaller element is either p-indecomposable or the product limit
of strictly smaller elements. Since CWCRO is finite and by what we mentioned at first, this
process must end, and so x is a product limit of elements in P (CWCRO). Second part of the
proof is the same.
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The given results combined with theorem 3.12 yield two following valuable consequences:
a) Breaking a complete ring into subrings constructively,
b) Extension of some basic theorems in attribute implications.
According to theorem 4.5, each finite ring can be broken into a set of principal concept ideals.
Each principal ideal is generated by an indecomposable elements when it has only one generator
(if there is at least one generator it is enough to consider the smallest one). So the only thing
to do is computing the indecomposable elements. In the case of infinite ring having a countable
dense and finite-word base, the study is more exciting. This occasion reminds us as the method
of studying integer rings by means of prime numbers. If S is a set of attribute implications,
then closed item set containing S is 〈S〉. Moreover, if {Pi : i ∈ I} is the indecomposable
elements in S, again 〈S〉 =

∏
i∈I〈Pi〉. For any principal ideal 〈x0〉, x0 is indecomposable and

the best element to generate the information in 〈x0〉. Moreover, theorem 3.12 states that the
ring of attribute implication is nothing but the ring of objects. So having CWCRA is equivalent
to having CWCRO and vice versa. The more important message of this theorem is a useful
generalization of the following theorem.

Theorem 4.6. The set of all implications of a context is a complete lattice.

Proof. See the results 3.3.22 and 3.3.23 in [10].

Our last try is deducing the extension of basic constructive theorem 2.2.4 in [10] by given
consequences. First, we prove the following result.

Theorem 4.7. Suppose that for any sets G and M there exist mapping λ1 : G −→ CWCRA
, λ2 :

M −→ CWCRA such that λ1(G) is p-dense and λ2(M) is s-dense in CWCRA
. If we define

I ⊆ G × M by (g,m) ∈ I iff λ1(g) ≤ λ2(m), for all g ∈ G and m ∈ M , then CWCRA
is

isomorphic to CWCRG . In particular for any set of complete attribute implications CAI, we
have CAI ∼= CWCRCAI

.

Proof. Define φ : CWCRA
−→ CWA×CWIA , by φ(w) = (Ow, OIw). Then by applying theorem

3.12, for product lattices, we see that φ is an isomorphism and hence the proof complete.

Now, by mixing theorem 3.12 and 4.7, theorem 2.2.4 in [10] has been proved.

5. Conclusion and future research directions

In this paper, we have introduced the concept of the FCR as an innovative algebraic struc-
ture designed to enhance FCA through the integration of additional algebraic operations,
specifically new addition and multiplication. By establishing a theoretical framework that
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combines the geometric interpretation of concept lattices with algebraic properties, we have
demonstrated the potential of FCR to facilitate more constructive operations within FCA.

Our findings indicate that the introduction of algebraic operations not only enriches the
computational capabilities of FCA but also allows for the effective manipulation of concepts
and their relationships. The development of Galois lattices within this framework provides
a powerful tool for data analysis, particularly in applications involving Big Data and digital
communication. The ability to break complex data structures into manageable components
through the use of approximations and ideals offers new avenues for exploration in data mining
and knowledge discovery.

Future research can build upon the framework established in this study in several ways:

• Extension to Other Algebraic Structures: Investigating the application of additional
algebraic structures, such as rings and fields, to further enhance the capabilities of
FCR and explore new mathematical properties that can be utilized in FCA.

• Applications in Big Data: Conducting empirical studies to apply the FCR framework
to real-world Big Data scenarios, particularly in fields such as healthcare, social media
analysis, and complex network analysis, to assess its effectiveness in uncovering hidden
patterns and insights.

• Algorithm Development: Developing algorithms that leverage the properties of FCR for
efficient data processing and concept retrieval, focusing on optimizing computational
resources while maintaining accuracy.

• Integration with Machine Learning: Exploring the integration of FCR with machine
learning techniques to improve classification and prediction tasks, specifically in con-
texts where traditional methods face challenges due to high dimensionality or data
sparsity.

• Theoretical Advancements: Further theoretical exploration of the implications of FCR
in relation to existing concepts in lattice theory and order theory, potentially leading
to the discovery of new relationships and properties that can inform future studies.

By addressing these areas, future research can significantly advance the understanding and
applicability of FCA, ultimately leading to richer and more nuanced insights in data science
and related fields.
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