

Algebraic Structures and Their Applications Vol. 13 No. 1 (2026) pp 35-47.

Research Paper

\mathcal{S} -MINIMAXNESS AND LOCAL-GLOBAL PRINCIPLE OF LOCAL COHOMOLOGY MODULES

SHAHRAM REZAEI*

ABSTRACT. Let R be a commutative Noetherian ring, Let \mathcal{S} be a Serre subcategory of the category of R -modules, M a finitely generated R -module and $\mathfrak{a}, \mathfrak{b}$ two ideals of R such that $\mathfrak{b} \subseteq \mathfrak{a}$. By using the concept of \mathcal{S} -minimax modules we define $\mathcal{S}^{\mathfrak{b}}$ -minimax dimension $\mathcal{S}_{\mathfrak{a}}^{\mathfrak{b}}(M)$ of M relative to \mathfrak{a} by $\mathcal{S}_{\mathfrak{a}}^{\mathfrak{b}}(M) := \inf\{i \in \mathbb{N}_0 : \mathfrak{b}^t H_{\mathfrak{a}}^i(M) \text{ is not } \mathcal{S} - \text{minimax for all } t \in \mathbb{N}\}$. Also, we say that the local global principle for the \mathcal{S} -minimaxness of local cohomology modules holds at level r if, for every choice of ideals $\mathfrak{a}, \mathfrak{b}$ of R with $\mathfrak{b} \subseteq \mathfrak{a}$ and for every choice of finitely generated R -module M , it is the case that $\mathcal{S}_{\mathfrak{a}}^{\mathfrak{b}}(M) > r \Leftrightarrow f_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}}) > r$ for all $\mathfrak{p} \in \{\mathfrak{p} \in \text{Spec}(R) | R/\mathfrak{p} \notin \mathcal{S}\}$. In this paper, we investigate the local-global principle concerning the \mathcal{S} -minimaxness of local cohomology modules. Among other things, we will show that this principle holds at level 1 over an arbitrary commutative Noetherian ring R and at all levels whenever $\dim R \leq 2$. Then by using the obtained results for some specific Serre classes of R -modules we get some main results concerning the local global principle of local cohomology modules.

DOI: 10.22034/as.2025.20376.1660

MSC(2010): Primary: 13D45.

Keywords: Local cohomology, Serre subcategory, \mathcal{S} -minimax modules.

Received: 26 July 2023, Accepted: 28 July 2025.

*Corresponding author

1. INTRODUCTION

Throughout, R is a commutative Noetherian ring with identity, \mathfrak{a} is an ideal of R and M is a non-zero R -module. For an R -module M , the i -th local cohomology module of M with respect to \mathfrak{a} is defined as

$$H_{\mathfrak{a}}^i(M) = \varinjlim_{n \in \mathbb{N}} \mathrm{Ext}_R^i(R/\mathfrak{a}^n, M).$$

For basic facts about commutative algebra see [11]; for local cohomology refer to [5].

Let \mathcal{S} be a class of R -modules. Recall that \mathcal{S} is a Serre subcategory of the category of R -modules, when it is closed under taking submodules, quotients and extensions. \mathcal{S} satisfies the condition $C_{\mathfrak{a}}$ if for every \mathfrak{a} -torsion R -module M such that $0 :_M \mathfrak{a}$ is in \mathcal{S} , then M is in \mathcal{S} (see [1, Definition 2.1]). It is easy to see that, if \mathcal{S} is closed under taking injective hulls, then \mathcal{S} satisfies the condition $C_{\mathfrak{a}}$.

In [14] we introduced the concept of \mathcal{S} -minimax modules and we investigated \mathcal{S} -minimaxness of local cohomology modules. In this note, we define $\mathcal{S}^{\mathfrak{b}}$ -minimaxness dimension $\mathcal{S}_{\mathfrak{a}}^{\mathfrak{b}}(M)$ of M relative to \mathfrak{a} by

$$\mathcal{S}_{\mathfrak{a}}^{\mathfrak{b}}(M) := \inf\{i \in \mathbb{N}_0 : \mathfrak{b}^t H_{\mathfrak{a}}^i(M) \text{ is not } \mathcal{S} - \text{minimax for all } t \in \mathbb{N}\}.$$

where \mathfrak{b} is a second ideal of R . Also, we say that the local-global principle for the \mathcal{S} -minimaxness of local cohomology modules holds at level r if, for every choice of ideals \mathfrak{a} , \mathfrak{b} of R with $\mathfrak{b} \subseteq \mathfrak{a}$ and for every choice of finitely generated R -module M , it is the case that

$$\mathcal{S}_{\mathfrak{a}}^{\mathfrak{b}}(M) > r \Leftrightarrow f_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}}) > r \text{ for all } \mathfrak{p} \in \mathrm{Spec}(R) | R/\mathfrak{p} \notin \mathcal{S}.$$

In this paper, we investigate the local-global principle concerning the \mathcal{S} -minimaxness of local cohomology modules.

Recall that the \mathfrak{b} -finiteness dimension of M relative to \mathfrak{a} is defined by

$$f_{\mathfrak{a}}^{\mathfrak{b}}(M) = \inf\{i \in \mathbb{N}_0 : \mathfrak{b}^t H_{\mathfrak{a}}^i(M) \neq 0 \text{ for all } t \in \mathbb{N}\}.$$

Brodmann et al. in [4] defined and studied the concept of the local-global principle for annihilation of local cohomology modules at level $r \in \mathbb{N}$ for the ideals of \mathfrak{a} and \mathfrak{b} of R . We say that the local-global principle for the annihilation of local cohomology modules holds at level r if, for every choice of ideals \mathfrak{a} , \mathfrak{b} of R with $\mathfrak{b} \subseteq \mathfrak{a}$ and for every choice of finitely generated R -module M , it is the case that

$$f_{\mathfrak{a}}^{\mathfrak{b}}(M) > r \Leftrightarrow f_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}}) > r \text{ for all } \mathfrak{p} \in \mathrm{Spec}(R).$$

It is shown in [4] that the local-global principle for the annihilation of local cohomology modules holds at levels 1,2 over an arbitrary commutative Noetherian ring and at all levels whenever $\dim R \leq 4$.

Also the authors in [8] defined the \mathfrak{b} -minimaxness dimension of M relative to \mathfrak{a} by

$$\mu_{\mathfrak{a}}^{\mathfrak{b}}(M) = \inf\{i \in \mathbb{N}_0 : \mathfrak{b}^t H_{\mathfrak{a}}^i(M) \text{ is not minimax for all } t \in \mathbb{N}\}.$$

They defined that the local-global principle for minimaxness of local cohomology modules holds at level $r \in \mathbb{N}$ for the ideals of \mathfrak{a} and \mathfrak{b} of R if, for every choice of ideals $\mathfrak{a}, \mathfrak{b}$ of R with $\mathfrak{b} \subseteq \mathfrak{a}$ and for every choice of finitely generated R -module M , it is the case that

$$\mu_{\mathfrak{a}}^{\mathfrak{b}}(M) > r \Leftrightarrow \mu_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}}) > r \text{ for all } \mathfrak{p} \in \text{Spec}(R).$$

It is shown in [8] that the local-global principle for the minimaxness of local cohomology modules holds at levels 1,2 over an arbitrary commutative Noetherian ring and at all levels whenever $\dim R \leq 3$. Recently Naghipour et al. in [13] introduced the notation of $h_{\mathfrak{a}}^{\mathfrak{b}}(M)^n$ by

$$h_{\mathfrak{a}}^{\mathfrak{b}}(M)^n = \inf\{i \in \mathbb{N}_0 : \mathfrak{b}^t H_{\mathfrak{a}}^i(M) \text{ is not in dimension } < n \text{ for all } t \in \mathbb{N}\},$$

and they showed that for $r = 1, 2$ and also for all $r \in \mathbb{N}$ over an arbitrary commutative Noetherian ring R whenever $\dim R \leq 3$ we have

$$h_{\mathfrak{a}}^{\mathfrak{b}}(M)^n > r \Leftrightarrow h_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}})^n > r \text{ for all } \mathfrak{p} \in \text{Spec}(R).$$

Here, by using the concept of \mathcal{S} -minimaxness we generalize the above local-global principles for some Serre classes of R -modules. In fact, we show that under certain conditions the local-global principle for the \mathcal{S} -minimaxness of local cohomology modules holds over any commutative Noetherian ring R at a level $r \in \mathbb{N}$. Among other things, we prove that if r is a positive integer such that $\text{Hom}_R(R/\mathfrak{a}, H_{\mathfrak{a}}^i(M))$ is \mathcal{S} -minimax for all $i \leq r$ then

$$S_{\mathfrak{a}}^{\mathfrak{b}}(M) > r \Leftrightarrow f_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}}) > r \text{ for all } \mathfrak{p} \in \{\mathfrak{p} \in \text{Spec}(R) | R/\mathfrak{p} \notin \mathcal{S}\}.$$

and we show that the local-global principle for the \mathcal{S} -minimaxness of local cohomology modules holds at level 1 over an arbitrary commutative Noetherian ring R and at all levels whenever $\dim R \leq 2$. By using the obtained results for some certain classes of R -modules we get some results about the local-global principle for local cohomology modules in special cases.

2. MAIN RESULTS

Recall that an R -module L is called \mathfrak{a} -cofinite if $\text{Supp}_R(L) \subseteq V(\mathfrak{a})$ and $\text{Ext}_R^j(R/\mathfrak{a}, L)$ is finitely generated for all $j \geq 0$. The R -module M is said to be a minimax module if there is a finitely generated submodule N of M , such that M/N is Artinian. The R -module M is said to be an FSF module if there is a finitely generated submodule N of M such that the support of the quotient module M/N is finite (see [15]). It is clear that, if M is FSF, then $\dim \text{Supp } M/N \leq 1$. The authors in [2] introduced the class of *in dimension* $< n$ modules. Let n be a non-negative integer. An R -module M is said to be *in dimension* $< n$, if there is a finitely generated submodule N of M such that $\dim \text{Supp } M/N < n$.

In [14] we introduced the following definition of \mathcal{S} -minimax modules which is a generalization of the above definitions to Serre subcategories of the category of R -modules.

Definition 2.1. [14, Definition 2.1] Let \mathcal{S} be a Serre subcategory of the category of R -modules. An R -module M is said to be \mathcal{S} -minimax if there exists a finitely generated submodule N of M such that M/N is in \mathcal{S} .

Example 2.2. The following classes of modules are Serre subcategories of the category of R -modules and satisfy the condition $C_{\mathfrak{a}}$ for all ideals \mathfrak{a} of R :

- i) ${}_0\mathcal{S} :=$ The class of zero modules;
- ii) ${}_A\mathcal{S} :=$ The class of artinian R -modules;
- iii) ${}_F\mathcal{S} :=$ The class of R -modules with finite support;
- iv) ${}_n\mathcal{S} :=$ The class of all R -modules M with $\dim \text{Supp } M < n$, where n is a non-negative integer.

Thus, the class of ${}_0\mathcal{S}$ -minimax modules is equal to the class of finitely generated modules, the class of ${}_A\mathcal{S}$ -minimax modules is equal to the class of minimax modules, the class of ${}_F\mathcal{S}$ -minimax modules is equal to the class of FSF modules and the class of ${}_n\mathcal{S}$ -minimax modules is equal to the class of *in dimension* $< n$ modules.

In the following, we introduce the notation of $\mathcal{S}^{\mathfrak{b}}$ -minimaxness dimension $\mathcal{S}_{\mathfrak{a}}^{\mathfrak{b}}(M)$ which is a generalization of \mathfrak{b} -finiteness dimension $f_{\mathfrak{a}}^{\mathfrak{b}}(M)$ [5, Definition 9.1.5] and \mathfrak{b} -minimaxness dimension $\mu_{\mathfrak{a}}^{\mathfrak{b}}(M)$ [8] of M relative to \mathfrak{a} .

Definition 2.3. Let \mathcal{S} be a Serre subcategory of the category of R -modules, M a finitely generated R -module and $\mathfrak{a}, \mathfrak{b}$ two ideals of R such that $\mathfrak{b} \subseteq \mathfrak{a}$. We define the $\mathcal{S}^{\mathfrak{b}}$ -minimaxness dimension $\mathcal{S}_{\mathfrak{a}}^{\mathfrak{b}}(M)$ of M relative to \mathfrak{a} by

$$\mathcal{S}_{\mathfrak{a}}^{\mathfrak{b}}(M) := \inf\{i \in \mathbb{N}_0 : \mathfrak{b}^t H_{\mathfrak{a}}^i(M) \text{ is not } \mathcal{S} - \text{minimax for all } t \in \mathbb{N}\}.$$

Example 2.4. Let R be a Noetherian ring, M be a finitely generated R -module and $\mathfrak{a}, \mathfrak{b}$ two ideals of R such that $\mathfrak{b} \subseteq \mathfrak{a}$. For Serre subcategories given in 2.2 we have:

- i) ${}_0\mathcal{S}_{\mathfrak{a}}^{\mathfrak{b}}(M) = \inf\{i \in \mathbb{N}_0 : \mathfrak{b}^t H_{\mathfrak{a}}^i(M) \text{ is not finitely generated for all } t \in \mathbb{N}\};$
- ii) ${}_A\mathcal{S}_{\mathfrak{a}}^{\mathfrak{b}}(M) = \inf\{i \in \mathbb{N}_0 : \mathfrak{b}^t H_{\mathfrak{a}}^i(M) \text{ is not minimax for all } t \in \mathbb{N}\};$
- iii) ${}_F\mathcal{S}_{\mathfrak{a}}^{\mathfrak{b}}(M) = \inf\{i \in \mathbb{N}_0 : \mathfrak{b}^t H_{\mathfrak{a}}^i(M) \text{ is not FSF for all } t \in \mathbb{N}\};$
- iv) ${}_n\mathcal{S}_{\mathfrak{a}}^{\mathfrak{b}}(M) = \inf\{i \in \mathbb{N}_0 : \mathfrak{b}^t H_{\mathfrak{a}}^i(M) \text{ is not } \text{in dimension} < n \text{ for all } t \in \mathbb{N}\}.$

Definition 2.5. Let \mathcal{S} be a Serre subcategory of the category of R -modules, r be a positive integer, We say that Faltings' local global principle for the \mathcal{S} -minimaxness of local cohomology modules holds at level r if, for every choice of ideals $\mathfrak{a}, \mathfrak{b}$ of R with $\mathfrak{b} \subseteq \mathfrak{a}$ and for every choice of finitely generated R -module M , it is the case that

$$\mathcal{S}_{\mathfrak{a}}^{\mathfrak{b}}(M) > r \Leftrightarrow f_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}}) > r \text{ for all } \mathfrak{p} \in \{\mathfrak{p} \in \text{Spec}(R) | R/\mathfrak{p} \notin \mathcal{S}\}.$$

Proposition 2.6. *Let \mathcal{S} be a Serre subcategory of the category of R -modules. Let \mathfrak{a} and \mathfrak{b} be ideals of R such that $\mathfrak{b} \subseteq \mathfrak{a}$, M be a finitely generated R -module and i a non-negative integer. Then the following conditions are equivalent:*

- i) *There exists an integer t such that $\mathfrak{b}^t H_{\mathfrak{a}}^i(M)$ is \mathcal{S} -minimax;*
- ii) *There exists an integer t such that $\mathfrak{b}^t H_{\mathfrak{a}}^i(M)$ is in \mathcal{S} .*

Proof. i) \Rightarrow ii): By [14, Theorem 2.8].

ii) \Rightarrow i): It is clear. \square

By using the following notations and Proposition 2.6 we have the next result.

$$\begin{aligned} f_{\mathfrak{a}}^{\mathfrak{b}}(M) &= \inf\{i \in \mathbb{N}_0 : \mathfrak{b}^t H_{\mathfrak{a}}^i(M) \neq 0 \text{ for all } t \in \mathbb{N}\}, \\ \mu_{\mathfrak{a}}^{\mathfrak{b}}(M) &= \inf\{i \in \mathbb{N}_0 : \mathfrak{b}^t H_{\mathfrak{a}}^i(M) \text{ is not minimax for all } t \in \mathbb{N}\}, \\ w_{\mathfrak{a}}^{\mathfrak{b}}(M) &= \inf\{i \in \mathbb{N}_0 : \mathfrak{b}^t H_{\mathfrak{a}}^i(M) \text{ is not FSF for all } t \in \mathbb{N}\}, \\ h_{\mathfrak{a}}^{\mathfrak{b}}(M)^n &= \inf\{i \in \mathbb{N}_0 : \mathfrak{b}^t H_{\mathfrak{a}}^i(M) \text{ is not in dimension } < n \text{ for all } t \in \mathbb{N}\}. \end{aligned}$$

Corollary 2.7. *Let \mathfrak{a} and \mathfrak{b} be ideals of R such that $\mathfrak{b} \subseteq \mathfrak{a}$, M be a finitely generated R -module and n a non-negative integer. Then for Serre subcategories given in 2.2 we have:*

i)

$$\begin{aligned} {}_0\mathcal{S}_{\mathfrak{a}}^{\mathfrak{b}}(M) &= f_{\mathfrak{a}}^{\mathfrak{b}}(M) = \inf\{i \in \mathbb{N}_0 : \mathfrak{b}^t H_{\mathfrak{a}}^i(M) \neq 0 \text{ for all } t \in \mathbb{N}\} \\ &= \inf\{i \in \mathbb{N}_0 : \mathfrak{b}^t H_{\mathfrak{a}}^i(M) \text{ is not finitely generated for all } t \in \mathbb{N}\}; \end{aligned}$$

ii)

$$\begin{aligned} {}_A\mathcal{S}_{\mathfrak{a}}^{\mathfrak{b}}(M) &= \mu_{\mathfrak{a}}^{\mathfrak{b}}(M) = \inf\{i \in \mathbb{N}_0 : \mathfrak{b}^t H_{\mathfrak{a}}^i(M) \text{ is not artinian for all } t \in \mathbb{N}\} \\ &= \inf\{i \in \mathbb{N}_0 : \mathfrak{b}^t H_{\mathfrak{a}}^i(M) \text{ is not minimax for all } t \in \mathbb{N}\}; \end{aligned}$$

iii)

$$\begin{aligned} {}_F\mathcal{S}_{\mathfrak{a}}^{\mathfrak{b}}(M) &= w_{\mathfrak{a}}^{\mathfrak{b}}(M) = \inf\{i \in \mathbb{N}_0 : \mathfrak{b}^t H_{\mathfrak{a}}^i(M) \text{ is not finite support for all } t \in \mathbb{N}\} \\ &= \inf\{i \in \mathbb{N}_0 : \mathfrak{b}^t H_{\mathfrak{a}}^i(M) \text{ is not FSF for all } t \in \mathbb{N}\}; \end{aligned}$$

iv)

$$\begin{aligned} {}_n\mathcal{S}_{\mathfrak{a}}^{\mathfrak{b}}(M) &= h_{\mathfrak{a}}^{\mathfrak{b}}(M)^n = \inf\{i \in \mathbb{N}_0 : \dim \text{Supp}_R(\mathfrak{b}^t H_{\mathfrak{a}}^i(M)) \geq n \text{ for all } t \in \mathbb{N}\} \\ &= \inf\{i \in \mathbb{N}_0 : \mathfrak{b}^t H_{\mathfrak{a}}^i(M) \text{ is not in dimension } < n \text{ for all } t \in \mathbb{N}\}. \end{aligned}$$

Proposition 2.8. *Let R be a Noetherian ring and M be a finitely generated R -module. Let \mathfrak{a} and \mathfrak{b} be ideals of R such that $\mathfrak{b} \subseteq \mathfrak{a}$ and let r be a positive integer. Then we have:*

- i) *If $f_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}}) > r$ for all $\mathfrak{p} \in \text{Spec}(R)$, then $f_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}}) > r$ for all $\mathfrak{p} \in \text{Spec}(R)$ such that $R/\mathfrak{p} \notin {}_0\mathcal{S}$.*

ii) If $\mu_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}}) > r$ for all $\mathfrak{p} \in \text{Spec}(R)$, then $f_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}}) > r$ for all $\mathfrak{p} \in \text{Spec}(R)$ such that $R/\mathfrak{p} \notin {}_A\mathcal{S}$.

iii) If $w_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}}) > r$ for all $\mathfrak{p} \in \text{Spec}(R)$, then $f_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}}) > r$ for all $\mathfrak{p} \in \text{Spec}(R)$ such that $R/\mathfrak{p} \notin {}_F\mathcal{S}$; whenever R is semilocal.

iv) If $h_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}})^n > r$ for all $\mathfrak{p} \in \text{Spec}(R)$, then $f_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}}) > r$ for all $\mathfrak{p} \in \text{Spec}(R)$ such that $R/\mathfrak{p} \notin {}_n\mathcal{S}$.

Proof. i) It is clear.

ii) Assume that $\mu_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}}) > r$ for all $\mathfrak{p} \in \text{Spec}(R)$. Let $i \leq r$ be an integer and $\mathfrak{p} \in \text{Spec}(R)$ such that $R/\mathfrak{p} \notin {}_A\mathcal{S}$. Thus there exists $\mathfrak{m} \in \text{Max}(R)$ such that $\mathfrak{p} \subsetneq \mathfrak{m}$. By assumption there exists an integer t such that $(\mathfrak{b}^t H_{\mathfrak{a}}^i(M))_{\mathfrak{m}}$ is minimax. Recall that a module L which is minimax has the property that the localization $L_{\mathfrak{p}}$ is a finitely generated $R_{\mathfrak{p}}$ -module for each non-maximal prime ideal \mathfrak{p} . Hence

$$((\mathfrak{b}R_{\mathfrak{m}})^t H_{\mathfrak{a}R_{\mathfrak{m}}}^i(M_{\mathfrak{m}}))_{\mathfrak{p}R_{\mathfrak{m}}} \simeq (\mathfrak{b}^t H_{\mathfrak{a}}^i(M))_{\mathfrak{p}},$$

is a finitely generated $R_{\mathfrak{p}}$ -module. It follows that $f_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}}) > r$ for all $\mathfrak{p} \in \text{Spec}(R)$ such that $R/\mathfrak{p} \notin {}_A\mathcal{S}$.

iii) Assume that $w_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}}) > r$ for all $\mathfrak{p} \in \text{Spec}(R)$. Let $i \leq r$ be an integer and $\mathfrak{p} \in \text{Spec}(R)$ such that $R/\mathfrak{p} \notin {}_F\mathcal{S}$. Since R is semilocal, there exists $\mathfrak{m} \in \text{Max}(R)$ such that $R_{\mathfrak{m}}/\mathfrak{p}R_{\mathfrak{m}} \notin {}_F\mathcal{S}$. By assumption there exists an integer t such that $R_{\mathfrak{m}}$ -module $(\mathfrak{b}^t H_{\mathfrak{a}}^i(M))_{\mathfrak{m}}$ is FSF. Hence there exists a finitely generated submodule N of $(\mathfrak{b}^t H_{\mathfrak{a}}^i(M))_{\mathfrak{m}}$ such that $(\mathfrak{b}^t H_{\mathfrak{a}}^i(M))_{\mathfrak{m}}/N$ is finite support. Since $R_{\mathfrak{m}}/\mathfrak{p}R_{\mathfrak{m}} \notin {}_F\mathcal{S}$ we have

$$((\mathfrak{b}R_{\mathfrak{m}})^t H_{\mathfrak{a}R_{\mathfrak{m}}}^i(M_{\mathfrak{m}}))/N)_{\mathfrak{p}R_{\mathfrak{m}}} = 0,$$

and so

$$((\mathfrak{b}R_{\mathfrak{m}})^t H_{\mathfrak{a}R_{\mathfrak{m}}}^i(M_{\mathfrak{m}}))_{\mathfrak{p}R_{\mathfrak{m}}} \simeq (\mathfrak{b}^t H_{\mathfrak{a}}^i(M))_{\mathfrak{p}},$$

is a finitely generated $R_{\mathfrak{p}}$ -module. Thus it follows that $f_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}}) > r$ for all $\mathfrak{p} \in \text{Spec}(R)$ such that $R/\mathfrak{p} \notin {}_F\mathcal{S}$.

iv) Assume that $h_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}})^n > r$ for all $\mathfrak{p} \in \text{Spec}(R)$. Let $i \leq r$ be an integer and $\mathfrak{p} \in \text{Spec}(R)$ such that $R/\mathfrak{p} \notin {}_n\mathcal{S}$. Thus there exists $\mathfrak{m} \in \text{Max}(R)$ such that $\dim R/\mathfrak{p} = \dim R_{\mathfrak{m}}/\mathfrak{p}R_{\mathfrak{m}} \geq n$. By assumption there exists an integer t and a finitely generated submodule N of $(\mathfrak{b}^t H_{\mathfrak{a}}^i(M))_{\mathfrak{m}}$ such that $\dim \text{Supp}(\mathfrak{b}^t H_{\mathfrak{a}}^i(M))_{\mathfrak{m}}/N < n$. Since $\dim R_{\mathfrak{m}}/\mathfrak{p}R_{\mathfrak{m}} \geq n$ we have

$$((\mathfrak{b}R_{\mathfrak{m}})^t H_{\mathfrak{a}R_{\mathfrak{m}}}^i(M_{\mathfrak{m}}))/N)_{\mathfrak{p}R_{\mathfrak{m}}} = 0,$$

and so

$$((\mathfrak{b}R_{\mathfrak{m}})^t H_{\mathfrak{a}R_{\mathfrak{m}}}^i(M_{\mathfrak{m}}))_{\mathfrak{p}R_{\mathfrak{m}}} \simeq (\mathfrak{b}^t H_{\mathfrak{a}}^i(M))_{\mathfrak{p}},$$

is a finitely generated $R_{\mathfrak{p}}$ -module. Thus we conclude that $f_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}}) > r$ for all $\mathfrak{p} \in \text{Spec}(R)$ such that $R/\mathfrak{p} \notin {}_n\mathcal{S}$. \square

Corollary 2.9. *Let \mathcal{S} be a Serre subcategory of the category of R -modules such that \mathcal{S} satisfies the condition $C_{\mathfrak{a}}$. Let \mathfrak{a} and \mathfrak{b} be ideals of R such that $\mathfrak{b} \subseteq \mathfrak{a}$ and M be a finitely generated R -module. Let r be a positive integer such that*

$$\mathcal{S}_{\mathfrak{a}}^{\mathfrak{b}}(M) > r \Leftrightarrow f_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}}) > r \text{ for all } \mathfrak{p} \in \{\mathfrak{p} \in \text{Spec}(R) | R/\mathfrak{p} \notin \mathcal{S}\}.$$

Then

i) If $\mathcal{S} = {}_0\mathcal{S}$, then

$$f_{\mathfrak{a}}^{\mathfrak{b}}(M) > r \Leftrightarrow f_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}}) > r \text{ for all } \mathfrak{p} \in \text{Spec}(R);$$

ii) If $\mathcal{S} = {}_A\mathcal{S}$, then

$$\mu_{\mathfrak{a}}^{\mathfrak{b}}(M) > r \Leftrightarrow \mu_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}}) > r \text{ for all } \mathfrak{p} \in \text{Spec}(R);$$

iii) If $\mathcal{S} = {}_F\mathcal{S}$, then

$$w_{\mathfrak{a}}^{\mathfrak{b}}(M) > r \Leftrightarrow w_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}}) > r \text{ for all } \mathfrak{p} \in \text{Spec}(R);$$

whenever R is semilocal.

iv) If $\mathcal{S} = {}_n\mathcal{S}$, then

$$h_{\mathfrak{a}}^{\mathfrak{b}}(M)^n > r \Leftrightarrow h_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}})^n > r \text{ for all } \mathfrak{p} \in \text{Spec}(R).$$

Proof. The result follows by assumption and Corollary 2.7 and Proposition 2.8. \square

Theorem 2.10. *Let \mathcal{S} be a Serre subcategory of the category of R -modules such that \mathcal{S} satisfies the condition $C_{\mathfrak{a}}$. Let \mathfrak{a} and \mathfrak{b} be ideals of R such that $\mathfrak{b} \subseteq \mathfrak{a}$ and M be a finitely generated R -module. Let r be a positive integer. Then*

$$\mathcal{S}_{\mathfrak{a}}^{\mathfrak{b}}(M) > r \Rightarrow f_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}}) > r \text{ for all } \mathfrak{p} \in \{\mathfrak{p} \in \text{Spec}(R) | R/\mathfrak{p} \notin \mathcal{S}\}.$$

Proof. Let i be an arbitrary non-negative integer such that $i \leq r$. By assumption there exists an integer t such that $\mathfrak{b}^t H_{\mathfrak{a}}^i(M)$ is \mathcal{S} -minimax. Thus there exists a finitely generated submodule N of $\mathfrak{b}^t H_{\mathfrak{a}}^i(M)$ such that $\mathfrak{b}^t H_{\mathfrak{a}}^i(M)/N$ is in \mathcal{S} . Let $L := \mathfrak{b}^t H_{\mathfrak{a}}^i(M)/N$. If $\mathfrak{p} \in \text{Spec}(R)$ and $R/\mathfrak{p} \notin \mathcal{S}$, then since $L \in \mathcal{S}$ we have $L_{\mathfrak{p}} = 0$ and so $(\mathfrak{b}^t H_{\mathfrak{a}}^i(M))_{\mathfrak{p}} = N_{\mathfrak{p}}$ is finitely generated. Thus $(\mathfrak{b}R_{\mathfrak{p}})^t H_{\mathfrak{a}R_{\mathfrak{p}}}^i(M_{\mathfrak{p}})$ is a finitely generated $R_{\mathfrak{p}}$ -module and it follows that $f_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}}) > r$. \square

Theorem 2.11. *Let \mathcal{S} be a Serre subcategory of the category of R -modules such that \mathcal{S} satisfies the condition $C_{\mathfrak{a}}$. Let \mathfrak{a} and \mathfrak{b} be ideals of R such that $\mathfrak{b} \subseteq \mathfrak{a}$ and M be a finitely generated R -module. Let r be a positive integer such that $\text{Hom}_R(R/\mathfrak{a}, \text{H}_{\mathfrak{a}}^i(M))$ is \mathcal{S} -minimax for all $i \leq r$. Then*

$$\mathcal{S}_{\mathfrak{a}}^{\mathfrak{b}}(M) > r \Leftrightarrow f_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}}) > r \text{ for all } \mathfrak{p} \in \{\mathfrak{p} \in \text{Spec}(R) \mid R/\mathfrak{p} \notin \mathcal{S}\}.$$

Proof. \Rightarrow : By Theorem 2.10.

\Leftarrow : Assume that $j \leq r$ be an integer. It is enough to show that there exists an integer v such that $\mathfrak{b}^v \text{H}_{\mathfrak{a}}^j(M)$ is in \mathcal{S} . At first, we prove that there exists an integer v such that $\text{Supp}_R(\mathfrak{b}^v \text{H}_{\mathfrak{a}}^j(M)) \subseteq \{\mathfrak{p} \in \text{Supp}_R(M/\mathfrak{a}M) \mid R/\mathfrak{p} \in \mathcal{S}\}$.

Let $\mathfrak{p} \in \text{Supp}_R(M/\mathfrak{a}M)$ and $R/\mathfrak{p} \notin \mathcal{S}$. By assumption there exists an integer t such that $(\mathfrak{b}^t \text{H}_{\mathfrak{a}}^j(M))_{\mathfrak{p}}$ is finitely generated $R_{\mathfrak{p}}$ -module. But $(\mathfrak{b}^t \text{H}_{\mathfrak{a}}^j(M))_{\mathfrak{p}}$ is $\mathfrak{a}R_{\mathfrak{p}}$ -torsion and so there is an integer $v \geq 1$ such that $(\mathfrak{b}^v \text{H}_{\mathfrak{a}}^j(M))_{\mathfrak{p}} = 0$. On the other hand, by assumption $\text{Hom}_R(R/\mathfrak{a}, \text{H}_{\mathfrak{a}}^j(M))$ is \mathcal{S} -minimax, and so Lemma [14, Lemma 2.6] implies that the set $\{\mathfrak{p} \in \text{Ass}_R(\text{H}_{\mathfrak{a}}^j(M)) \mid R/\mathfrak{p} \notin \mathcal{S}\}$ is finite. Let $\{\mathfrak{p} \in \text{Ass}_R(\text{H}_{\mathfrak{a}}^j(M)) \mid R/\mathfrak{p} \notin \mathcal{S}\} = \{\mathfrak{p}_1, \dots, \mathfrak{p}_k\}$. By the hypothesis there is an integer $v_i \geq 1$ such that $(\mathfrak{b}^{v_i} \text{H}_{\mathfrak{a}}^j(M))_{\mathfrak{p}_i} = 0$ for all $1 \leq i \leq k$. Let $v := \max\{v_1, \dots, v_k\}$. Then $\{\mathfrak{p}_1, \dots, \mathfrak{p}_k\} \cap \text{Supp}_R(\mathfrak{b}^v \text{H}_{\mathfrak{a}}^j(M)) = \emptyset$. We claim that $\text{Supp}_R(\mathfrak{b}^v \text{H}_{\mathfrak{a}}^j(M)) \subseteq \{\mathfrak{p} \in \text{Spec}(R) \mid R/\mathfrak{p} \in \mathcal{S}\}$. If there exists a prime ideal $\mathfrak{p} \in \text{Supp}_R(\mathfrak{a}^t \text{H}_{\mathfrak{a}}^j(M))$ such that $R/\mathfrak{p} \notin \mathcal{S}$, then there exists $\mathfrak{q} \in \text{Ass}_R(\mathfrak{b}^v \text{H}_{\mathfrak{a}}^j(M))$ such that $\mathfrak{q} \subseteq \mathfrak{p}$. Since $R/\mathfrak{p} \simeq (R/\mathfrak{q})/(\mathfrak{p}/\mathfrak{q})$ and $R/\mathfrak{p} \notin \mathcal{S}$ we have $R/\mathfrak{q} \notin \mathcal{S}$. But $\mathfrak{q} \in \text{Supp}_R(\mathfrak{b}^v \text{H}_{\mathfrak{a}}^j(M))$ and so $\mathfrak{q} \in \{\mathfrak{p}_1, \dots, \mathfrak{p}_k\} \cap \text{Supp}_R(\mathfrak{b}^v \text{H}_{\mathfrak{a}}^j(M)) = \emptyset$ which is a contradiction. Thus $\text{Supp}_R(\mathfrak{b}^v \text{H}_{\mathfrak{a}}^j(M)) \subseteq \{\mathfrak{p} \in \text{Supp}_R(M/\mathfrak{a}M) \mid R/\mathfrak{p} \in \mathcal{S}\}$. But $\text{Supp}_R(\text{Hom}_R(R/\mathfrak{a}, \mathfrak{b}^v \text{H}_{\mathfrak{a}}^j(M))) \subseteq \text{Supp}_R(\mathfrak{b}^v \text{H}_{\mathfrak{a}}^j(M))$ and thus

$$\text{Supp}_R(\text{Hom}_R(R/\mathfrak{a}, \mathfrak{b}^v \text{H}_{\mathfrak{a}}^j(M))) \subseteq \{\mathfrak{p} \in \text{Supp}_R(M/\mathfrak{a}M) \mid R/\mathfrak{p} \in \mathcal{S}\}.$$

On the other hand, since $\text{Hom}_R(R/\mathfrak{a}, \text{H}_{\mathfrak{a}}^j(M))$ is \mathcal{S} -minimax $\text{Hom}_R(R/\mathfrak{a}, \mathfrak{b}^v \text{H}_{\mathfrak{a}}^j(M))$ is \mathcal{S} -minimax by [14, Lemma 2.3]. Thus by [14, Lemma 2.7] $\text{Hom}_R(R/\mathfrak{a}, \mathfrak{b}^v \text{H}_{\mathfrak{a}}^j(M)) \in \mathcal{S}$. Since by the hypothesis, \mathcal{S} satisfies the condition $C_{\mathfrak{a}}$ we have $\mathfrak{b}^v \text{H}_{\mathfrak{a}}^j(M)$ is in \mathcal{S} . Therefore $\mathfrak{b}^v \text{H}_{\mathfrak{a}}^j(M)$ is in \mathcal{S} , as required. \square

Theorem 2.12. *Let \mathcal{S} be a Serre subcategory of the category of R -modules such that \mathcal{S} satisfies the condition $C_{\mathfrak{a}}$. Let \mathfrak{a} and \mathfrak{b} be ideals of R such that $\mathfrak{b} \subseteq \mathfrak{a}$ and M be a finitely generated R -module. Let r be a positive integer such that $\text{H}_{\mathfrak{a}}^i(M)$ is \mathcal{S} -minimax for all $0 \leq i < r$. Then*

$$\mathcal{S}_{\mathfrak{a}}^{\mathfrak{b}}(M) > r \Leftrightarrow f_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}}) > r \text{ for all } \mathfrak{p} \in \{\mathfrak{p} \in \text{Spec}(R) \mid R/\mathfrak{p} \notin \mathcal{S}\}.$$

Proof. It follows by [14, Corollary 2.10] and Theorem 2.11. \square

Corollary 2.13. *The local-global principle for \mathcal{S} -minimaxness of local cohomology modules holds at level 1.*

Proof. For any finitely generated R -module M , $H_{\mathfrak{a}}^0(M)$ is finitely generated and so is \mathcal{S} -minimax. Thus assertion follows by Theorem 2.12. \square

Corollary 2.14. *Let \mathcal{S} be a Serre subcategory of the category of R -modules such that \mathcal{S} satisfies the condition $C_{\mathfrak{a}}$. Let \mathfrak{a} and \mathfrak{b} be ideals of R such that $\mathfrak{b} \subseteq \mathfrak{a}$ and M be a finitely generated R -module. Let r be a positive integer.*

i) *If $H_{\mathfrak{a}}^i(M)$ is finitely generated for all $0 \leq i < r$, then*

$$f_{\mathfrak{a}}^{\mathfrak{b}}(M) > r \iff f_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}}) > r \text{ for all } \mathfrak{p} \in \text{Spec}(R);$$

ii) *If $H_{\mathfrak{a}}^i(M)$ is minimax for all $0 \leq i < r$, then*

$$\mu_{\mathfrak{a}}^{\mathfrak{b}}(M) > r \iff \mu_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}}) > r \text{ for all } \mathfrak{p} \in \text{Spec}(R);$$

iii) *If $H_{\mathfrak{a}}^i(M)$ is FSF for all $0 \leq i < r$, then*

$$w_{\mathfrak{a}}^{\mathfrak{b}}(M) > r \iff w_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}}) > r \text{ for all } \mathfrak{p} \in \text{Spec}(R);$$

whenever R is semilocal.

iv) *If $H_{\mathfrak{a}}^i(M)$ is in-dimension $< n$ for all $0 \leq i < r$, then*

$$h_{\mathfrak{a}}^{\mathfrak{b}}(M)^n > r \iff h_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}})^n > r \text{ for all } \mathfrak{p} \in \text{Spec}(R).$$

Proof. It follows by Theorem 2.12 and Corollary 2.9. \square

Theorem 2.15. *Let \mathcal{S} be a Serre subcategory of the category of R -modules such that \mathcal{S} satisfies the condition $C_{\mathfrak{a}}$. Let \mathfrak{a} and \mathfrak{b} be ideals of R such that $\mathfrak{b} \subseteq \mathfrak{a}$ and M be a finitely generated R -module and let r be a positive integer such that $H_{\mathfrak{a}}^0(M), \dots, H_{\mathfrak{a}}^{r-1}(M)$ are \mathfrak{a} -cofinite. Then*

$$\mathcal{S}_{\mathfrak{a}}^{\mathfrak{b}}(M) > r \iff f_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}}) > r \text{ for all } \mathfrak{p} \in \{\mathfrak{p} \in \text{Spec}(R) | R/\mathfrak{p} \notin \mathcal{S}\}.$$

Proof. Since $H_{\mathfrak{a}}^0(M), \dots, H_{\mathfrak{a}}^{r-1}(M)$ are \mathfrak{a} -cofinite, by [7, Theorem 2.1] we conclude that $\text{Hom}_R(R/\mathfrak{a}, H_{\mathfrak{a}}^i(M))$ is finitely generated and so is \mathcal{S} -minimax for all $0 \leq i \leq r$. Now, the result follows by Theorem 2.11. \square

Corollary 2.16. *Let \mathfrak{a} and \mathfrak{b} be ideals of R such that $\mathfrak{b} \subseteq \mathfrak{a}$ and M be a finitely generated R -module. Let r be a positive integer such that $H_{\mathfrak{a}}^0(M), \dots, H_{\mathfrak{a}}^{r-1}(M)$ are \mathfrak{a} -cofinite. Then*

- i) $f_{\mathfrak{a}}^{\mathfrak{b}}(M) > r \iff f_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}}) > r$ for all $\mathfrak{p} \in \text{Spec}(R)$;
- ii) $\mu_{\mathfrak{a}}^{\mathfrak{b}}(M) > r \iff \mu_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}}) > r$ for all $\mathfrak{p} \in \text{Spec}(R)$;
- iii) $w_{\mathfrak{a}}^{\mathfrak{b}}(M) > r \iff w_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}}) > r$ for all $\mathfrak{p} \in \text{Spec}(R)$; whenever R is semilocal.
- iv) $h_{\mathfrak{a}}^{\mathfrak{b}}(M)^n > r \iff h_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}})^n > r$ for all $\mathfrak{p} \in \text{Spec}(R)$.

Proof. The result follows by Theorem 2.15 and Corollary 2.9. \square

Corollary 2.17. *Let \mathcal{S} be a Serre subcategory of the category of R -modules such that \mathcal{S} satisfies the condition $C_{\mathfrak{a}}$. Let R be a Noetherian ring with $\dim R \leq 2$. Then the local global-principle for \mathcal{S} -minimaxness of local cohomology modules holds at all levels $r \in \mathbb{N}$.*

Proof. The result follows by [12, Theorem 7.10] and Theorem 2.15. \square

Corollary 2.18. *Let \mathcal{S} be a Serre subcategory of the category of R -modules such that \mathcal{S} satisfies the condition $C_{\mathfrak{a}}$. Let \mathfrak{a} and \mathfrak{b} be two ideals of R such that $\mathfrak{b} \subseteq \mathfrak{a}$ and M be a finitely generated R -module such that one of the following conditions is satisfied:*

- i) $\dim M \leq 2$;
- ii) $\dim M/\mathfrak{a}M \leq 1$;
- iii) \mathfrak{a} is principal.

Then for any integer r ,

$$\mathcal{S}_{\mathfrak{a}}^{\mathfrak{b}}(M) > r \iff f_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}}) > r \text{ for all } \mathfrak{p} \in \{\mathfrak{p} \in \text{Spec}(R) \mid R/\mathfrak{p} \notin \mathcal{S}\}.$$

Proof. By [6, Corollary 5.2], [3, Theorem 1.3] and [10, Theorem 1], in each of the above conditions the R -modules $H_{\mathfrak{a}}^i(M)$ are \mathfrak{a} -cofinite for all integers i . Thus the result follows by Theorem 2.15. \square

Corollary 2.19. *Let \mathcal{S} be a Serre subcategory of the category of R -modules such that \mathcal{S} satisfies the condition $C_{\mathfrak{a}}$. Let \mathfrak{a} and \mathfrak{b} be two ideals of R such that $\mathfrak{b} \subseteq \mathfrak{a}$ and M be a finitely generated R -module such that $M \neq \mathfrak{a}M$. Then*

$$\mathcal{S}_{\mathfrak{a}}^{\mathfrak{b}}(M) > \text{grade}_M \mathfrak{a} \iff f_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}}) > \text{grade}_M \mathfrak{a} \text{ for all } \mathfrak{p} \in \{\mathfrak{p} \in \text{Spec}(R) \mid R/\mathfrak{p} \notin \mathcal{S}\}.$$

Proof. Since $H_{\mathfrak{a}}^i(M) = 0$ for all $i < \text{grade}_M \mathfrak{a}$, the result follows by Theorem 2.15. \square

Corollary 2.20. *Let \mathfrak{a} and \mathfrak{b} be two ideals of R such that $\mathfrak{b} \subseteq \mathfrak{a}$ and M be a finitely generated R -module such that one of the following conditions is satisfied:*

- i) $\dim M \leq 2$;
- ii) $\dim M/\mathfrak{a}M \leq 1$;
- iii) \mathfrak{a} is principal.

Then for any integer r ,

- i) $f_{\mathfrak{a}}^{\mathfrak{b}}(M) > r \iff f_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}}) > r$ for all $\mathfrak{p} \in \text{Spec}(R)$;
- ii) $\mu_{\mathfrak{a}}^{\mathfrak{b}}(M) > r \iff \mu_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}}) > r$ for all $\mathfrak{p} \in \text{Spec}(R)$;
- iii) $w_{\mathfrak{a}}^{\mathfrak{b}}(M) > r \iff w_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}}) > r$ for all $\mathfrak{p} \in \text{Spec}(R)$; whenever R is semilocal.
- iv) $h_{\mathfrak{a}}^{\mathfrak{b}}(M)^n > r \iff h_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}})^n > r$ for all $\mathfrak{p} \in \text{Spec}(R)$.

Proof. The result follows by Corollary 2.18 and Corollary 2.9. \square

In the following, we define the concept of \mathfrak{b} -closed Serre classes and then we obtain a main result concerning the local-global principle for \mathcal{S} -minimaxness of local cohomology modules under the additional assumption that \mathcal{S} is an \mathfrak{b} -closed Serre subcategory of the category of R -modules.

Definition 2.21. Let \mathcal{S} be a Serre subcategory of the category of R -modules and \mathfrak{b} be an ideal of R . We say that \mathcal{S} is \mathfrak{b} -closed, if $L \rightarrow M \rightarrow N$ is an exact sequence of R -homomorphisms and R -modules such that for two non-negative integers s, t we have $\mathfrak{b}^s L \in \mathcal{S}$ and $\mathfrak{b}^t N \in \mathcal{S}$ then there exists a non-negative integer l such that $\mathfrak{b}^l M \in \mathcal{S}$.

Example 2.22. By [5, Lemma 9.1.1], ${}_0\mathcal{S}$, the class of zero modules and by [9, Lemma 2.9], ${}_n\mathcal{S}$, the class of all R -modules M with $\dim \text{Supp } M < n$, where n is a non-negative integer are \mathfrak{b} -closed Serre subcategory of the category of R -modules for any ideal \mathfrak{b} of R .

Theorem 2.23. *Let \mathfrak{a} and \mathfrak{b} be ideals of R such that $\mathfrak{b} \subseteq \mathfrak{a}$ and M be a finitely generated R -module. Let \mathcal{S} be an \mathfrak{b} -closed Serre subcategory of the category of R -modules such that \mathcal{S} satisfies the condition $C_{\mathfrak{a}}$. Then the local-global principle for \mathcal{S} -minimaxness of local cohomology modules holds at level 2.*

Proof. We must show that

$$\mathcal{S}_{\mathfrak{a}}^{\mathfrak{b}}(M) > 2 \iff f_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}}) > 2 \text{ for all } \mathfrak{p} \in \{\mathfrak{p} \in \text{Spec}(R) | R/\mathfrak{p} \notin \mathcal{S}\}.$$

By using Theorem 2.10, it is enough for us to show that, if $f_{\mathfrak{a}R_{\mathfrak{p}}}^{\mathfrak{b}R_{\mathfrak{p}}}(M_{\mathfrak{p}}) > 2$ for all $\mathfrak{p} \in \{\mathfrak{p} \in \text{Spec}(R) | R/\mathfrak{p} \notin \mathcal{S}\}$, then $\mathcal{S}_{\mathfrak{a}}^{\mathfrak{b}}(M) > 2$. In view of Corollary 2.13, we need to show that there exists an integer t such that $\mathfrak{b}^t H_{\mathfrak{a}}^2(M)$ is in \mathcal{S} .

Let $\mathfrak{p} \in \text{Spec}(R)$ with $R/\mathfrak{p} \notin \mathcal{S}$. By assumption there exists an integer s such that $(\mathfrak{b}^s H_{\mathfrak{a}}^i(M))_{\mathfrak{p}} = 0$ for all $0 \leq i \leq 2$.

Let $\bar{M} = M/\Gamma_{\mathfrak{b}}(M)$. Now from the short exact sequence

$$0 \rightarrow \Gamma_{\mathfrak{b}}(M) \rightarrow M \rightarrow \bar{M} \rightarrow 0,$$

we have the following exact sequence

$$\cdots \rightarrow (H_{\mathfrak{a}}^1(M))_{\mathfrak{p}} \rightarrow (H_{\mathfrak{a}}^1(\bar{M}))_{\mathfrak{p}} \rightarrow (H_{\mathfrak{a}}^2(\Gamma_{\mathfrak{b}}(M)))_{\mathfrak{p}} \rightarrow (H_{\mathfrak{a}}^2(M))_{\mathfrak{p}} \rightarrow (H_{\mathfrak{a}}^2(\bar{M}))_{\mathfrak{p}} \rightarrow \cdots.$$

But, there exists an integer k such that $\mathfrak{b}^k H_{\mathfrak{a}}^i(\Gamma_{\mathfrak{b}}(M)) = 0$ for all $i \geq 0$. Thus the above long exact sequence and [5, Lemma 9.1.1] implies that there exist integers v and u such that $(\mathfrak{b}R_{\mathfrak{p}})^v(H_{\mathfrak{a}}^1(\bar{M}))_{\mathfrak{p}} = 0$ and $(\mathfrak{b}R_{\mathfrak{p}})^u(H_{\mathfrak{a}}^2(\bar{M}))_{\mathfrak{p}} = 0$. On the other hand, by [5, Lemma 2.1.1 (ii)] \mathfrak{b} contains an element r which is a non-zerodivisor on \bar{M} . Thus the short exact sequence

$$0 \rightarrow \bar{M}_{\mathfrak{p}} \xrightarrow{r^v} \bar{M}_{\mathfrak{p}} \rightarrow \bar{M}_{\mathfrak{p}}/v\bar{M}_{\mathfrak{p}} \rightarrow 0,$$

induces the exact sequence $H_{\mathfrak{a}R_{\mathfrak{p}}}^0(\bar{M}_{\mathfrak{p}}/r^v\bar{M}_{\mathfrak{p}}) \rightarrow H_{\mathfrak{a}R_{\mathfrak{p}}}^1(\bar{M}_{\mathfrak{p}}) \rightarrow 0$ and so, it follows that $H_{\mathfrak{a}R_{\mathfrak{p}}}^1(\bar{M}_{\mathfrak{p}})$ is a finitely generated $R_{\mathfrak{p}}$ module. Since $H_{\mathfrak{a}R_{\mathfrak{p}}}^0(\bar{M}_{\mathfrak{p}})$ is also finitely generated $R_{\mathfrak{p}}$ module, [14, Theorem 2.12] implies that $H_{\mathfrak{a}}^i(\bar{M})$ is \mathcal{S} -minimax R module for all $0 \leq i < 2$. Thus by [14, Theorem 2.9], $\text{Hom}_R(R/\mathfrak{a}, H_{\mathfrak{a}}^2(\bar{M}))$ is \mathcal{S} -minimax R module. Now, Theorem 2.11 implies that there exists an integer s such that $\mathfrak{b}^s H_{\mathfrak{a}}^2(\bar{M})$ is in \mathcal{S} . Since there exists an integer k such that $\mathfrak{b}^k H_{\mathfrak{a}}^2(\Gamma_{\mathfrak{b}}(M)) = 0$ and by assumption \mathcal{S} is \mathfrak{b} -closed, the exact sequence

$$H_{\mathfrak{a}}^2(\Gamma_{\mathfrak{b}}(M)) \rightarrow H_{\mathfrak{a}}^2(M) \rightarrow H_{\mathfrak{a}}^2(\bar{M}),$$

implies that there exists an integer t such that $\mathfrak{b}^t H_{\mathfrak{a}}^2(M)$ is in \mathcal{S} , as required. \square

Corollary 2.24. *i) The local-global principle for ${}_0\mathcal{S}$ -minimaxness of local cohomology modules holds at level 2.*

ii) The local-global principle for ${}_n\mathcal{S}$ -minimaxness of local cohomology modules holds at level 2.

Proof. It follows by Example 2.22 and Theorem 2.23. \square

3. ACKNOWLEDGMENTS

The author would like to thank the referee for his/her useful comments.

REFERENCES

- [1] M. Aghapournahr and L. Melkersson, *Local cohomology and Serre subcategories*, J. Algebra, **320** (2008) 1275-1287.
- [2] D. Asadollahi and R. Naghipour, *Faltings' local-global principle for the finiteness of local cohomology modules*, Comm. Algebra, **43** (2015) 953-958.
- [3] K. Bahmanpour, R. Naghipour and M. Sedghi, *Minimaxness and cofiniteness properties of local cohomology modules*, Comm. Algebra, **41** (2013) 2799-2814.
- [4] M. P. Brodmann, Ch. Rotthaus and R. Y. Sharp, *On annihilators and associated primes of local cohomology modules*, J. Pure Appl. Algebra., **153** (2000) 197-227.
- [5] M. Brodmann and R. Y. Sharp, *Local Cohomology: An Algebraic Introduction with Geometric Applications*, Cambridge University Press, United Kingdom, 1998.
- [6] N. T. Cuong, S. Goto and N. V. Hoang, *On the cofiniteness of generalized local cohomology modules*, Kyoto J. Math., **55** (2015) 169-185.
- [7] M. T. Dibaei and S. Yassemi, *Associated primes and cofiniteness of local cohomology modules*, Manuscripta math., **117** No. 2 (2005) 199-205.
- [8] M. R. Doustimehr and R. Naghipour, *Faltings' local-global principle for the minimaxness of local cohomology modules over noetherian rings*, Comm. Algebra, **43** (2015) 400-411.
- [9] M. R. Doustimehr and R. Naghipour, *On the generalization of Faltings' Annihilator Theorem*, Arch. Math., **102** (2014) 15-23.
- [10] K. I. Kawasaki, *Cofiniteness of local cohomology modules for principal ideals*, Bull. London Math. Soc., **30** (1998) 241-246.
- [11] H. Matsumura, *Commutative Ring Theory*, Cambridge University Press, 1986.
- [12] L. Melkersson, *Modules cofinite with respect to an ideal*, J. Algebra, **285** (2005) 649-668.
- [13] R. Naghipour, R. Maddahali, and Kh. A. Amoli, *Faltings' local-global principle for the indimension $< n$ of local cohomology modules*, Comm. Algebra, **46** (2018) 3496-3509.
- [14] Sh. Rezaei, *S -minimaxness and local cohomology modules*, Archiv der math., **110** (2018) 563-572.
- [15] P. H. Quy, *On the finiteness of associated primes of local cohomology modules*, Proc. Amer. Math. Soc., **138** (2010) 1965-1968.

Shahram Rezaei

Department of Mathematics, Faculty of Science,

Payame Noor University (PNU),

Tehran, Iran.

Sha.Rezaei@pnu.ac.ir