Algebraic Structures
and

J:\-Ln

Yazd Unlversity

Algebraic Structures and Their Applications Vol. 13 No. 1 (2026) pp 35-47.

Research Paper

S-MINIMAXNESS AND LOCAL-GLOBAL PRINCIPLE OF LOCAL
COHOMOLOGY MODULES

SHAHRAM REZAEI*

ABSTRACT. Let R be a commutative Noetherian ring, Let S be a Serre subcategory of the
category of R-modules, M a finitely generated R-module and a, b two ideals of R such that
b C a. By using the concept of S-minimax modules w ve define S’-minimaxness dimension
S2(M) of M relative to a by S{(M) := inf{i € Ng : b* H{(M) is not S — minimax for all ¢ €
N}. Also, we say that the local global principle for the S-minimaxness of local cohomology
modules holds at level r if, for every choice of ideals a, b of R with b C a and for every choice
of finitely generated R-module M, it is the case that SY(M) > r < f:g: (My) >rforallpe
{p € Spec(R)|R/p ¢ S}. In this paper, we investigate the local-global principle concerning
the S-minimaxness of local cohomology modules. Among other things, we will show that this
principle holds at level 1 over an arbitrary commutative Noetherian ring R and at all levels
whenever dim R < 2. Then by using the obtained results for some specific Serre classes of

R-modules we get some main results concerning the local global principle of local cohomology

modules.

DOI: 10.22034/as.2025.20376.1660

MSC(2010): Primary: 13D45.

Keywords: Local cohomology, Serre subcategory, S-minimax modules.
Received: 26 July 2023, Accepted: 28 July 2025.

*Corresponding author

© 2026 Yazd University.
35



36 Sh. Rezaei
1. INTRODUCTION

Throughout, R is a commutative Noetherian ring with identity, a is an ideal of R and M
is a non-zero R-module. For an R-module M, the i-th local cohomology module of M with
respect to a is defined as

H, (M) = lim Ext}p(R/a™, M).
neN
For basic facts about commutative algebra see [L1]; for local cohomology refer to [].

Let S be a class of R-modules. Recall that S is a Serre subcategory of the category of
R-modules, when it is closed under taking submodules, quotients and extensions. S satisfies
the condition Cj if for every a-torsion R-module M such that 0 :j; a is in S, then M isin S
(see [, Definition 2.1]. It is easy to see that, if S is closed under taking injective hulls, then
S satisfies the condition Cj.

In [14] we introduced the concept of S-minimax modules and we investigated S-minimaxness
of local cohomolgy modules. In this note, we define S®-minimaxness dimension SP(M) of M

relative to a by
SY(M) := inf{i € Ny : b H,(M) is not S — minimax for all t € N}.

where b is a second ideal of R. Also, we say that the local-global principle for the S-
minimaxness of local cohomology modules holds at level r if, for every choice of ideals a,

b of R with b C a and for every choice of finitely generated R-module M, it is the case that
SHM) > 7 fop (My) > 7 for all p € {p € Spec(R)|R/p ¢ S}.

In this paper, we investigate the local-global principle concerning the S-minimaxness of local
cohomology modules.

Recall that the b-finiteness dimension of M relative to a is defined by
fYM) =inf{i € Ny : b H (M) # 0 for all t € N}.

Brodmann et al. in [4] defined and studied the concept of the local-global principle for
annihilation of local cohomology modules at level r € N for the ideals of a and b of R. We say
that the local-global principle for the annihilation of local cohomology modules holds at level
r if, for every choice of ideals a, b of R with b C a and for every choice of finitely generated

R-module M, it is the case that
M) >re f:g: (M) > r for all p € Spec(R).

It is shown in [4] that the local -global principle for the annihilation of local cohomology
modules holds at levels 1,2 over an arbitrary commutative Noetherian ring and at all levels

whenever dim R < 4.
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Also the authors in [§] defined the b-minimaxness dimension of M relative to a by
pb(M) = inf{i € Ny : b* HY (M) is not minimax for all ¢ € N}.

They defined that the local-global principle for minimaxness of local cohomology modules
holds at level r € N for the ideals of a and b of R if, for every choice of ideals a, b of R with
b C a and for every choice of finitely generated R-module M, it is the case that

e (M) > r < uzg'; (My) > r for all p € Spec(R).

It is shown in [§] that the local -global principle for the minimaxness of local cohomology
modules holds at levels 1,2 over an arbitrary commutative Noetherian ring and at all levels

whenever dim R < 3. Recently Naghipour et al. in [[13] introduced the notation of h%(M)™ by
hY(M)™ = inf{i € Ny : b® H.(M) is not in dimension < n for all ¢ € N},

and they showed that for » = 1,2 and also for all + € N over an arbitrary commutative

Noetherian ring R whenever dim R < 3 we have
RY(M)™ > 1 & hzgs (My)"™ > r for all p € Spec(R).

Here, by using the concept of S-minimaxness we generalize the above local-global princi-
ples for some Serre calsses of R-modules. In fact, we show that under certain conditions the
local-global principle for the S-minimaxness of local cohomology modules holds over any com-
mutative Noetherian ring R at a level » € N. Among other things, we prove that if r is a

positive integer such that Homp(R/a, H{(M)) is S-minimax for all 4 < r then
SH(M) > 1 & fip?(My) > r for all p € {p € Spec(R)|R/p ¢ S}.

and we show that the local-global principle for the S-minimaxness of local cohomology modules
holds at level 1 over an arbitrary commutative Noetherian ring R and at all levels whenever
dim R < 2. By using the obtained results for some certain classes of R-modules we get some

results about the local-global principle for local cohomology modules in special cases.

2. MAIN RESULTS

Recall that an R-module L is called a-cofinite if Suppg(L) C V(a) and Extg%(R/ a,L) is
finitely generated for all j > 0. The R-module M is said to be a minimax module if there
is a finitely generated submodule N of M, such that M/N is Artinian. The R-module M is
said to be an FSF module if there is a finitely generated submodule N of M such that the
support of the quotient module M /N is finite (see [L5]). It is clear that, if M is FSF, then
dim Supp M/N < 1. The authors in [2] introduced the class of in dimension< n modules.
Let n be a non-negative integer. An R-module M is said to be in dimension< n, if there is a

finitely generated submodule N of M such that dim Supp M/N < n.
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In [14] we introduced the following definition of S-minimax modules which is a generalization

of the above definitions to Serre subcategories of the category of R-modules.

Definition 2.1. [14, Definition 2.1] Let S be a Serre subcategory of the category of R-modules.
An R-module M is said to be S-minimax if there exists a finitely generated submodule N of
M such that M/N is in S.

Example 2.2. The following classes of modules are Serre subcategories of the category of
R-modules and satisfy the condition C, for all ideals a of R:

i) 0S:= The class of zero modules;

ii) 4S:= The class of artinian R-modules;

iii) pS:= The class of R-modules with finite support;

iv) ,S:= The class of all R-modules M with dim Supp M < n, where n is a non-negative
integer.

Thus, the class of (S-minimax modules is equal to the class of finitely generated modules,
the class of 4S-minimax modules is equal to the class of minimax modules, the class of pS-
minimax modules is equal to the class of FSF modules and the class of ,,S-minimax modules

is equal to the class of in dimension< n modules.

In the following, we introduce the notation of S®*—minimaxness dimension SP(M) which
is a generalization of b-finiteness dimension f?(M) [5, Definition 9.1.5] and b-minimaxness

dimension pu8(M) [8] of M relative to a.

Definition 2.3. Let S be a Serre subcategory of the category of R-modules, M a finitely
generated R-module and a, b two ideals of R such that b C a. We define the S’-minimaxness
dimension S°(M) of M relative to a by

SY(M) := inf{i € Ny : b* H{(M) is not S — minimax for all ¢ € N}.

Example 2.4. Let R be a Noetherian ring, M be a finitely generated R-module and a, b two
ideals of R such that b C a. For Serre subcategories given in @ we have:

i) 0SY (M) = inf{i € Ng : b H.(M) is not finitely generated for all ¢ € N};

ii) ASY(M) = inf{i € Ng : b* H, (M) is not minimax for all ¢ € N};

iii) S8(M) = inf{i € Ny : b H.(M) is not FSF for all t € N};

iv) nSE(M) = inf{i € Ng : bt H, (M) is not in dimension< n for all t € N}.

a
Definition 2.5. Let S be a Serre subcategory of the category of R-modules, r be a positive
integer, We say that Faltings’ local global principle for the S-minimaxness of local cohomology
modules holds at level r if, for every choice of ideals a, b of R with b C a and for every choice

of finitely generated R-module M, it is the case that

SHM) > 1 fop (My) > r for all p € {p € Spec(R)|R/p ¢ S}.
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Proposition 2.6. Let S be a Serre subcategory of the category of R-modules. Let a and b be
ideals of R such that b C a, M be a finitely generated R-module and i a non-negative integer.
Then the following conditions are equivalent:

i) There exists an integer t such that b H (M) is S-minimax;

ii) There exists an integer t such that b H. (M) is in S.

Proof. i) = ii): By [14, Theorem 2.8].
ii) = i): It is clear.

By using the following notations and Proposition @ we have the next result.
o (M) =inf{i € Ng : b H.(M) # 0 for all t € N},
pb (M) = inf{i € Ng : b H, (M) is not minimax for all ¢ € N},
wl(M) = inf{i € Nq : b H, (M) is not FSF for all ¢t € N},
hY(M)™ = inf{i € Ng : b H (M) is not in dimension < n for all t € N}.
Corollary 2.7. Let a and b be ideals of R such that b C a, M be a finitely generated R-module

and n a non-negative integer. Then for Serre subcategories given in @ we have:
i)
0SY(M) = fo(M) = inf{i € Ng : b! HL(M) # 0 for all t € N}

=inf{i € No : b' H:(M) is not finitely generated for all t € N};

ASE (M) = pb (M) = inf{i € Ny : b H (M) is not artinian for all t € N}
=inf{i € Ny : b H:(M) is not minimax for all t € N};
iii)
pSE(M)=wb(M) = inf{i € Ny : b H.(M) is not finite support for all t € N}

=inf{i € Ng : b' H:(M) is not FSF for all t € N};

WSY(M)=hS(M)"™ = inf{i € Ny : dim Suppr(b? H.(M)) > n for all t € N}
—=inf{i € Ng : b H:(M) is not in dimension < n for all t € N}.
Proposition 2.8. Let R be a Noetherian ring and M be a finitely generated R-module. Let a
and b be ideals of R such that b C a and let r be a positive integer. Then we have:
i) If f:ﬁﬁ(Mp) > r for all p € Spec(R), then f:g;’(Mp) > r for all p € Spec(R) such that
R /pé¢ oS.
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i) If ,usg’; (My) > r for all p € Spec(R), then f:g:(Mp) > r for all p € Spec(R) such that
R/p ¢ aS.

i) If wsgi (My) > r for all p € Spec(R), then ffg:(Mp) > r for all p € Spec(R) such that
R/p ¢ pS; whenever R is semilocal.

) If hgg'p’(Mp)” > r for all p € Spec(R), then f:g:(Mp) > 1 for all p € Spec(R) such that

R/p ¢ »S.

Proof. i) It is clear.

ii) Assume that ,usg'; (M) > r for all p € Spec(R). Let ¢ < r be an integer and p € Spec(R)
such that R/p ¢ aS. Thus there exists m € Max(R) such that p & m. By assumption
there exists an integer ¢ such that (b* H(M))y is minimax. Recall that a module L which is
minimax has the property that the localization Ly is a finitely generated Rp-module for each

non-maximal prime ideal p. Hence
((bRm)" Hop,, (Mum))pR,, = (6" Hy (M),

is a finitely generated Ry-module. It follows that f:g:(Mp) > r for all p € Spec(R) such that
R/p ¢ aS.

iii) Assume that wsgﬁ (M) > r for all p € Spec(R). Let i < r be an integer and p € Spec(R)
such that R/p ¢ pS. Since R is semilocal, there exists m € Max(R) such that Ry /pRm ¢ rS.
By assumption there exists an integer ¢ such that Ry- module (b! Hi(M))y is FSF. Hence
there exists a finitely generated submodule N of (b*H!(M))y such that (b HE(M))y/N is
finite support. Since Ry /pRm ¢ rS we have

((me>t éRm(Mm))/N)pRm =0,

and so

((6Rm)" Hop,, (M) Jpry, = (6" H (M),

is a finitely generated Rp-module. Thus it follows that f:g;(Mp) > rforallp €

Spec(R) such that R/p ¢ rS.

iv) Assume that hzgz(Mp)” > r for all p € Spec(R). Let ¢ < r be an integer and p € Spec(R)
such that R/p ¢ ,S. Thus there exists m € Max(R) such that dim R/p = dim Ry /pRm = n.
By assumption there exists an integer ¢ and a finitely generated submodule N of (b* H: (M))y,
such that dim Supp(b® H:(M))w/N) < n. Since dim Ry, /pRym = n we have

((bRw)" Hop,, (M) /N)pr, =0,

and so

((bRp)" HiRm (Mw))pR = (b HQ(M))p,
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is a finitely generated R,-module. Thus we conclude that f:g: (My) > r for all p € Spec(R)

such that R/p ¢ ,S.

Corollary 2.9. Let S be a Serre subcategory of the category of R-modules such that S satisfies
the condition Cy. Let a and b be ideals of R such that b C a and M be a finitely generated

R-module. Let r be a positive integer such that
SH(M) > 7 fyp’ (My) > 1 for all p € {p € Spec(R)|R /p ¢ S}.

Then
i) If S = oS, then

M) >r = f:ﬁ:(Mp) > r for all p € Spec(R);
it) If S = A4S, then

(M) > r usg‘;(Mp) > r for all p € Spec(R);
iti) If S = ¢S, then

wl(M) > r <= wsg’j (My) > r for all p € Spec(R);

whenever R is semilocal.

w) If S = S, then
RY(M)" > 1 = hsgz (My)™ > r for all p € Spec(R).

Proof. The result follows by assumption and Corollary @ and Proposition @ 0O

Theorem 2.10. Let S be a Serre subcategory of the category of R-modules such that S satisfies
the condition Cy. Let a and b be ideals of R such that b C a and M be a finitely generated

R-module. Let r be a positive integer. Then
SY(M) > 7 = fog’ (My) > for allp € {p € Spec(R)|R/p ¢ S}.

Proof. Let ¢ be an arbitrary non-negative integer such that ¢ < r. By assumption there exists
an integer t such that bf HQ(M ) is S-minimax. Thus there exists a finitely generated submodule
N of b H:{(M) such that b H{(M)/N is in S. Let L := b*H{(M)/N. If p € Spec(R) and
R/p ¢ S, then since L € S we have L, = 0 and so (b' H;(M)), = N, is finitely generated.
Thus (bR,)! H: R, (Mp) is a finitely generated Ry-module and it follows that f:g:(Mp) >r.g
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Theorem 2.11. Let S be a Serre subcategory of the category of R-modules such that S satisfies
the condition Cy. Let a and b be ideals of R such that b C a and M be a finitely generated
R-module. Letr be a positive integer such that Homp(R/a, HE(M)) is S-minimaz for alli < r.
Then

SH(M) > 7 fop (M) > for all p € {p € Spec(R)|R/p ¢ S}.
Proof. =): By Theorem .

<): Assume that j < r be an integer. It is enough to show that there exists an integer
v such that b Hﬁ(M ) is in S. At first, we prove that there exists an integer v such that
Supp (b Hi(M)) C {p € Suppgp(M/aM) | R/p € S}.

Let p € Suppr(M/aM) and R/p ¢ S. By assumption there exists an integer ¢ such
that (b HQ(M))p is finitely generated Ry-module. But (b’ HQ(M))p is aRj-torsion and so
there is an integer v > 1 such that (b" Hfl(M)),J = 0. On the other hand, by assump-
tion Homp(R/a, H}(M)) is S-minimax, and so Lemma [14, Lemma 2.6] implies that the set
{p € Assp(H4(M))|R/p ¢ S} is finite. Let {p € Assg(HI(M))|R/p ¢ S} = {p1,--- ,pi}-
By the hypothesis there is an integer v; > 1 such that (b" Hﬁ(M))pl = 0 forall 1 <
i < k. Let v := Max{vi,...,v5}. Then {p1,---,pxp} N Suppr(b" HL(M)) = 0. We claim
that Suppp(b?HL(M)) C {p € Spec(R) | R/p € S}. If there exists a prime ideal
p € Suppp(a’ HL(M)) such that R/p ¢ S, then there exists q € Assg(b? HL(M)) such that
q C p. Since R/p ~ (R/q)/(p/q) and R/p ¢ S we have R/q ¢ S. But q € Suppg(b? HL(M)) and
s0q € {p1, -, prtNSuppg(b? HI(M)) = () which is a contradiction. Thus Suppz(b* H](M)) C
{p € Suppr(M/aM) | R/p € S}. But Suppy(Homp(R/a, b¥ H(M)) C Suppg(b® H(M)) and
thus

Supp(Homp(R/a,b” Hi(M)) C {p € Suppg(M/aM) | R/p € S}.

On the other hand, since Homp(R/a, H%(M)) is S-minimax Homp(R/a, b* Hi(M)) is S-
minimax by [14, Lemma 2.3]. Thus by [14, Lemma 2.7] Homg(R/a, b* HJ(M)) € S. Since by
the hypothesis, S satisfies the condition Cy we have b” Hﬁ(M ) is in S. Therefore b” Hﬁ(M ) is

in S, as required.

Theorem 2.12. Let S be a Serre subcategory of the category of R-modules such that S satisfies
the condition Cy. Let a and b be ideals of R such that b C a and M be a finitely generated
R-module. Let r be a positive integer such that H: (M) is S-minimaz for all 0 <i < r. Then

SUM)>r e f:g;(Mp) > for all p € {p € Spec(R)|R /p ¢ S}.

Proof. 1t follows by [14, Corollary 2.10] and Theorem . 0
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Corollary 2.13. The local-global principle for S-minimazness of local cohomology modules

holds at level 1.

Proof. For any finitely generated R-module M, H%(M) is finitely generated and so is S-
minimax. Thus assertion follows by Theorem . 0

Corollary 2.14. Let S be a Serre subcategory of the category of R-modules such that S satisfies
the condition Cy. Let a and b be ideals of R such that b C a and M be a finitely generated
R-module. Let r be a positive integer.

i) If Hi(M) is finitely generated for all 0 < i < r, then

fé’(M) > = f:g;)(Mp) > 1 for all p € Spec(R);
ii) If H (M) is minimax for all 0 < i < r, then

pS (M) > r < ysg;’(Mp) > r for all p € Spec(R);
i) If H (M) is FSF for all 0 < i < r, then

wl(M) > r < wsgi(Mp) > 1 for all p € Spec(R);

whenever R is semilocal.

iv) If Hi (M) is in-dimension< n for all 0 <i < r, then
hS(M)" > 1 <= it (My)" > v for all p € Spec(R).

Proof. 1t follows by Theorem and Corollary @ 0

Theorem 2.15. Let S be a Serre subcategory of the category of R-modules such that S satisfies

the condition Cy. Let a and b be ideals of R such that b C a and M be a finitely generated

R-module and let r be a positive integer such that HO(M),--- ,H.=Y(M) are a-cofinite. Then
SH(M) > 7 fop’ (M) > for all p € {p € Spec(R)|R/p ¢ S}.

Proof. Since HY(M),--- ,H-"Y(M) are a-cofinite, by [7, Theorem 2.1] we conclude that

Homp(R/a, H:(M)) is finitely generated and so is S-minimax for all 0 < i < r. Now, the

result follows by Theorem . 0
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Corollary 2.16. Let a and b be ideals of R such that b C a and M be a finitely generated
R-module. Let r be a positive integer such that HY(M),--- ,H.1(M) are a-cofinite. Then

i) fO(M) > r < f:g: (My) > r for all p € Spec(R);

ii) (M) > r <= usgz(Mp) > 1 for all p € Spec(R);

iii) wl(M) > r <= wggs (My) > r for all p € Spec(R); whenever R is semilocal.

iv) hS(M)" > r <= hep? (My)" > r for all p € Spec(R).

Proof. The result follows by Theorem and Corollary @ 0

Corollary 2.17. Let S be a Serre subcategory of the category of R-modules such that S satisfies
the condition Cy. Let R be a Noetherian ring with dim R < 2. Then the local global-principle

for S-minimaxness of local cohomology modules holds at all levels r € N.

Proof. The result follows by [12, Theorem 7.10] and Theorem . 0

Corollary 2.18. Let S be a Serre subcategory of the category of R-modules such that S satisfies
the condition Cy. Let a and b be two ideals of R such that b C a and M be o finitely generated
R-module such that one of the following conditions is satisfied:

i) dim M < 2;

it) dim M /aM < 1;

i) a is principal.

Then for any integer r,
SHM) > 7 fog’ (M) > for all p € {p € Spec(R)|R/p ¢ S}.

Proof. By [6, Corollary 5.2], [B, Theorem 1.3] and [10, Theorem 1], in each of the above

conditions the R-modules H!(M) are a-cofinite for all integers i. Thus the result follows by
Theorem . 0

Corollary 2.19. Let S be a Serre subcategory of the category of R-modules such that S satisfies
the condition Cy. Let a and b be two ideals of R such that b C a and M be a finitely generated
R-module such that M # aM. Then

SY(M) > grade,, a & f:g:(Mp) > grade,; a for all p € {p € Spec(R)|R/p ¢ S}.

Proof. Since H! (M) = 0 for all i < grade,; a, the result follows by Theorem . 0
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Corollary 2.20. Let a and b be two ideals of R such that b C a and M be a finitely generated
R-module such that one of the following conditions is satisfied:

i) dimM < 2;

it) dimM/aM < 1;

i) a is principal.

Then for any integer r,

i) f2(M) >r < f:g: (My) > r for all p € Spec(R);

ii) (M) > r <= ,usg‘;(Mp) > r for all p € Spec(R);

iii) wl(M) > r <= wsgs (My) > r for all p € Spec(R); whenever R is semilocal.

iv) hS(M)" > r <= hep? (My)" > r for all p € Spec(R).

Proof. The result follows by Corollary and Corollary @ 0

In the following, we define the concept of b-closed Serre classes and then we obtain a main
result concerning the local-global principle for S-minimaxness of local cohomology modules
under the additional assumption that S is an b-closed Serre subcategory of the category of

R-modules.

Definition 2.21. Let S be a Serre subcategory of the category of R-modules and b be an ideal
of R. We say that S is b-closed, if L — M — N is an exact sequence of R-homomorphisms
and R-modules such that for two non-negative integers s,t we have b*L € S and b'N € S then

there exists a non-negative integer [ such that b'M € S.

Example 2.22. By [§, Lemma 9.1.1], ¢S, the class of zero modules and by [9, Lemma 2.9],
»S, the class of all R-modules M with dim Supp M < n, where n is a non-negative integer are

b-closed Serre subcategory of the category of R-modules for any ideal b of R.

Theorem 2.23. Let a and b be ideals of R such that b C a and M be a finitely generated
R-module. Let S be an b-closed Serre subcategory of the category of R-modules such that S
satisfies the condition Cy. Then the local-global principle for S-minimazness of local cohomology

modules holds at level 2.
Proof. We must show that

S(M) > 2 & fip? (My) > 2 for all p € {p € Spec(R)|R /p ¢ S}.

a

By using Theorem , it is enough for us to show that, if f:g; (My) > 2forallp € {p €

Spec(R)|R /p ¢ S}, then S8(M) > 2. In view of Corollary , we need to show that there
exists an integer ¢ such that b* H2(M) is in S.
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Let p € Spec(R) with R /p ¢ S. By assumption there exists an integer s such that
(b*H.(M)), =0 for all 0 < i < 2.
Let M = M/Ty(M). Now from the short exact sequence

0—Ty(M)— M — M — 0,
we have the following exact sequence

- (Ha(M))p — (Hg(M))p — HZ(Te(M)))p — (HI(M))p — (HI(M))p — -+~

a

But, there exists an integer k such that b* H!(T'y(M)) = 0 for all 4 > 0. Thus the above
long exact sequence and [, Lemma 9.1.1] implies that there exist integeres v and u such that
(bRy)?(HL(M))y = 0 and (bR,)“(H2(M)), = 0. On the other hand, by [5, Lemma 2.1.1 (ii)] b

contains an element r which is a non-zerodivisor on M. Thus the short exact sequence
0 — M, s N, — M,/vM, — 0,

induces the exact sequence HgR,, (My /1% M) — HéRp (My) — 0 and so, it follows that H}lRp (My)
is a finitely generated R, module. Since HY Rp(Mp) is also finitely generated R, module , [14,
Theorem 2.12] implies that H} (M) is S-minimax R module for all 0 < ¢ < 2. Thus by [14,
Theorem 2.9], Homg(R/a, H2(M)) is S-minimax R module. Now, Theorem implies that
there exists an integer s such that b* H2(M) is in S. Since there exists an integer k such that

b* H2(I'y(M)) = 0 and by assumption S is b-closed, the exact sequence
HG (D (M) — HZ (M) — HZ (M),

implies that there exists an integer ¢ such that b* H2(M) is in S, as required.

Corollary 2.24. i) The local-global principle for ¢S-minimazness of local cohomology modules
holds at level 2.

it) The local-global principle for ,S-minimaxness of local cohomology modules holds at level
2.

Proof. It follows by Example and Theorem . 0O
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