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Abstract. In this paper, we investigate the diameter and distance energy of the complement

of a regular graph G. We improve and extend earlier results on the diameter and distance

energy of graph complements obtained by Indulal [Algebr. Struct. Appl. 4 (2017) 53-58],

removing the restrictions on the relationship between the degree r and the order n of the graph.

We also derive a formula for the distance energy of the complement of a regular graph in terms

of its adjacency energy and eigenvalues. This formula facilitates the characterization and

construction of families of distance equienergetic graphs from adjacency equienergetic ones.

Furthermore, we enhance some findings related to an open problem concerning adjacency and

distance equienergetic graphs.
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1. Introduction

Let G be a simple graph of order n and size m. The number of edges that are incident to
the vertex v is the vertex’s degree. An r-regular graph is defined as a graph in which every
vertex has degree r. The distance between two vertices vj and vk is equal to the length of
the shortest path between them and is denoted by djk and the diameter of G is the maximum
distance between any two vertices of G and denoted as δ(G).

Let A(G) denote the adjacency matrix of graph G, defined as A(G) = [ajk], where ajk = 1

if vj is adjacent to vk and ajk = 0 otherwise. The distance matrix of a connected graph G,
denoted by D(G), is defined as D(G) = [djk], where djk denotes the distance between the
given vertices vj and vk. The eigenvalues of the adjacency (or distance) matrix of a graph G

are referred to as the A (or D)-eigenvalues of G.
The concept of adjacency energy or A-energy of a graph G denoted by EA(G), was introduced

by I. Gutman in 1978. It is defined as the absolute sum of the eigenvalues associated with
the adjacency matrix of graph G. If EA(G1) = EA(G2), then two graphs G1 and G2 of same
order are A-equienergetic or adjacency equienergetic graphs. The distance energy or D-energy
of graph G was introduced by Indulal et al. [10] is defined as absolute sum of distance
eigenvalues of graph G and is denoted by ED(G). If ED(G1) = ED(G2), then two graphs
G1 and G2 of same order are D-equienergetic or distance equienergetic graphs. Indulal [8, 9]
presented an open problem regarding the characterization or construction of graph families
that share equal energy properties concerning both their adjacency and distance matrices. An
affirmative answer to this problem is provided in the work by Ramane et al. [15].

The complement G of a graph G shares the same set of vertices, but two vertices in G are
adjacent if and only if they are not adjacent in G. The line graph L(G) [6] associated with
a graph G is constructed by using the edge set of G as its vertex set, in which two vertices
are considered adjacent if the corresponding edges in L(G) share a common vertex. The k-th
iterated line graph of G, defined as Lk(G) = L(Lk−1(G)); k = 1, 2, . . ., where L0(G) = G

and L1(G) = L(G). Let n+
G, n−

G and n0
G represent the counts of positive, negative and zero

eigenvalues of a graph G respectively. The study of distance energy and A-equienergetic
graphs can be seen in [8, 9, 7, 10, 11, 18, 14, 12, 13, 15, 16, 17] and references cited therein.
For undefined notation and terminology, we follow [3].

Proposition 1.1. [2] Let G be a graph of order n with a minimum degree of at least n−1
2 .

Then the diameter δ(G) = 2 and G is connected.

Proposition 1.2. [13] Let G1 be an r1-regular graph and G2 be an r2-regular graph, both
having the same order n and same A-energy with no A-eigenvalues in the interval (−1, 0).
Then the graphs G1 and G2 are A-equienergetic if and only if r1 + n−

G1
= r2 + n−

G2
.
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Let nk and rk represent the order and size of Lk(G).

Proposition 1.3. [1] Let G be an r-regular graph of order n. Then Lk(G) is a (2kr−2k+1+2)-
regular graph of order n

2k

∏k−1
j=0(2

jr − 2j+1 + 2).

Theorem 1.4. [4] Let G be an r-regular graph of order n with diameter δ(G) ≤ 2. If r = λ1

and λj ; 2 ≤ j ≤ n are the A-eigenvalues of G, then the D-eigenvalues of G are 2n− r− 2 and
−(λj + 2); 2 ≤ j ≤ n.

2. Results

It is interesting to characterize the particular class of graphs with diameter 2. The following
provides insight into regular graphs.

Proposition 2.1. If G is an r-regular graph of order n, then the diameter of G or G is at
most 2.

Proof. If G or G is a complete graph Kn;n ≥ 1, then δ(G) = 1 or δ(G) = 1. In case of
r ≥ n−1

2 , by Proposition 1.1, it is clear that the diameter δ(G) = 2. If r ≱ n−1
2 , that is, in case

of r < n−1
2 , we have n− r−1 > n− n−1

2 −1 = n−1
2 , which shows that the graph G satisfies the

condition in Proposition 1.1. Therefore, the diameter δ(G) = 2. Hence, δ(G) ≤ 2 or δ(G) ≤ 2.

Remark 2.2. Theorem 2.1 of [7] states that for an r-regular graph G with r ≤ n−1
2 , the

diameter δ(G) = 2. It is noted that this result is a direct consequence of Proposition 1.1,
based on the fact that if r ≤ n−1

2 , then n− r − 1 ≥ n−1
2 .

For an r-regular graph, the following Theorem is same as Theorem 2.2 in [7], but it doesn’t
impose restrictions on r in terms of n. Here, we provide its proof for completeness.

Theorem 2.3. If G is an r(> 1)-regular graph of order n ≥ 8, then the diameter δ(Lk(G)) = 2

for all k ≥ 1.

Proof. To prove δ(Lk(G)) = 2 for all k ≥ 1, it is enough to prove that rk ≤ nk−1
2 by Proposition

1.1. By Proposition 1.3, we have, nk = n
2k

∏k−1
j=0(2

jr − 2j+1 + 2) = n
2k−1

∏k−2
j=0(2

jr − 2j+1 +

2)12(2
k−1r−2k+2) = nk−1(2

k−2r−2k−1+1). Therefore nk−1−2rk = nk−1(2
k−2r−2k−1+1)−

1−2(2kr−2k+1+2) = nk−1(2
k−2r−2k−1+1)−1−8(2k−2r−2k−1+1− 1

2) = nk−1p−1−8(p− 1
2),

where p = 2k−2r− 2k−1 +1. This implies nk − 1− 2rk = (nk−1 − 8)p+3 > 0 as p > 0 if r > 1

and nk−1 ≥ n ≥ 8, which completes the proof.
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Proposition 2.1 guarantees that examining a regular graph with a complement diameter
δ(G) ≤ 2 covers all regular graphs. In light of this, the following result is obtained.

Theorem 2.4. Let G be an r(> 0)-regular graph of order n with δ(G) ≤ 2. If r = λ1 and
λj ; 2 ≤ j ≤ n be the A-eigenvalues of G, then

ED(G) = 2n+ EA(G)− 2n+
G − 2

∑
λj∈(0,1)

(λj − 1).(1)

Proof. For any real number y, we have

(2) |y − 1| =


|y| − 1, if y ≥ 1,

|y|+ 1, if y ≤ 0,

−|y|+ 1, if 0 < y < 1 .

If r = λ1 and λj ; 2 ≤ j ≤ n are the A-eigenvalues of G, then the A-eigenvalues of G are
n − r − 1 and −1 − λj ; 2 ≤ j ≤ n. By Theorem 1.4, G has the D-eigenvalues n + r − 1 and
λj − 1; 2 ≤ j ≤ n. Therefore, the D-energy of G is,

ED(G) = n+ r − 1 +

n∑
j=2

|λj − 1|

= n+
n∑

j=1

|λj − 1|

= n+
∑
λj≤0

(|λj |+ 1) +
∑

λj∈(0,1)

(−|λj |+ 1) +
∑
λj≥1

(|λj | − 1) by (2)

= n+
∑
λj≤0

|λj |+ nλ([λn, 0])−
∑

λj∈(0,1)

|λj |+ nλ((0, 1)) +
∑
λj≥1

|λj | − nλ([1, λ1]),

where nλ(I) represents the count of eigenvalues of a graph G that fall within a given interval
I and nλ([λ, p]) = 0 if λ ≥ p. Additionally, we have

n = nλ([λn, 0]) + nλ((0, 1)) + nλ([1, λ1]) = nλ([λn, 0]) + n+
G,

and
EA(G) =

∑
λj≤0

|λj |+
∑

λj∈(0,1)

|λj |+
∑
λj≥1

|λj |.

Using these two facts, we arrive at

ED(G) = 2n+ EA(G)− 2
∑

λj∈(0,1)

|λj | − 2n+
G + 2nλ((0, 1))

= 2n+ EA(G)− 2n+
G − 2

∑
λj∈(0,1)

(λj − 1),

which concludes the proof.
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For λj ∈ (0, 1), it’s clear that∑
λj∈(0,1)

(λj − 1) < 0, n+
G +

∑
λj∈(0,1)

(λj − 1) > 0,

and ∑
λj∈(0,1)

(λj − 1) = 0 if and only if λj /∈ (0, 1).

Using these facts, we derive the following from equality (1).

Corollary 2.5. Let G be an r(> 0)-regular graph of order n with δ(G) ≤ 2. Let r = λ1 and
λj ; 2 ≤ j ≤ n be the A-eigenvalues of G. Then

2n+ EA(G)− 2n+
G ≤ ED(G) < 2n+ EA(G).

The left-side equality is true if and only if λj /∈ (0, 1) for any j ∈ {1, 2, . . . , n}.

Now constructing distance equienergetic graphs is an easier task with the aid of Theorem
2.4 and adjacency equienergetic graphs.

Corollary 2.6. Let G1 be an r1-regular graph and G2 be an r2-regular graph, both having
the same order n and same A-energy, along with their eigenvalues λ1(G1) ≥ λ2(G1) ≥ · · · ≥
λn(G1) and λ1(G2) ≥ λ2(G2) ≥ · · · ≥ λn(G2), respectively. Let the complement graphs G1 and
G2 both have diameter δ(G1) ≤ 2 and δ(G2) ≤ 2. Then the graphs G1 and G2 are distance
equienergetic if and only if

n+
G1

+
∑

λj(G1)∈(0,1)

(λj(G1)− 1) = n+
G2

+
∑

λj(G2)∈(0,1)

(λj(G2)− 1).

Especially, when neither G1 nor G2 have eigenvalues in the interval (0, 1), the graphs G1 and
G2 are distance equienergetic if and only if n+

G1
= n+

G2
.

Proof. The proof can be derived directly from Theorem 2.4 by considering two equienergetic
graphs of the same order and utilizing the fact that

∑
λ∈(0,1)

(λ− 1) = 0 if and only if G does not

has any eigenvalue λ within the interval (0, 1).

The Cartesian product G□H of graphs G and H is the graph with vertex set V (G)×V (H),
in which two vertices (ui, vj) and (uh, vk) are adjacent if and only if either (a) ui is adjacent
to uh in G and vj = vk, or (b) ui = uh and vj is adjacent to vk in H.

Example 2.7. It is observed that for all k ≥ 1 and n ≥ 6, the graphs Lk(Kn,n□Kn−1)

and Lk(Kn−1,n−1□Kn) are non-isomorphic regular A-equienergetic graphs. They are integral
graphs which share identical counts of positive and negative eigenvalues, as well as having the
same order and same degree [17]. Also, δ(Lk(Kn,n□Kn−1)) = δ(Lk(Kn−1,n−1□Kn)) = 2 for all
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k ≥ 1 and n ≥ 6. Therefore, by Corollary 2.6 and Proposition 1.2, the graphs Lk(Kn,n□Kn−1)

and Lk(Kn−1,n−1□Kn) are distance equienergetic as well as adjacency equienergetic for all
n ≥ 6 and k ≥ 1.

Remark 2.8. The Theorem 2.3, Theorem 2.4 and Corollary 2.6 offer more generalized results
than those in the paper [7]. Also, the findings concerning the open problem on adjacency and
distance equienergetic graphs, as outlined in Propositions 3.15, 3.26 and 3.32 in [15], can be
extended without limitations on the value of r in relation to n if G is an r(> 1)-regular graph
with order n ≥ 8.

3. Conclusion

In this work, we examined the diameter and distance energy of the complement of a regu-
lar graph, improving and generalizing earlier results on the diameter and distance energy of
complements of iterated line graphs of regular graphs. We derived a formula expressing the
distance energy of the complement in terms of its adjacency energy and eigenvalues, providing
a framework for constructing distance equienergetic graphs from adjacency equienergetic ones.
This study can be extended to non-regular graphs, offering potential for further generaliza-
tions.
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