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Abstract. Let R be a commutative Noetherian ring, Let S be a Serre subcategory of the

category of R-modules, M a finitely generated R-module and a, b two ideals of R such that

b ⊆ a. By using the concept of S-minimax modules w ve define Sb-minimaxness dimension

Sb
a (M) of M relative to a by Sb

a (M) := inf{i ∈ N0 : bt Hi
a(M) is not S − minimax for all t ∈

N}. Also, we say that the local global principle for the S-minimaxness of local cohomology

modules holds at level r if, for every choice of ideals a, b of R with b ⊆ a and for every choice

of finitely generated R-module M , it is the case that Sb
a (M) > r ⇔ f

bRp

aRp
(Mp) > r for all p ∈

{p ∈ Spec(R)|R/p /∈ S}. In this paper, we investigate the local-global principle concerning

the S-minimaxness of local cohomology modules. Among other things, we will show that this

principle holds at level 1 over an arbitrary commutative Noetherian ring R and at all levels

whenever dimR ≤ 2. Then by using the obtained results for some specific Serre classes of

R-modules we get some main results concerning the local global principle of local cohomology

modules.
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1. Introduction

Throughout, R is a commutative Noetherian ring with identity, a is an ideal of R and M

is a non-zero R-module. For an R-module M , the i-th local cohomology module of M with
respect to a is defined as

Hi
a(M) = lim−→

n∈N
ExtiR(R/an,M).

For basic facts about commutative algebra see [11]; for local cohomology refer to [5].
Let S be a class of R-modules. Recall that S is a Serre subcategory of the category of

R-modules, when it is closed under taking submodules, quotients and extensions. S satisfies
the condition Ca if for every a-torsion R-module M such that 0 :M a is in S, then M is in S
(see [1, Definition 2.1]. It is easy to see that, if S is closed under taking injective hulls, then
S satisfies the condition Ca.

In [14] we introduced the concept of S-minimax modules and we investigated S-minimaxness
of local cohomolgy modules. In this note, we define Sb-minimaxness dimension Sb

a (M) of M
relative to a by

Sb
a (M) := inf{i ∈ N0 : b

tHi
a(M) is not S − minimax for all t ∈ N}.

where b is a second ideal of R. Also, we say that the local-global principle for the S-
minimaxness of local cohomology modules holds at level r if, for every choice of ideals a,
b of R with b ⊆ a and for every choice of finitely generated R-module M , it is the case that

Sb
a (M) > r ⇔ f

bRp

aRp
(Mp) > r for all p ∈ {p ∈ Spec(R)|R/p /∈ S}.

In this paper, we investigate the local-global principle concerning the S-minimaxness of local
cohomology modules.

Recall that the b-finiteness dimension of M relative to a is defined by

fb
a (M) = inf{i ∈ N0 : b

tHi
a(M) ̸= 0 for all t ∈ N}.

Brodmann et al. in [4] defined and studied the concept of the local-global principle for
annihilation of local cohomology modules at level r ∈ N for the ideals of a and b of R. We say
that the local-global principle for the annihilation of local cohomology modules holds at level
r if, for every choice of ideals a, b of R with b ⊆ a and for every choice of finitely generated
R-module M , it is the case that

fb
a (M) > r ⇔ f

bRp

aRp
(Mp) > r for all p ∈ Spec(R).

It is shown in [4] that the local -global principle for the annihilation of local cohomology
modules holds at levels 1,2 over an arbitrary commutative Noetherian ring and at all levels
whenever dimR ⩽ 4.
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Also the authors in [8] defined the b-minimaxness dimension of M relative to a by

µb
a(M) = inf{i ∈ N0 : b

tHi
a(M) is not minimax for all t ∈ N}.

They defined that the local-global principle for minimaxness of local cohomology modules
holds at level r ∈ N for the ideals of a and b of R if, for every choice of ideals a, b of R with
b ⊆ a and for every choice of finitely generated R-module M , it is the case that

µb
a(M) > r ⇔ µ

bRp

aRp
(Mp) > r for all p ∈ Spec(R).

It is shown in [8] that the local -global principle for the minimaxness of local cohomology
modules holds at levels 1,2 over an arbitrary commutative Noetherian ring and at all levels
whenever dimR ⩽ 3. Recently Naghipour et al. in [13] introduced the notation of hba(M)n by

hba(M)n = inf{i ∈ N0 : b
tHi

a(M) is not in dimension < n for all t ∈ N},

and they showed that for r = 1, 2 and also for all r ∈ N over an arbitrary commutative
Noetherian ring R whenever dimR ⩽ 3 we have

hba(M)n > r ⇔ h
bRp

aRp
(Mp)

n > r for all p ∈ Spec(R).

Here, by using the concept of S-minimaxness we generalize the above local-global princi-
ples for some Serre calsses of R-modules. In fact, we show that under certain conditions the
local-global principle for the S-minimaxness of local cohomology modules holds over any com-
mutative Noetherian ring R at a level r ∈ N. Among other things, we prove that if r is a
positive integer such that HomR(R/a,Hi

a(M)) is S-minimax for all i ≤ r then

Sb
a (M) > r ⇔ f

bRp

aRp
(Mp) > r for all p ∈ {p ∈ Spec(R)|R/p /∈ S}.

and we show that the local-global principle for the S-minimaxness of local cohomology modules
holds at level 1 over an arbitrary commutative Noetherian ring R and at all levels whenever
dimR ≤ 2. By using the obtained results for some certain classes of R-modules we get some
results about the local-global principle for local cohomology modules in special cases.

2. Main results

Recall that an R-module L is called a-cofinite if SuppR(L) ⊆ V(a) and ExtjR(R/a, L) is
finitely generated for all j ≥ 0. The R-module M is said to be a minimax module if there
is a finitely generated submodule N of M , such that M/N is Artinian. The R-module M is
said to be an FSF module if there is a finitely generated submodule N of M such that the
support of the quotient module M/N is finite (see [15]). It is clear that, if M is FSF, then
dim SuppM/N ≤ 1. The authors in [2] introduced the class of in dimension< n modules.
Let n be a non-negative integer. An R-module M is said to be in dimension< n, if there is a
finitely generated submodule N of M such that dim SuppM/N < n.
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In [14] we introduced the following definition of S-minimax modules which is a generalization
of the above definitions to Serre subcategories of the category of R-modules.

Definition 2.1. [14, Definition 2.1] Let S be a Serre subcategory of the category of R-modules.
An R-module M is said to be S-minimax if there exists a finitely generated submodule N of
M such that M/N is in S.

Example 2.2. The following classes of modules are Serre subcategories of the category of
R-modules and satisfy the condition Ca for all ideals a of R:

i) 0S:= The class of zero modules;
ii) AS:= The class of artinian R-modules;
iii) FS:= The class of R-modules with finite support;
iv) nS:= The class of all R-modules M with dim SuppM < n, where n is a non-negative

integer.
Thus, the class of 0S-minimax modules is equal to the class of finitely generated modules,

the class of AS-minimax modules is equal to the class of minimax modules, the class of FS-
minimax modules is equal to the class of FSF modules and the class of nS-minimax modules
is equal to the class of in dimension< n modules.

In the following, we introduce the notation of Sb−minimaxness dimension Sb
a (M) which

is a generalization of b-finiteness dimension fb
a (M) [5, Definition 9.1.5] and b-minimaxness

dimension µb
a(M) [8] of M relative to a.

Definition 2.3. Let S be a Serre subcategory of the category of R-modules, M a finitely
generated R-module and a, b two ideals of R such that b ⊆ a. We define the Sb-minimaxness
dimension Sb

a (M) of M relative to a by

Sb
a (M) := inf{i ∈ N0 : b

tHi
a(M) is not S − minimax for all t ∈ N}.

Example 2.4. Let R be a Noetherian ring, M be a finitely generated R-module and a, b two
ideals of R such that b ⊆ a. For Serre subcategories given in 2.2 we have:

i) 0Sb
a (M) = inf{i ∈ N0 : b

tHi
a(M) is not finitely generated for all t ∈ N};

ii) ASb
a (M) = inf{i ∈ N0 : b

tHi
a(M) is not minimax for all t ∈ N};

iii) FSb
a (M) = inf{i ∈ N0 : b

tHi
a(M) is not FSF for all t ∈ N};

iv) nSb
a (M) = inf{i ∈ N0 : b

tHi
a(M) is not in dimension< n for all t ∈ N}.

Definition 2.5. Let S be a Serre subcategory of the category of R-modules, r be a positive
integer, We say that Faltings’ local global principle for the S-minimaxness of local cohomology
modules holds at level r if, for every choice of ideals a, b of R with b ⊆ a and for every choice
of finitely generated R-module M , it is the case that

Sb
a (M) > r ⇔ f

bRp

aRp
(Mp) > r for all p ∈ {p ∈ Spec(R)|R/p /∈ S}.
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Proposition 2.6. Let S be a Serre subcategory of the category of R-modules. Let a and b be
ideals of R such that b ⊆ a, M be a finitely generated R-module and i a non-negative integer.
Then the following conditions are equivalent:

i) There exists an integer t such that btHi
a(M) is S-minimax;

ii) There exists an integer t such that btHi
a(M) is in S.

Proof. i) ⇒ ii): By [14, Theorem 2.8].
ii) ⇒ i): It is clear.

By using the following notations and Proposition 2.6 we have the next result.
fb
a (M) = inf{i ∈ N0 : b

tHi
a(M) ̸= 0 for all t ∈ N},

µb
a(M) = inf{i ∈ N0 : b

tHi
a(M) is not minimax for all t ∈ N},

wb
a(M) = inf{i ∈ N0 : b

tHi
a(M) is not FSF for all t ∈ N},

hba(M)n = inf{i ∈ N0 : b
tHi

a(M) is not in dimension < n for all t ∈ N}.

Corollary 2.7. Let a and b be ideals of R such that b ⊆ a, M be a finitely generated R-module
and n a non-negative integer. Then for Serre subcategories given in 2.2 we have:

i)

0Sb
a (M)=fb

a (M) = inf{i ∈ N0 : b
tHi

a(M) ̸= 0 for all t ∈ N}

=inf{i ∈ N0 : b
tHi

a(M) is not finitely generated for all t ∈ N};

ii)

ASb
a (M)=µb

a(M) = inf{i ∈ N0 : b
tHi

a(M) is not artinian for all t ∈ N}

=inf{i ∈ N0 : b
tHi

a(M) is not minimax for all t ∈ N};

iii)

FSb
a (M)=wb

a(M) = inf{i ∈ N0 : b
tHi

a(M) is not finite support for all t ∈ N}

=inf{i ∈ N0 : b
tHi

a(M) is not FSF for all t ∈ N};

iv)

nSb
a (M)=hba(M)n = inf{i ∈ N0 : dimSuppR(b

tHi
a(M)) ≥ n for all t ∈ N}

=inf{i ∈ N0 : b
tHi

a(M) is not in dimension < n for all t ∈ N}.

Proposition 2.8. Let R be a Noetherian ring and M be a finitely generated R-module. Let a
and b be ideals of R such that b ⊆ a and let r be a positive integer. Then we have:

i) If f
bRp

aRp
(Mp) > r for all p ∈ Spec(R), then f

bRp

aRp
(Mp) > r for all p ∈ Spec(R) such that

R /p /∈ 0S.
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ii) If µ
bRp

aRp
(Mp) > r for all p ∈ Spec(R), then f

bRp

aRp
(Mp) > r for all p ∈ Spec(R) such that

R/p /∈ AS.
iii) If wbRp

aRp
(Mp) > r for all p ∈ Spec(R), then f

bRp

aRp
(Mp) > r for all p ∈ Spec(R) such that

R/p /∈ FS; whenever R is semilocal.
iv) If hbRp

aRp
(Mp)

n > r for all p ∈ Spec(R), then f
bRp

aRp
(Mp) > r for all p ∈ Spec(R) such that

R/p /∈ nS.

Proof. i) It is clear.
ii) Assume that µ

bRp

aRp
(Mp) > r for all p ∈ Spec(R). Let i ⩽ r be an integer and p ∈ Spec(R)

such that R/p /∈ AS. Thus there exists m ∈ Max(R) such that p ⊊ m. By assumption
there exists an integer t such that (btHi

a(M))m is minimax. Recall that a module L which is
minimax has the property that the localization Lp is a finitely generated Rp-module for each
non-maximal prime ideal p. Hence

((bRm)
tHi

aRm
(Mm))pRm ≃ (btHi

a(M))p,

is a finitely generated Rp-module. It follows that f
bRp

aRp
(Mp) > r for all p ∈ Spec(R) such that

R/p /∈ AS.
iii) Assume that wbRp

aRp
(Mp) > r for all p ∈ Spec(R). Let i ⩽ r be an integer and p ∈ Spec(R)

such that R/p /∈ FS. Since R is semilocal, there exists m ∈ Max(R) such that Rm/pRm /∈ FS.
By assumption there exists an integer t such that Rm- module (btHi

a(M))m is FSF. Hence
there exists a finitely generated submodule N of (btHi

a(M))m such that (btHi
a(M))m/N is

finite support. Since Rm/pRm /∈ FS we have

((bRm)
tHi

aRm
(Mm))/N)pRm = 0,

and so

((bRm)
tHi

aRm
(Mm))pRm ≃ (btHi

a(M))p,

is a finitely generated Rp-module. Thus it follows that f
bRp

aRp
(Mp) > r for all p ∈

Spec(R) such that R/p /∈ FS.
iv) Assume that hbRp

aRp
(Mp)

n > r for all p ∈ Spec(R). Let i ⩽ r be an integer and p ∈ Spec(R)

such that R/p /∈ nS. Thus there exists m ∈ Max(R) such that dimR/p = dimRm/pRm ⩾ n.
By assumption there exists an integer t and a finitely generated submodule N of (btHi

a(M))m

such that dimSupp(btHi
a(M))m/N) < n. Since dimRm/pRm ⩾ n we have

((bRm)
tHi

aRm
(Mm))/N)pRm = 0,

and so

((bRm)
tHi

aRm
(Mm))pRm ≃ (btHi

a(M))p,
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is a finitely generated Rp-module. Thus we conclude that f
bRp

aRp
(Mp) > r for all p ∈ Spec(R)

such that R/p /∈ nS.

Corollary 2.9. Let S be a Serre subcategory of the category of R-modules such that S satisfies
the condition Ca. Let a and b be ideals of R such that b ⊆ a and M be a finitely generated
R-module. Let r be a positive integer such that

Sb
a (M) > r ⇔ f

bRp

aRp
(Mp) > r for all p ∈ {p ∈ Spec(R)|R /p /∈ S}.

Then
i) If S = 0S, then

fb
a (M) > r ⇐⇒ f

bRp

aRp
(Mp) > r for all p ∈ Spec(R);

ii) If S = AS, then

µb
a(M) > r ⇐⇒ µ

bRp

aRp
(Mp) > r for all p ∈ Spec(R);

iii) If S = FS, then

wb
a(M) > r ⇐⇒ w

bRp

aRp
(Mp) > r for all p ∈ Spec(R);

whenever R is semilocal.
iv) If S = nS, then

hba(M)n > r ⇐⇒ h
bRp

aRp
(Mp)

n > r for all p ∈ Spec(R).

Proof. The result follows by assumption and Corollary 2.7 and Proposition 2.8.

Theorem 2.10. Let S be a Serre subcategory of the category of R-modules such that S satisfies
the condition Ca. Let a and b be ideals of R such that b ⊆ a and M be a finitely generated
R-module. Let r be a positive integer. Then

Sb
a (M) > r ⇒ f

bRp

aRp
(Mp) > r for all p ∈ {p ∈ Spec(R)|R/p /∈ S}.

Proof. Let i be an arbitrary non-negative integer such that i ≤ r. By assumption there exists
an integer t such that btHi

a(M) is S-minimax. Thus there exists a finitely generated submodule
N of btHi

a(M) such that btHi
a(M)/N is in S. Let L := btHi

a(M)/N . If p ∈ Spec(R) and
R/p /∈ S, then since L ∈ S we have Lp = 0 and so (btHi

a(M))p = Np is finitely generated.
Thus (bRp)

tHi
aRp

(Mp) is a finitely generated Rp-module and it follows that f
bRp

aRp
(Mp) > r.
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Theorem 2.11. Let S be a Serre subcategory of the category of R-modules such that S satisfies
the condition Ca. Let a and b be ideals of R such that b ⊆ a and M be a finitely generated
R-module. Let r be a positive integer such that HomR(R/a,Hi

a(M)) is S-minimax for all i ≤ r.
Then

Sb
a (M) > r ⇔ f

bRp

aRp
(Mp) > r for all p ∈ {p ∈ Spec(R)|R/p /∈ S}.

Proof. ⇒): By Theorem 2.10.
⇐): Assume that j ≤ r be an integer. It is enough to show that there exists an integer

v such that bv Hj
a(M) is in S. At first, we prove that there exists an integer v such that

SuppR(b
v Hj

a(M)) ⊆ {p ∈ SuppR(M/aM) | R/p ∈ S}.
Let p ∈ SuppR(M/aM) and R/p /∈ S. By assumption there exists an integer t such

that (btHj
a(M))p is finitely generated Rp-module. But (btHj

a(M))p is aRp-torsion and so
there is an integer v ⩾ 1 such that (bv Hj

a(M))p = 0. On the other hand, by assump-
tion HomR(R/a,Hj

a(M)) is S-minimax, and so Lemma [14, Lemma 2.6] implies that the set
{p ∈ AssR(H

j
a(M))|R/p /∈ S} is finite. Let {p ∈ AssR(H

j
a(M))|R/p /∈ S} = {p1, · · · , pk}.

By the hypothesis there is an integer vi ⩾ 1 such that (bvi Hj
a(M))pi = 0 for all 1 ≤

i ≤ k. Let v := Max{v1, ..., vk}. Then {p1, · · · , pk} ∩ SuppR(b
v Hj

a(M)) = ∅. We claim
that SuppR(b

v Hj
a(M)) ⊆ {p ∈ Spec(R) | R/p ∈ S}. If there exists a prime ideal

p ∈ SuppR(a
tHj

a(M)) such that R/p /∈ S, then there exists q ∈ AssR(b
v Hj

a(M)) such that
q ⊆ p. Since R/p ≃ (R/q)/(p/q) and R/p /∈ S we have R/q /∈ S. But q ∈ SuppR(b

v Hj
a(M)) and

so q ∈ {p1, · · · , pk}∩SuppR(bv H
j
a(M)) = ∅ which is a contradiction. Thus SuppR(bv H

j
a(M)) ⊆

{p ∈ SuppR(M/aM) | R/p ∈ S}. But SuppR(HomR(R/a, bv Hj
a(M)) ⊆ SuppR(b

v Hj
a(M)) and

thus

SuppR(HomR(R/a, bv Hj
a(M)) ⊆ {p ∈ SuppR(M/aM) | R/p ∈ S}.

On the other hand, since HomR(R/a,Hj
a(M)) is S-minimax HomR(R/a, bv Hj

a(M)) is S-
minimax by [14, Lemma 2.3]. Thus by [14, Lemma 2.7] HomR(R/a, bv Hj

a(M)) ∈ S. Since by
the hypothesis, S satisfies the condition Ca we have bv Hj

a(M) is in S. Therefore bv Hj
a(M) is

in S, as required.

Theorem 2.12. Let S be a Serre subcategory of the category of R-modules such that S satisfies
the condition Ca. Let a and b be ideals of R such that b ⊆ a and M be a finitely generated
R-module. Let r be a positive integer such that Hi

a(M) is S-minimax for all 0 ≤ i < r. Then

Sb
a (M) > r ⇔ f

bRp

aRp
(Mp) > r for all p ∈ {p ∈ Spec(R)|R /p /∈ S}.

Proof. It follows by [14, Corollary 2.10] and Theorem 2.11.
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Corollary 2.13. The local-global principle for S-minimaxness of local cohomology modules
holds at level 1.

Proof. For any finitely generated R-module M , H0
a(M) is finitely generated and so is S-

minimax. Thus assertion follows by Theorem 2.12.

Corollary 2.14. Let S be a Serre subcategory of the category of R-modules such that S satisfies
the condition Ca. Let a and b be ideals of R such that b ⊆ a and M be a finitely generated
R-module. Let r be a positive integer.

i) If Hi
a(M) is finitely generated for all 0 ≤ i < r, then

fb
a (M) > r ⇐⇒ f

bRp

aRp
(Mp) > r for all p ∈ Spec(R);

ii) If Hi
a(M) is minimax for all 0 ≤ i < r, then

µb
a(M) > r ⇐⇒ µ

bRp

aRp
(Mp) > r for all p ∈ Spec(R);

iii) If Hi
a(M) is FSF for all 0 ≤ i < r, then

wb
a(M) > r ⇐⇒ w

bRp

aRp
(Mp) > r for all p ∈ Spec(R);

whenever R is semilocal.
iv) If Hi

a(M) is in-dimension< n for all 0 ≤ i < r, then

hba(M)n > r ⇐⇒ h
bRp

aRp
(Mp)

n > r for all p ∈ Spec(R).

Proof. It follows by Theorem 2.12 and Corollary 2.9.

Theorem 2.15. Let S be a Serre subcategory of the category of R-modules such that S satisfies
the condition Ca. Let a and b be ideals of R such that b ⊆ a and M be a finitely generated
R-module and let r be a positive integer such that H0

a(M), · · · ,Hr−1
a (M) are a-cofinite. Then

Sb
a (M) > r ⇔ f

bRp

aRp
(Mp) > r for all p ∈ {p ∈ Spec(R)|R/p /∈ S}.

Proof. Since H0
a(M), · · · ,Hr−1

a (M) are a-cofinite, by [7, Theorem 2.1] we conclude that
HomR(R/a,Hi

a(M)) is finitely generated and so is S-minimax for all 0 ≤ i ≤ r. Now, the
result follows by Theorem 2.11.
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Corollary 2.16. Let a and b be ideals of R such that b ⊆ a and M be a finitely generated
R-module. Let r be a positive integer such that H0

a(M), · · · ,Hr−1
a (M) are a-cofinite. Then

i) fb
a (M) > r ⇐⇒ f

bRp

aRp
(Mp) > r for all p ∈ Spec(R);

ii) µb
a(M) > r ⇐⇒ µ

bRp

aRp
(Mp) > r for all p ∈ Spec(R);

iii) wb
a(M) > r ⇐⇒ w

bRp

aRp
(Mp) > r for all p ∈ Spec(R); whenever R is semilocal.

iv) hba(M)n > r ⇐⇒ h
bRp

aRp
(Mp)

n > r for all p ∈ Spec(R).

Proof. The result follows by Theorem 2.15 and Corollary 2.9.

Corollary 2.17. Let S be a Serre subcategory of the category of R-modules such that S satisfies
the condition Ca. Let R be a Noetherian ring with dimR ≤ 2. Then the local global-principle
for S-minimaxness of local cohomology modules holds at all levels r ∈ N.

Proof. The result follows by [12, Theorem 7.10] and Theorem 2.15.

Corollary 2.18. Let S be a Serre subcategory of the category of R-modules such that S satisfies
the condition Ca. Let a and b be two ideals of R such that b ⊆ a and M be a finitely generated
R-module such that one of the following conditions is satisfied:

i) dimM ≤ 2;
ii) dimM/aM ≤ 1;
iii) a is principal.
Then for any integer r,

Sb
a (M) > r ⇔ f

bRp

aRp
(Mp) > r for all p ∈ {p ∈ Spec(R)|R/p /∈ S}.

Proof. By [6, Corollary 5.2], [3, Theorem 1.3] and [10, Theorem 1], in each of the above
conditions the R-modules Hi

a(M) are a-cofinite for all integers i. Thus the result follows by
Theorem 2.15.

Corollary 2.19. Let S be a Serre subcategory of the category of R-modules such that S satisfies
the condition Ca. Let a and b be two ideals of R such that b ⊆ a and M be a finitely generated
R-module such that M ̸= aM . Then

Sb
a (M) > gradeM a ⇔ f

bRp

aRp
(Mp) > gradeM a for all p ∈ {p ∈ Spec(R)|R/p /∈ S}.

Proof. Since Hi
a(M) = 0 for all i < gradeM a, the result follows by Theorem 2.15.
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Corollary 2.20. Let a and b be two ideals of R such that b ⊆ a and M be a finitely generated
R-module such that one of the following conditions is satisfied:

i) dimM ≤ 2;
ii) dimM/aM ≤ 1;
iii) a is principal.
Then for any integer r,
i) fb

a (M) > r ⇐⇒ f
bRp

aRp
(Mp) > r for all p ∈ Spec(R);

ii) µb
a(M) > r ⇐⇒ µ

bRp

aRp
(Mp) > r for all p ∈ Spec(R);

iii) wb
a(M) > r ⇐⇒ w

bRp

aRp
(Mp) > r for all p ∈ Spec(R); whenever R is semilocal.

iv) hba(M)n > r ⇐⇒ h
bRp

aRp
(Mp)

n > r for all p ∈ Spec(R).

Proof. The result follows by Corollary 2.18 and Corollary 2.9.

In the following, we define the concept of b-closed Serre classes and then we obtain a main
result concerning the local-global principle for S-minimaxness of local cohomology modules
under the additional assumption that S is an b-closed Serre subcategory of the category of
R-modules.

Definition 2.21. Let S be a Serre subcategory of the category of R-modules and b be an ideal
of R. We say that S is b-closed, if L → M → N is an exact sequence of R-homomorphisms
and R-modules such that for two non-negative integers s, t we have bsL ∈ S and btN ∈ S then
there exists a non-negative integer l such that blM ∈ S.

Example 2.22. By [5, Lemma 9.1.1], 0S, the class of zero modules and by [9, Lemma 2.9],

nS, the class of all R-modules M with dim SuppM < n, where n is a non-negative integer are
b-closed Serre subcategory of the category of R-modules for any ideal b of R.

Theorem 2.23. Let a and b be ideals of R such that b ⊆ a and M be a finitely generated
R-module. Let S be an b-closed Serre subcategory of the category of R-modules such that S
satisfies the condition Ca. Then the local-global principle for S-minimaxness of local cohomology
modules holds at level 2.

Proof. We must show that

Sb
a (M) > 2 ⇔ f

bRp

aRp
(Mp) > 2 for all p ∈ {p ∈ Spec(R)|R /p /∈ S}.

By using Theorem 2.10, it is enough for us to show that, if f
bRp

aRp
(Mp) > 2 for all p ∈ {p ∈

Spec(R)|R /p /∈ S}, then Sb
a (M) > 2. In view of Corollary 2.13, we need to show that there

exists an integer t such that btH2
a(M) is in S.
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Let p ∈ Spec(R) with R /p /∈ S. By assumption there exists an integer s such that
(bsHi

a(M))p = 0 for all 0 ≤ i ≤ 2.
Let M̄ = M/Γb(M). Now from the short exact sequence

0 → Γb(M) → M → M̄ → 0,

we have the following exact sequence

· · · → (H1
a(M))p → (H1

a(M̄))p → (H2
a(Γb(M)))p → (H2

a(M))p → (H2
a(M̄))p → · · · .

But, there exists an integer k such that bk Hi
a(Γb(M)) = 0 for all i ≥ 0. Thus the above

long exact sequence and [5, Lemma 9.1.1] implies that there exist integeres v and u such that
(bRp)

v(H1
a(M̄))p = 0 and (bRp)

u(H2
a(M̄))p = 0. On the other hand, by [5, Lemma 2.1.1 (ii)] b

contains an element r which is a non-zerodivisor on M̄ . Thus the short exact sequence

0 → M̄p
rv→ M̄p → M̄p/vM̄p → 0,

induces the exact sequence H0
aRp

(M̄p/r
vM̄p) → H1

aRp
(M̄p) → 0 and so, it follows that H1

aRp
(M̄p)

is a finitely generated Rp module. Since H0
aRp

(M̄p) is also finitely generated Rp module , [14,
Theorem 2.12] implies that Hi

a(M̄) is S-minimax R module for all 0 ≤ i < 2. Thus by [14,
Theorem 2.9], HomR(R/a,H2

a(M̄)) is S-minimax R module. Now, Theorem 2.11 implies that
there exists an integer s such that bsH2

a(M̄) is in S. Since there exists an integer k such that
bk H2

a(Γb(M)) = 0 and by assumption S is b-closed, the exact sequence

H2
a(Γb(M)) → H2

a(M) → H2
a(M̄),

implies that there exists an integer t such that btH2
a(M) is in S, as required.

Corollary 2.24. i) The local-global principle for 0S-minimaxness of local cohomology modules
holds at level 2.

ii) The local-global principle for nS-minimaxness of local cohomology modules holds at level
2.

Proof. It follows by Example 2.22 and Theorem 2.23.
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