

Algebraic Structures and Their Applications Vol. 13 No. 1 (2026) pp 17-34.

Research Paper

THE SPACE OF PRIME π -FILTERS OF ALMOST DISTRIBUTIVE LATTICES

RAFI NOORBHASHA* AND MUKKAMALA SAMBASIVA RAO

ABSTRACT. The concepts have been presented in Almost Distributive Lattices (ADLs), namely, regular filters and π -filters. A set of conditions has been identified that are equivalent to becoming an \mathcal{D} -filter into a regular filter. Moreover, it has been shown that for any \mathcal{D} -filter, there is a homomorphism with a dense kernel, which is itself a regular filter. The characterization of π -filters in relation to congruences and regular filters has been established. Additionally, equivalent conditions have been derived to show that the space containing all prime filters forms a Hausdorff space.

1. INTRODUCTION

An Almost Distributive Lattice (ADL) was originated by Swamy and Rao in [8], as a common abstraction of many existing ring theoretic generalizations of a Boolean algebra on one hand and the class of distributive lattices on the other. In that paper, the concept of an

DOI: 10.22034/as.2025.22800.1774

MSC(2010): Primary: 06D99, 06D15.

Keywords: Almost distributive lattices, Hausdorff space, Minimal prime \mathcal{D} -filter, π -filter, Regular filter.

Received: 14 February 2025, Accepted: 06 June 2025.

*Corresponding author

ideal in an ADL was introduced analogous to that in a distributive lattice and it was observed that the set $\mathcal{PI}(\mathcal{L})$ of principal ideals of an ADL, forms a distributive lattice. This enables us to extend many existing concepts from the class of distributive lattices to the class of ADLs. Furthermore, “ w –filters” are introduced in ADLs and [4] investigates their properties. In [3], the concept of \mathcal{D} –filters is introduced in an ADL and its properties are discussed. In [7], the concept of regular filters is introduced by M.S. Rao in distributive lattices, and studied their properties. The aim of this work is to investigate the characteristics of \mathcal{D} -filters and dense elements within ADLs. The study establishes an equivalent set of conditions that determine if a \mathcal{D} -filter may be converted into a regular filter. For a \mathcal{D} -filter of an ADL, it is demonstrate that there is a homomorphism whose dense kernel is a regular filter. Moreover, the study derives a necessary condition, stated in terms of regular filters, for every ADL to become relatively complemented. Additionally, give equivalent conditions that allow an ADL to become a Boolean algebra. This provides clarity on the algebraic qualities of ADLs and the conditions in which they show properties of Boolean algebras. Additionally, topological studies are done on a few characteristics of the space containing all prime π -filters of ADLs.

2. PRELIMINARIES

The definitions and significant results from [5, 8] are gathered and given in this part; these will be needed during the entire document.

Definition 2.1. [8] An algebraic structure $(\mathcal{L}, \vee, \wedge, 0)$ of type $(2, 2, 0)$ is an ADL with zero if it satisfies the conditions given below:

- (1) $(\theta \vee \vartheta) \wedge \sigma = (\theta \wedge \sigma) \vee (\vartheta \wedge \sigma);$
- (2) $\theta \wedge (\vartheta \vee \sigma) = (\theta \wedge \vartheta) \vee (\theta \wedge \sigma);$
- (3) $(\theta \vee \vartheta) \wedge \vartheta = \vartheta;$
- (4) $(\theta \vee \vartheta) \wedge \theta = \theta;$
- (5) $\theta \vee (\theta \wedge \vartheta) = \theta;$
- (6) $0 \wedge \theta = 0, \quad \text{for any } \theta, \vartheta, \sigma \in \mathcal{L}.$

To define a partial order \leq on \mathcal{L} , consider the condition $\theta = \theta \wedge \vartheta$ or equivalently $\theta \vee \vartheta = \vartheta$ for every $\theta, \vartheta \in \mathcal{L}$. This condition ensures that $\theta \leq \vartheta$, establishing \leq as a partial order on \mathcal{L} . When $m \in \mathcal{L}$ is maximal with respect to this partial order, it is referred to as *maximal*. The collection of all such maximal elements in \mathcal{L} is indicated by $\mathcal{M}_{\text{Max. elts}}$.

An ADL \mathcal{L} exhibits many properties of a distributive lattice [1, 2], with the exception of commutativity of \vee and \wedge and lack of right distributivity of \vee over \wedge , as highlighted in Swamy's work[8]. If either of these properties held, \mathcal{L} would be classified as a distributive lattice. We define a non-void subset \mathcal{I} of \mathcal{L} as an ideal(a filter) if it satisfies that for any elements $\theta, \vartheta \in \mathcal{I}$ and $\mu \in \mathcal{L}$, the subset \mathcal{I} must include $\theta \wedge \mu$ and $\theta \vee \vartheta$ ($\mu \vee \theta$ and $\theta \wedge \vartheta$). A maximal ideal

(filter) contains every proper ideal (filter) of \mathcal{L} . The smallest ideal containing a subset \mathcal{S} of \mathcal{L} is defined as $(\mathcal{S}) := \{(\bigvee_{i=1}^n \theta_i) \wedge \mu \mid \theta_i \in \mathcal{S}, \mu \in \mathcal{L}, n \in \mathbb{N}\}$. A principal ideal generated by an element θ is denoted as (θ) . Similarly, for each subset \mathcal{S} of \mathcal{L} , the smallest filter containing \mathcal{S} is defined as $[\mathcal{S}] := \{\mu \vee (\bigwedge_{i=1}^n \theta_i) \mid \theta_i \in \mathcal{S}, \mu \in \mathcal{L}, n \in \mathbb{N}\}$. A principal filter generated by an element θ is denoted as $[\theta]$. It is established that $(\theta) \vee (\vartheta) = (\theta \vee \vartheta)$ and $(\theta) \cap (\vartheta) = (\theta \wedge \vartheta)$ for any $\theta, \vartheta \in \mathcal{L}$. Represented all principal ideals of \mathcal{L} by the set $(\mathcal{PI}(\mathcal{L}), \vee, \cap)$, this brings out a sublattice of the distributive lattice $(\mathcal{I}(\mathcal{L}), \vee, \cap)$ of all ideals of \mathcal{L} . Furthermore, the set $(\mathcal{F}(\mathcal{L}), \vee, \cap)$ of all filters of \mathcal{L} forms a bounded distributive lattice. In an ADL [6], a prime ideal \mathcal{Q} of \mathcal{L} exists if and only if $\mathcal{L} \setminus \mathcal{Q}$ is a prime filter of \mathcal{L} .

Theorem 2.2. [8] Suppose \mathcal{G} is a filter and \mathcal{I} is an ideal in \mathcal{L} , with the condition that $\mathcal{G} \cap \mathcal{I} = \emptyset$. Then, there is a prime filter \mathcal{Q} in \mathcal{L} such that $\mathcal{G} \subseteq \mathcal{Q}$ and $\mathcal{Q} \cap \mathcal{I} = \emptyset$.

An ADL \mathcal{L} is called relatively complemented [5] if, for any elements $\mu, \pi \in \mathcal{L}$ where $\mu \leq \pi$, the interval $[\mu, \pi]$ forms a complemented distributive lattice. For any non-empty subset \mathcal{S} of an Almost distributive lattice (ADL) \mathcal{L} , the set $\mathcal{S}^* = \{\mu \in \mathcal{L} \mid \theta \wedge \mu = 0 \text{ for all } \theta \in \mathcal{S}\}$ forms an ideal of \mathcal{L} . Specifically, for any $\theta \in \mathcal{L}$, it holds that $\{\theta\}^* = (\theta)^*$, where $(\theta) = (\theta)$. The set $(\theta)^* = \{\mu \in \mathcal{L} \mid \mu \wedge \theta = 0\}$ is referred to as the *annihilator* of θ . An element $e \in \mathcal{L}$ is called *dense* if $(e)^* = \{0\}$. The collection of all dense elements in \mathcal{L} is denoted by \mathcal{D} . If \mathcal{D} is non-empty, it forms a filter in \mathcal{L} .

For any $\theta \in \mathcal{L}$, both (θ, \mathcal{D}) and $(\{\theta\}, \mathcal{D})$ are well-defined, with $(\theta)^*$ forming the basis for these definitions. According to [3], a filter \mathcal{G} of \mathcal{L} is called a \mathcal{D} -filter if $\mathcal{D} \subseteq \mathcal{G}$. The smallest \mathcal{D} -filter in \mathcal{L} is precisely \mathcal{D} . For any subset $\mathcal{S} \subseteq \mathcal{L}$, the set $(\mathcal{S}, \mathcal{D}) = \{\mu \in \mathcal{L} \mid \theta \vee \mu \in \mathcal{D} \text{ for all } \theta \in \mathcal{S}\}$ can be defined. It is observed that $(\mathcal{L}, \mathcal{D}) = \mathcal{D}$ and $(\mathcal{D}, \mathcal{D}) = \mathcal{L}$. Furthermore, for every subset \mathcal{S} of \mathcal{L} , the inclusion $\mathcal{D} \subseteq (\mathcal{S}, \mathcal{D})$ holds. For each $\theta \in \mathcal{L}$, the set $(\{\theta\}, \mathcal{D})$ is denoted as (θ, \mathcal{D}) . In particular, if $m \in \mathcal{L}$ is a maximal element, then $(m, \mathcal{D}) = \mathcal{L}$. Importantly, for any subset \mathcal{S} of \mathcal{L} , $(\mathcal{S}, \mathcal{D})$ forms a \mathcal{D} -filter.

Lemma 2.3. [3] For all subsets \mathcal{S} and \mathcal{T} of \mathcal{L} , we have:

- (1) $\mathcal{S} \subseteq \mathcal{T}$ implies $(\mathcal{T}, \mathcal{D}) \subseteq (\mathcal{S}, \mathcal{D})$;
- (2) $\mathcal{S} \subseteq ((\mathcal{S}, \mathcal{D}), \mathcal{D})$;
- (3) $((\mathcal{S}, \mathcal{D}), \mathcal{D}) = (\mathcal{S}, \mathcal{D})$;
- (4) $(\mathcal{S}, \mathcal{D}) = \mathcal{L} \Leftrightarrow \mathcal{S} \subseteq \mathcal{D}$.

Proposition 2.4. [3] For all filters $\mathcal{G}, \mathcal{U}, \mathcal{V}$ of \mathcal{L} , we have

- (1) $(\mathcal{G}, \mathcal{D}) \cap ((\mathcal{G}, \mathcal{D}), \mathcal{D}) = \mathcal{D}$;
- (2) $\mathcal{G} \cap \mathcal{U} \subseteq \mathcal{D}$ implies $\mathcal{G} \subseteq (\mathcal{U}, \mathcal{D})$;
- (3) $((\mathcal{G} \vee \mathcal{U}), \mathcal{D}) = (\mathcal{G}, \mathcal{D}) \cap (\mathcal{U}, \mathcal{D})$;
- (4) $((\mathcal{G} \cap \mathcal{U}), \mathcal{D}) = ((\mathcal{G}, \mathcal{D}), \mathcal{D}) \cap ((\mathcal{U}, \mathcal{D}), \mathcal{D})$.

It is evident that $([\mu], \mathcal{D}) = (\mu, \mathcal{D})$. Then obviously $(0, \mathcal{D}) = \mathcal{D}$.

Corollary 2.5. [3] For $\theta, \vartheta, \sigma \in \mathcal{L}$, we have

- (1) $\theta \leq \vartheta$ implies $(\theta, \mathcal{D}) \subseteq (\vartheta, \mathcal{D})$;
- (2) $((\theta \wedge \vartheta), \mathcal{D}) = (\theta, \mathcal{D}) \cap (\vartheta, \mathcal{D})$;
- (3) $((\theta \vee \vartheta), \mathcal{D}) = ((\theta, \mathcal{D}), \mathcal{D}) \cap ((\vartheta, \mathcal{D}), \mathcal{D})$;
- (4) $(\theta, \mathcal{D}) = \mathcal{L}$ if and only if θ is dense.

Suppose \mathcal{G} is a \mathcal{D} -filter and $\mu \notin \mathcal{G}$. Then, there is a prime \mathcal{D} -filter \mathcal{Q} such that $\mathcal{G} \subseteq \mathcal{Q}$ and $\mu \notin \mathcal{Q}$. A prime \mathcal{D} -filter \mathcal{Q} in \mathcal{L} is said to be minimal if no prime \mathcal{D} -filter \mathcal{P} exists with $\mathcal{P} \subset \mathcal{Q}$.

Theorem 2.6. [3] In ADL \mathcal{L} , a prime \mathcal{D} -filter \mathcal{Q} is minimal if, for every $\mu \in \mathcal{Q}$, there exists some $\pi \notin \mathcal{Q}$ with $\mu \vee \pi \in \mathcal{D}$.

Throughout this article, \mathcal{L} denotes an ADL with maximal elements unless otherwise mentioned.

3. REGULAR FILTERS OF ADLs

This section introduces the notion of regular filters in ADL. It then examines certain properties of \mathcal{D} -filters. A set of equivalent conditions is established to determine when a \mathcal{D} -filter of an ADL becomes a regular filter. The collection of all \mathcal{D} -filters, prime \mathcal{D} -filters and set of all minimal prime \mathcal{D} -filters of an ADL \mathcal{L} is denoted by $\mathfrak{F}^{\mathcal{D}}(\mathcal{L})$, $Spec_F^{\mathcal{D}}(\mathcal{L})$ and $Min_F^{\mathcal{D}}(\mathcal{L})$ respectively.

Definition 3.1. A filter \mathcal{G} of an ADL \mathcal{L} is called *regular* if $\mathcal{G} = ((\mathcal{G}, \mathcal{D}), \mathcal{D})$.

Example 3.2. Let $\mathcal{L} = \{0, \theta, \vartheta, \sigma, e, \varphi, \rho\}$ and define \vee , \wedge on \mathcal{L} as follows:

\wedge	0	θ	ϑ	σ	e	φ	ρ
0	0	0	0	0	0	0	0
θ	0	θ	ϑ	σ	e	φ	ρ
ϑ	0	θ	ϑ	σ	e	φ	ρ
σ	0	σ	σ	σ	0	σ	σ
e	0	e	e	0	e	e	e
φ	0	φ	φ	σ	e	φ	φ
ρ	0	ρ	ρ	σ	e	φ	ρ

\vee	0	θ	ϑ	σ	e	φ	ρ
0	0	θ	ϑ	σ	e	φ	ρ
θ							
ϑ							
σ	σ	θ	ϑ	σ	φ	φ	ρ
e	e	θ	ϑ	φ	e	φ	ρ
φ	φ	θ	ϑ	φ	φ	φ	ρ
ρ	ρ	ρ	θ	ϑ	ρ	ρ	ρ

Then $(\mathcal{L}, \vee, \wedge)$ is an ADL. Clearly, we have that $\mathcal{D} = \{\theta, \vartheta, \varphi, \rho\}$ is the dense set of \mathcal{L} . Consider the filters $\mathcal{G}_1 = \{\theta, \vartheta, \rho\}$, $\mathcal{G}_2 = \{\theta, \vartheta, e, \varphi, \rho\}$, $\mathcal{G}_3 = \{\theta, \vartheta, \sigma, \varphi, \rho\}$, $\mathcal{G}_4 = \{\theta, \vartheta\}$. Clearly we have that $((\mathcal{G}_2, \mathcal{D}), \mathcal{D}) = \mathcal{G}_2$ and hence \mathcal{G}_2 is a regular filter of \mathcal{L} . But \mathcal{G}_1 is not a regular filter of \mathcal{L} because $((\mathcal{G}_1, \mathcal{D}), \mathcal{D}) = \mathcal{D} \neq \mathcal{G}_1$.

$\mathfrak{F}^R(\mathcal{L})$ represents the class of all regular filters of \mathcal{L} . The following result can be verified easily.

Lemma 3.3. *Let \mathcal{L} be an ADL with dense set \mathcal{D} . Then we have the following:*

- (1) *for any non-empty subset \mathcal{S} of \mathcal{L} , $(\mathcal{S}, \mathcal{D}) \in \mathfrak{F}^R(\mathcal{L})$;*
- (2) *\mathcal{D} is the smallest regular filter;*
- (3) *each regular filter is \mathcal{D} -filter.*

Theorem 3.4. *$\mathfrak{F}^R(\mathcal{L})$ constitutes a complete Boolean algebra.*

Proof. It is observed that $(\mathfrak{F}^R(\mathcal{L}), \subseteq)$ is a poset. Let \mathcal{G}, \mathcal{U} be any two regular filters of \mathcal{L} . Then clearly $((\mathcal{G}, \mathcal{D}), \mathcal{D}) \cap ((\mathcal{U}, \mathcal{D}), \mathcal{D}) = (((\mathcal{G} \cap \mathcal{U}), \mathcal{D}), \mathcal{D})$ is the infimum of both \mathcal{G} and \mathcal{U} in $\mathfrak{F}^R(\mathcal{L})$. Consider $\mathcal{G} \sqcup \mathcal{U} = (\mathcal{G}, \mathcal{D}) \cap ((\mathcal{U}, \mathcal{D}), \mathcal{D})$ as the binary operation \sqcup on $\mathfrak{F}^R(\mathcal{L})$. It is obvious that the supremum for \mathcal{G} and \mathcal{U} in $\mathfrak{F}^R(\mathcal{L})$ is $(\mathcal{G}, \mathcal{D}) \cap ((\mathcal{U}, \mathcal{D}), \mathcal{D})$. In $\mathfrak{F}^R(\mathcal{L})$, \mathcal{D} and \mathcal{L} have to be the least and largest elements, respectively. It gives $(\mathfrak{F}^R(\mathcal{L}), \cap, \sqcup, \mathcal{D}, \mathcal{L})$ is a bounded distributive lattice. $(\mathcal{G} \cap (\mathcal{G}, \mathcal{D}) = ((\mathcal{G}, \mathcal{D}), \mathcal{D}) \cap (\mathcal{G}, \mathcal{D}) = \mathcal{D}$ and $\mathcal{G} \sqcup (\mathcal{G}, \mathcal{D}) = (\mathcal{G}, \mathcal{D}) \cap ((\mathcal{G}, \mathcal{D}), \mathcal{D}) = (\mathcal{D}, \mathcal{D}) = \mathcal{L}$ are obtained for any $\mathcal{G} \in \mathfrak{F}^R(\mathcal{L})$. As a result, the unique complement of \mathcal{G} in $\mathfrak{F}^R(\mathcal{L})$ is $(\mathcal{G}, \mathcal{D})$. Hence, a complete Boolean algebra is $(\mathfrak{F}^R(\mathcal{L}), \cap, \sqcup, \mathcal{D}, \mathcal{L}, \mathcal{D})$. \square

For any $\mu \in \mathcal{L}$, $(\mu, \mathcal{D}) \in \mathfrak{F}^R(\mathcal{L})$ and hence supremum and infimum of (μ, \mathcal{D}) and (π, \mathcal{D}) in $\mathfrak{F}^R(\mathcal{L})$ are $(\mu, \mathcal{D}) \sqcup (\pi, \mathcal{D}) = ((\mu, \mathcal{D}), \mathcal{D}) \cap (((\pi, \mathcal{D}), \mathcal{D}), \mathcal{D}) = (((\mu \vee \pi, \mathcal{D}), \mathcal{D}), \mathcal{D}) = (\mu \vee \pi, \mathcal{D})$ are $(\mu, \mathcal{D}) \cap (\pi, \mathcal{D}) = (\mu \wedge \pi, \mathcal{D})$ respectively.

The following theorem is an immediate outcome of the preceding observation.

Theorem 3.5. *The set $\mathcal{RF}_\bullet(\mathcal{L})$, which consists of all regular filters of the form (μ, \mathcal{D}) where $\mu \in \mathcal{L}$, forms a lattice under the operations \cap and \sqcup . This lattice $\langle \mathcal{RF}_\bullet(\mathcal{L}), \cap, \sqcup \rangle$ is also a sublattice of the distributive lattice $\langle \mathcal{RF}(\mathcal{L}), \cap, \sqcup \rangle$, which includes all regular filters of \mathcal{L} . Additionally, $\mathcal{RF}_\bullet(\mathcal{L})$ has a greatest element, denoted by $\mathcal{L} = (e, \mathcal{D})$ for any $e \in \mathcal{D}$, and a smallest element, $(0, \mathcal{D})$, corresponding to \mathcal{D} .*

Theorem 3.6. *Consider a \mathcal{D} -filter \mathcal{G} of an ADL \mathcal{L} . Then $\mathcal{G} \vee (\mathcal{G}, \mathcal{D}) = \mathcal{L}$ holds if and only if \mathcal{G} is regular and $(\mathcal{G}, \mathcal{D}) \vee ((\mathcal{G}, \mathcal{D}), \mathcal{D}) = \mathcal{L}$.*

Proof. Assume that $\mathcal{G} \vee (\mathcal{G}, \mathcal{D}) = \mathcal{L}$. Then $((\mathcal{G}, \mathcal{D}), \mathcal{D}) = ((\mathcal{G}, \mathcal{D}), \mathcal{D}) \cap \mathcal{L} = ((\mathcal{G}, \mathcal{D}), \mathcal{D}) \cap (\mathcal{G} \vee (\mathcal{G}, \mathcal{D})) = ((\mathcal{G}, \mathcal{D}), \mathcal{D}) \cap \mathcal{G} \vee ((\mathcal{G}, \mathcal{D}), \mathcal{D}) \cap (\mathcal{G}, \mathcal{D}) = \mathcal{G} \vee \mathcal{D} = \mathcal{G}$. Hence \mathcal{G} is regular. Also $(\mathcal{G}, \mathcal{D}) \vee ((\mathcal{G}, \mathcal{D}), \mathcal{D}) = (\mathcal{G}, \mathcal{D}) \vee \mathcal{G} = \mathcal{L}$. The converse is obvious. \square

Equivalent conditions are identified for a prime \mathcal{D} -filter of \mathcal{L} to become a minimal prime \mathcal{D} -filter.

Theorem 3.7. *In an ADL, the conditions listed below are equivalent:*

- (1) *each prime \mathcal{D} -filter is minimal;*
- (2) $[\mu] \vee (\mu, \mathcal{D}) = \mathcal{L}$, for all $\mu \in \mathcal{L}$;
- (3) $[\mu] = ((\mu, \mathcal{D}), \mathcal{D})$ and $(\mu, \mathcal{D}) \vee ((\mu, \mathcal{D}), \mathcal{D}) = \mathcal{L}$, for all $\mu \in \mathcal{L}$.

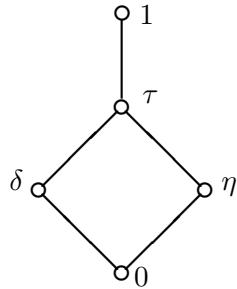
Proof. (1) \Rightarrow (2) : Assume that every prime \mathcal{D} -filter is minimal. Let $\mu \in \mathcal{L}$. Suppose $[\mu] \vee (\mu, \mathcal{D}) \neq \mathcal{L}$. Hence there is a prime filter \mathcal{Q} such that $[\mu] \vee (\mu, \mathcal{D}) \subseteq \mathcal{Q}$. Given that (μ, \mathcal{D}) is a \mathcal{D} -filter, it follows that $\mathcal{Q} \in \mathfrak{F}^{\mathcal{D}}(\mathcal{L})$. According to the given hypothesis, \mathcal{Q} is minimal. Since $(\mu, \mathcal{D}) \subseteq \mathcal{Q}$, we conclude that $\mu \notin \mathcal{Q}$, it leads to a contradiction. Therefore, it must be that $[\mu] \vee (\mu, \mathcal{D}) = \mathcal{L}$.

(2) \Rightarrow (3) : It's obvious.

(3) \Rightarrow (1) : Assume (3). Let $\mathcal{Q} \in \text{Spec}_F^{\mathcal{D}}(\mathcal{L})$. Suppose there is another $\mathcal{P} \in \text{Spec}_F^{\mathcal{D}}(\mathcal{L})$ such that $\mathcal{P} \subset \mathcal{Q}$. Now, select an element $\mu \in \mathcal{Q} \setminus \mathcal{P}$. Since $\mu \notin \mathcal{P}$, it follows that $(\mu, \mathcal{D}) \subseteq \mathcal{P}$. Given that μ is in \mathcal{Q} , applying the assumed condition yields $\mathcal{L} = ((\mu, \mathcal{D}), \mathcal{D}) \vee (\mu, \mathcal{D}) = [\mu] \vee (\mu, \mathcal{D}) \subseteq \mathcal{Q} \vee \mathcal{P} = \mathcal{Q}$, it gives a contradiction. Hence, $\mathcal{Q} \in \text{Min}_F^{\mathcal{D}}(\mathcal{L})$. \square

Definition 3.8. A filter \mathcal{G} of an ADL \mathcal{L} is said to be condensed if it satisfies the condition $(\mathcal{G}, \mathcal{D}) = \mathcal{D}$.

Example 3.9. Consider a discrete ADL $\mathcal{C} = \{0, \theta\}$ and a distributive lattice $\mathcal{L}' = \{0, \delta, \eta, \tau, 1\}$ whose Hasse-diagram is given below



Clearly, $\mathcal{L} = \mathcal{C} \times \mathcal{L}' = \{(0, 0), (0, \delta), (0, \eta), (0, \tau), (0, 1), (\theta, 0), (\theta, \delta), (\theta, \eta), (\theta, \tau), (\theta, 1)\}$ is an ADL with zero element $(0, 0)$. Take $\mathcal{L} = \{o, v, \phi, \theta, \chi, \psi, \omega, \pi, e, \xi\}$, where $o = (0, 0), v = (0, \delta), \phi = (0, \eta), \theta = (0, \tau), \chi = (0, 1), \psi = (\theta, 0), \omega = (\theta, \delta), \pi = (\theta, \eta), e = (\theta, \tau), \xi = (\theta, 1)$. Define \wedge, \vee of \mathcal{L} as

\wedge	o	v	ϕ	θ	χ	ψ	ω	π	e	ξ
o	o	o	o	o	o	o	o	o	o	o
v	o	v	o	v	v	o	v	o	v	v
ϕ	o	o	ϕ	ϕ	ϕ	o	o	ϕ	ϕ	ϕ
θ	o	v	ϕ	θ	θ	o	v	ϕ	θ	θ
χ	o	v	ϕ	θ	χ	o	v	ϕ	θ	χ
ψ	o	o	o	o	o	ψ	ψ	ψ	ψ	ψ
ω	o	v	o	v	v	ψ	ω	ψ	ω	ω
π	o	o	ϕ	ϕ	ϕ	ψ	ψ	π	π	π
e	o	v	ϕ	θ	θ	ψ	ω	π	e	e
ξ	o	v	ϕ	θ	χ	ψ	ω	π	e	ξ

\vee	o	v	ϕ	θ	χ	ψ	ω	π	e	ξ
o	o	v	ϕ	θ	χ	ψ	ω	π	e	ξ
v	v	v	θ	θ	χ	ω	ω	e	e	ξ
ϕ	ϕ	θ	ϕ	θ	χ	π	e	π	e	ξ
θ	θ	θ	θ	θ	χ	e	e	e	e	ξ
χ	χ	χ	χ	χ	χ	ξ	ξ	ξ	ξ	ξ
ψ	ψ	ω	π	e	ξ	ψ	ω	π	e	ξ
ω	ω	ω	e	e	ξ	ω	ω	e	e	ξ
π	π	e	π	e	ξ	π	e	π	e	ξ
e	e	e	e	e	ξ	e	e	e	e	ξ
ξ	ξ	ξ	ξ	ξ	ξ	ξ	ξ	ξ	ξ	ξ

Consider a filter $\mathcal{G} = \{\phi, \theta, \chi, \pi, e, \xi\}$ and the dense set $\mathcal{D} = \{e, \xi\}$. Clearly, we have that $(\mathcal{G}, \mathcal{D}) = \mathcal{D}$ and hence \mathcal{G} is a condensed filter of \mathcal{L} . But \mathcal{G} is not a regula filter because $((\mathcal{G}, \mathcal{D}), \mathcal{D}) = \mathcal{L} \neq \mathcal{G}$.

It is evident that the collection of all condensed filters in an ADL \mathcal{L} constitutes a sublattice within the lattice of all filters of \mathcal{L} . Generally, a proper condensed filter is not necessarily a regular filter. However, several equivalent conditions have been established for a \mathcal{D} -filter of \mathcal{L} to qualify as a regular filter.

Theorem 3.10. *If each proper filter is non-condensed, then the conditions listed below are equivalent:*

- (1) *each member in $\mathfrak{F}^{\mathcal{D}}(\mathcal{L})$ is a member of $\mathfrak{F}^{\mathcal{R}}(\mathcal{L})$;*
- (2) *each member in $Spec_F^{\mathcal{D}}(\mathcal{L})$ is a member of $\mathfrak{F}^{\mathcal{R}}(\mathcal{L})$;*

- (3) each member in $Spec_F^D(\mathcal{L})$ is minimal;
- (4) each member in $Spec_F^D(\mathcal{L})$ is maximal.

Proof. (1) \Rightarrow (2): It is evident.

(2) \Rightarrow (3): Assume (2). Let $\mathcal{Q} \in Spec_F^D(\mathcal{L})$. Then, $(\mathcal{Q}, \mathcal{D}), \mathcal{D} = \mathcal{Q}$. Now, assume $\mathcal{Q} \notin Min_F^D(\mathcal{L})$. This means there is $\mathcal{P} \in Spec_F^D(\mathcal{L})$ such that $\mathcal{P} \subset \mathcal{Q}$. Choose an element $\mu \in \mathcal{Q} \setminus \mathcal{P}$. Let $\theta \in (\mathcal{Q}, \mathcal{D})$. Since $\mu \in \mathcal{Q}$, we have $\theta \vee \mu \in \mathcal{D} \subseteq \mathcal{P}$. As \mathcal{P} is prime and $\mu \notin \mathcal{P}$, it follows that $\theta \in \mathcal{P} \subset \mathcal{Q}$. Therefore, $(\mathcal{Q}, \mathcal{D}) \subseteq \mathcal{Q} \subseteq ((\mathcal{Q}, \mathcal{D}), \mathcal{D})$. Thus, $(\mathcal{Q}, \mathcal{D}) = (\mathcal{Q}, \mathcal{D}) \cap ((\mathcal{Q}, \mathcal{D}), \mathcal{D}) = \mathcal{D}$. This leads to the contradiction $\mathcal{Q} = (\mathcal{Q}, \mathcal{D}) = \mathcal{L}$. Therefore, $\mathcal{Q} \in Min_F^D(\mathcal{L})$.

(3) \Rightarrow (4): It is obvious.

(4) \Rightarrow (1): Assume (4). Let \mathcal{G} be a non-dense filter. Evidently, $\mathcal{G} \subseteq ((\mathcal{G}, \mathcal{D}), \mathcal{D})$. Let $\mu \in ((\mathcal{G}, \mathcal{D}), \mathcal{D})$. This implies $(\mathcal{G}, \mathcal{D}) \subseteq (\mu, \mathcal{D})$. Suppose $\mu \notin \mathcal{G}$. Then, there is $\mathcal{Q} \in Spec_F^D(\mathcal{L})$ such that $\mathcal{G} \subseteq \mathcal{Q}$, $\mu \notin \mathcal{Q}$. By (4), \mathcal{Q} is maximal. As $\mu \notin \mathcal{Q}$, we obtain $\mathcal{Q} \vee [\mu] = \mathcal{L}$. Thus, $(\mathcal{Q}, \mathcal{D}) \cap (\mu, \mathcal{D}) = (\mathcal{Q} \vee [\mu], \mathcal{D}) = (\mathcal{L}, \mathcal{D}) = \mathcal{D}$. Therefore, $(\mathcal{Q}, \mathcal{D}) = (\mathcal{Q}, \mathcal{D}) \cap (\mathcal{G}, \mathcal{D}) = \mathcal{D}$, which leads to a contradiction. Hence, $\mu \in \mathcal{G}$, and so, $((\mathcal{G}, \mathcal{D}), \mathcal{D}) \subseteq \mathcal{G}$. Consequently, \mathcal{G} is a regular filter of \mathcal{L} . \square

Given a filter \mathcal{G} of an ADL \mathcal{L} , define $Hom_{\mathcal{L}}(\mathcal{G})$ as the set of all homomorphisms on \mathcal{G} . It is clear that $Hom_{\mathcal{L}}(\mathcal{G})$ is an ADL when endowed with the pointwise operations.

The following statement can be easily verified.

Proposition 3.11. For any $\mathcal{G} \in \mathfrak{F}(\mathcal{L})$, $\tau \in \mathcal{L}$, define the function $\phi_{\tau} : \mathcal{G} \rightarrow \mathcal{G}$ by $\phi_{\tau}(\mu) = \mu \vee \tau$ for all $\mu \in \mathcal{G}$. The following statements are valid:

- (1) ϕ_{τ} is homomorphism;
- (2) $\phi_{\tau \wedge \omega} = \phi_{\tau} \wedge \phi_{\omega}$ for $\tau, \omega \in \mathcal{L}$;
- (3) $\phi_{\tau \vee \omega} = \phi_{\tau} \vee \phi_{\omega}$ for $\tau, \omega \in \mathcal{L}$.

Definition 3.12. Let $\mathcal{G} \in \mathfrak{F}^D(\mathcal{L})$. A homomorphism $v : \mathcal{G} \rightarrow \mathcal{G}$ is referred as dense-valued if, for each $\mu \in \mathcal{G}$, $v(\mu) \in \mathcal{D}$.

from the example 3.2, for a filter \mathcal{G}_2 , define $v : \mathcal{G}_2 \rightarrow \mathcal{G}_2$ as $v(\theta) = \theta, v(\vartheta) = \vartheta, v(e) = \vartheta, v(\varphi) = \varphi, v(\rho) = \rho$. Clearly, v is dense-valued homomorphism.

Assume the collection of all $v \in Hom_{\mathcal{L}}(\mathcal{G})$ where v represents a dense-valued homomorphism, denoted as $\mathcal{D}(\mathcal{G})$. It's evident that the identity element of $Hom_{\mathcal{L}}(\mathcal{G})$ belongs to $\mathcal{D}(\mathcal{G})$. Specifically, the mapping $\mathbf{1} : \mathcal{G} \rightarrow \mathcal{G}$ defined by $\mathbf{1}(\mu) = \mu$ for all $\mu \in \mathcal{G}$, constitutes a dense-valued homomorphism. Thus, $\mathbf{1}$ belongs to $\mathcal{D}(\mathcal{G})$. Furthermore, It's easy to see that, $\mathcal{D}(\mathcal{G})$ forms a filter on $Hom_{\mathcal{L}}(\mathcal{G})$. Additionally, for every $e \in \mathcal{D}$, $\Phi_e \in \mathcal{D}(\mathcal{G})$.

Definition 3.13. Let $\mathcal{G} \in \mathfrak{F}^D(\mathcal{L})$ with $\rho : \mathcal{L} \rightarrow \text{Hom}_{\mathcal{L}}(\mathcal{G})$ is homomorphism. The dense kernel of ρ , denoted as $\text{Ker}^D(\rho)$, is defined by $\text{Ker}^D(\rho) = \{\mu \in \mathcal{L} \mid \rho(\mu) \in D(\mathcal{G})\}$. Additionally, let $\Phi_{\mathcal{G}} : \mathcal{L} \rightarrow \text{Hom}_{\mathcal{L}}(\mathcal{G})$ be a map such that $\Phi_{\mathcal{G}}(\tau) = \Phi_{\tau}$ for all $\tau \in \mathcal{L}$. It is noted that $\text{Ker}^D(\rho)$ forms a filter in \mathcal{L} .

From the example 3.2, for a filter \mathcal{G}_2 , define $\rho : \mathcal{L} \rightarrow \text{Hom}_{\mathcal{L}}(\mathcal{G}_2)$ as $\rho(i) = \phi_i$, for all $i \in \mathcal{G}_2$. Clearly, we have that $\text{Ker}^D(\rho) = \{\theta, \vartheta, \sigma, \varphi, \rho\}$

Theorem 3.14. For each $\mathcal{G} \in \mathfrak{F}^D(\mathcal{L})$, we have $(\mathcal{G}, D) = \text{Ker}^D(\Phi_{\mathcal{G}})$. So, the pair (\mathcal{G}, D) can be regarded as the dense kernel of a homomorphism.

Proof. Suppose $\tau \in \text{Ker}^D(\Phi_{\mathcal{G}})$. By definition, this means $\Phi_{\tau} \in D(\mathcal{G})$, which implies that $\mu \vee \tau = \Phi_{\tau}(\mu)$ is a dense element for all $\mu \in \mathcal{G}$. Thus, we conclude that $\tau \in (\mathcal{G}, D)$. Conversely, assume $\tau \in (\mathcal{G}, D)$. This indicates that $\mu \vee \tau \in D$ for every $\mu \in \mathcal{G}$. Therefore, Φ_{τ} maps every element of \mathcal{G} to a dense element. As a result, $\Phi_{\mathcal{G}}(\tau) = \Phi_{\tau} \in D(\mathcal{G})$. Hence, $\tau \in \text{Ker}^D(\Phi_{\mathcal{G}})$. \square

Theorem 3.15. If each member in $\mathfrak{F}^D(\mathcal{L})$ is a member of $\mathfrak{F}^R(\mathcal{L})$, any two prime D -filters are incomparable.

Proof. Suppose each member in $\mathfrak{F}^D(\mathcal{L})$ is a member of $\mathfrak{F}^R(\mathcal{L})$. If there exist $\mathcal{Q}, \mathcal{P} \in \text{Spec}_F^D(\mathcal{L})$ with $\mathcal{Q} \neq \mathcal{P}$, $\mathcal{Q} \subset \mathcal{P}$. Select an element $\eta \in \mathcal{P} \setminus \mathcal{Q}$. For any $\mu \in (\mathcal{P}, D)$, it follows that $\mu \vee \eta \in D \subseteq \mathcal{Q}$. As \mathcal{Q} is prime and $\eta \notin \mathcal{Q}$, we conclude that $\mu \in \mathcal{Q}$. Thus, $(\mathcal{P}, D) \subseteq \mathcal{Q} \subseteq \mathcal{P}$. This implies $(\mathcal{P}, D) = \mathcal{P} \cap (\mathcal{P}, D) = D$. Since every D -filter is assumed to be regular, \mathcal{P} is also regular. Therefore, $\mathcal{P} = ((\mathcal{P}, D), D) = (D, D) = \mathcal{L}$, it gives a contradiction. \square

The following result establishes a sufficient condition, expressed by using regular filters, for an ADL to be relatively complemented.

Theorem 3.16. Suppose each principal filter is a D -filter. Then every D -filter is regular if and only if \mathcal{L} is relatively complemented.

Proof. Let \mathcal{L} be an ADL where every principal filter is a D -filter, and every D -filter is a regular filter. Assume, for contradiction, that \mathcal{L} is not relatively complemented. Then there exist elements $\theta, \vartheta, \sigma \in \mathcal{L}$ such that $\vartheta < \sigma < \theta$, and σ lacks a complement within the interval $[\vartheta, \theta]$. Define the set $\mathcal{I} = \{\mu \in \mathcal{L} \mid \sigma \wedge \mu \leq \vartheta\}$. It is straightforward to verify that \mathcal{I} is an ideal in \mathcal{L} . Now, construct the ideal $\mathcal{C} = \mathcal{I} \vee (\sigma)$. Assume $\theta \in \mathcal{C}$. Then θ can be expressed as $\theta = \sigma \vee i$ for some $i \in \mathcal{I}$. Therefore, $\theta = \theta \vee \vartheta = (\sigma \vee i) \vee \vartheta = \sigma \vee (i \vee \vartheta)$, and $(i \vee \vartheta) \wedge \sigma = (i \wedge \sigma) \vee (\vartheta \wedge \sigma) = (\sigma \wedge i) \vee \vartheta = \vartheta$, since $i \in \mathcal{I}$. This implies that $i \vee \vartheta$ is a relative complement of σ in the interval $[\vartheta, \theta]$, which contradicts the assumption that σ

has no complement. Thus, $\theta \notin \mathcal{C}$, leading to $[\theta] \cap \mathcal{C} = \emptyset$. Since $[\theta]$ is a \mathcal{D} -filter, there exists a prime \mathcal{D} -filter \mathcal{Q} in \mathcal{L} such that $[\theta] \subseteq \mathcal{Q}$ and $\mathcal{Q} \cap \mathcal{C} = \emptyset$. Consequently, $\mathcal{Q} \cap \mathcal{I} = \emptyset$ and $\mathcal{Q} \cap (\sigma) = \emptyset$. Now define $\mathcal{G} = [\sigma] \vee \mathcal{Q}$. Clearly, \mathcal{G} is a \mathcal{D} -filter in \mathcal{L} . Suppose $\vartheta \in \mathcal{G}$. Then $\vartheta \in [\sigma] \vee \mathcal{Q}$, which means $\vartheta = \sigma \vee \delta$ for some $\delta \in \mathcal{Q}$. This implies $\delta \in \mathcal{I}$, contradicting the fact that $\delta \in \mathcal{Q} \cap \mathcal{I} = \emptyset$. Hence, $\vartheta \notin \mathcal{G}$, and $\mathcal{G} \cap (\vartheta) = \emptyset$. Then there exists a prime \mathcal{D} -filter \mathcal{P} such that $\mathcal{G} \subseteq \mathcal{P}$ and $(\vartheta) \cap \mathcal{P} = \emptyset$. Thus, $\mathcal{Q} \subset \mathcal{G} \subseteq \mathcal{P}$. This implies that \mathcal{Q} and \mathcal{P} are distinct prime \mathcal{D} -filters with $\mathcal{Q} \subset \mathcal{P}$. This shows that two prime \mathcal{D} -filters are comparable, which contradicts the earlier result. Therefore, \mathcal{L} must be relatively complemented. Conversely assume that \mathcal{L} is relatively complemented. Let \mathcal{G} be a \mathcal{D} -filter of \mathcal{L} . Clearly we have that $\mathcal{G} \subseteq ((\mathcal{G}, \mathcal{D}), \mathcal{D})$. Let $\mu \in ((\mathcal{G}, \mathcal{D}), \mathcal{D})$. Then $[\mu] \subseteq ((\mathcal{G}, \mathcal{D}), \mathcal{D})$ and hence $(\mathcal{G}, \mathcal{D}) = ((\mathcal{G}, \mathcal{D}), \mathcal{D}) = ([\mu], \mathcal{D})$. If $\mu \notin \mathcal{G}$ then there exists a prime \mathcal{D} -filter \mathcal{Q} such that $\mathcal{G} \subseteq \mathcal{Q}$ and $\mu \notin \mathcal{Q}$. There fore $(\mathcal{Q}, \mathcal{D}) \subseteq (\mathcal{G}, \mathcal{D})$. We prove that \mathcal{Q} is maximal. Suppose \mathcal{P} is a prime \mathcal{D} -filter such that $\mathcal{Q} \subsetneq \mathcal{P}$. Let $\theta \in \mathcal{L}$. Choose $\theta \in \mathcal{P} \setminus \mathcal{Q}$ and $\nu \in \mathcal{Q}$. Then $0 < \theta < \theta \vee \vartheta \vee \nu$. Since \mathcal{L} relatively complemented, there exists a relative complement $\psi \in [0, \theta \vee \vartheta \vee \nu]$ such that $\theta \wedge \psi = 0$ and $\theta \vee \psi = \theta \vee \vartheta \vee \nu$. Since \mathcal{Q} is a filter and $\nu \in \mathcal{Q}$, we have $\theta \vee \vartheta \vee \nu \in \mathcal{Q}$ and hence $\theta \vee \psi \in \mathcal{Q}$. Since \mathcal{Q} is prime, we get $\theta \in \mathcal{Q}$ or $\psi \in \mathcal{Q}$. Since $\theta \notin \mathcal{Q}$, we get $\psi \in \mathcal{Q}$ and hence $\psi \in \mathcal{P}$. Since $\theta, \psi \in \mathcal{P}$, we have $\theta \wedge \psi \in \mathcal{P}$ and hence $0 \in \mathcal{P}$. Therefore $\mathcal{P} = \mathcal{L}$, we get a contradiction. Thus \mathcal{Q} is maximal. Since $\mu \notin \mathcal{Q}$, we get $\mathcal{Q} \vee [\mu] = \mathcal{L}$. Therefore $(\mathcal{Q}, \mathcal{D}) \cap ([\mu], \mathcal{D}) = (\mathcal{Q} \vee [\mu], \mathcal{D}) = (\mathcal{L}, \mathcal{D}) = \mathcal{D}$. Now $(\mathcal{Q}, \mathcal{D}) = (\mathcal{Q}, \mathcal{D}) \cap (\mathcal{G}, \mathcal{D}) \subseteq (\mathcal{Q}, \mathcal{D}) \cap ([\mu], \mathcal{D}) = (\mathcal{L}, \mathcal{D}) = \mathcal{D}$, we get a contradiction. Therefore $\mu \in \mathcal{G}$ and hence $((\mathcal{G}, \mathcal{D}), \mathcal{D}) \subseteq \mathcal{G}$. Thus \mathcal{G} is a regular filter of \mathcal{L} . \square

4. π -FILTERS OF ADLS

This section explores the notion of π -filters in an ADL. It provides a characterization of these filters through regular filters and congruences. Additionally, a series of equivalent criteria are established for an ADL can be transformed into a Boolean algebra.

Definition 4.1. A filter \mathcal{G} in \mathcal{L} is called a π -filter if, for every $\mu \in \mathcal{G}$, the condition $((\mu, \mathcal{D}), \mathcal{D}) \subseteq \mathcal{G}$ holds.

From the example 3.2, clearly we have that \mathcal{G}_3 is a π -filter of an ADL \mathcal{L} .

Lemma 4.2. *In an ADL, the subsequent properties are true:*

- (1) \mathcal{D} is the smallest π -filter;
- (2) Every regular filter is a π -filter.

Proposition 4.3. *Each minimal prime \mathcal{D} -filter in \mathcal{L} is a π -filter.*

Proof. Let $\mathcal{Q} \in \text{Min}_F^{\mathcal{D}}(\mathcal{L})$, and assume $\mu \in \mathcal{Q}$. Then there exists an element $\pi \notin \mathcal{Q}$ such that $\mu \vee \pi \in \mathcal{D}$. Consider $\nu \in ((\mu, \mathcal{D}), \mathcal{D})$. By the definition of the filter, $(\mu, \mathcal{D}) \subseteq (\nu, \mathcal{D})$. As a

result, $\pi \in (\nu, \mathcal{D})$. This leads to the conclusion that $\nu \in ((\nu, \mathcal{D}), \mathcal{D}) \subseteq (\pi, \mathcal{D}) \subseteq \mathcal{Q}$ since π is not in \mathcal{Q} . Hence, we have $((\mu, \mathcal{D}), \mathcal{D}) \subseteq \mathcal{Q}$. This shows that \mathcal{Q} is a π -filter of \mathcal{L} . \square

Definition 4.4. For each $\mathcal{G} \in \mathfrak{F}(\mathcal{L})$, define the set $\mathcal{G}^\varphi = \{\mu \in \mathcal{L} \mid (\theta, \mathcal{D}) \subseteq (\mu, \mathcal{D}) \text{ for some } \theta \in \mathcal{G}\}$. This set \mathcal{G}^φ is referred to as an extension of \mathcal{G} .

This result is a straightforward consequence of the previous definition

Lemma 4.5. For any $\mathcal{G}, \mathcal{U} \in \mathfrak{F}(\mathcal{L})$, the properties listed below hold:

- (1) $\mathcal{D} \subseteq \mathcal{G}^\varphi$ and $\mathcal{D}^\varphi = \mathcal{D}$;
- (2) $\mathcal{G} \subseteq \mathcal{U}$ implies $\mathcal{G}^\varphi \subseteq \mathcal{U}^\varphi$;
- (3) $(\mathcal{G} \cap \mathcal{U})^\varphi = \mathcal{G}^\varphi \cap \mathcal{U}^\varphi$;
- (4) $(\mathcal{G}^\varphi)^\varphi = \mathcal{G}^\varphi$.

Proposition 4.6. For any $\mathcal{G} \in \mathfrak{F}(\mathcal{L})$, \mathcal{G}^φ is the smallest π -filter such that $\mathcal{G} \subseteq \mathcal{G}^\varphi$.

Proof. It is evident that $\mathcal{D} \subseteq \mathcal{G}^\varphi$. Let $\mu, \pi \in \mathcal{G}^\varphi$. Then, there exist $\theta, \vartheta \in \mathcal{G}$ such that $(\theta, \mathcal{D}) \subseteq (\mu, \mathcal{D})$ and $(\vartheta, \mathcal{D}) \subseteq (\pi, \mathcal{D})$. Therefore, $(\theta \wedge \vartheta, \mathcal{D}) = (\theta, \mathcal{D}) \cap (\vartheta, \mathcal{D}) \subseteq (\mu, \mathcal{D}) \cap (\pi, \mathcal{D}) = (\mu \wedge \pi, \mathcal{D})$, implying $\mu \wedge \pi \in \mathcal{G}^\varphi$. Next, let $\mu \in \mathcal{G}^\varphi$ and $\mu \leq \pi$. Then, for some $\theta \in \mathcal{G}$, we have $(\theta, \mathcal{D}) \subseteq (\mu, \mathcal{D}) \subseteq (\pi, \mathcal{D})$. This shows that \mathcal{G}^φ is a filter of \mathcal{L} . Furthermore, it is clear that $\mathcal{G} \subseteq \mathcal{G}^\varphi$. Now, let $\mu \in \mathcal{G}^\varphi$ and $\nu \in ((\mu, \mathcal{D}), \mathcal{D})$. Then, there exists $\theta \in \mathcal{G}$ such that $(\theta, \mathcal{D}) \subseteq (\mu, \mathcal{D}) \subseteq (\nu, \mathcal{D})$. Hence, $((\mu, \mathcal{D}), \mathcal{D}) \subseteq \mathcal{G}^\varphi$, meaning \mathcal{G}^φ is a π -filter of \mathcal{L} . Finally, let \mathcal{U} be a π -filter of \mathcal{L} such that $\mathcal{G} \subseteq \mathcal{U}$. Let $\mu \in \mathcal{G}^\varphi$. Then, there exists $\theta \in \mathcal{G} \subseteq \mathcal{U}$ such that $(\theta, \mathcal{D}) \subseteq (\mu, \mathcal{D})$. Since \mathcal{U} is a π -filter, we conclude that $\mu \in ((\mu, \mathcal{D}), \mathcal{D}) \subseteq ((\theta, \mathcal{D}), \mathcal{D}) \subseteq \mathcal{U}$. Therefore, $\mathcal{G}^\varphi \subseteq \mathcal{U}$, showing that \mathcal{G}^φ is the smallest π -filter of \mathcal{L} such that $\mathcal{G} \subseteq \mathcal{G}^\varphi$. \square

From the previous results, it follows that a filter \mathcal{G} is a π -filter if and only if $\mathcal{G} = \mathcal{G}^\varphi$, establishing that \mathcal{D} is the minimal π -filter in \mathcal{L} . Additionally, combining these observations, we conclude that the set of all π -filters of an ADL \mathcal{L} , denoted $\mathfrak{F}^\pi(\mathcal{L})$, forms a complete distributive lattice. In this lattice, the meet operation is given by $\mathcal{G} \wedge \mathcal{U} = \mathcal{G} \cap \mathcal{U}$, and the join operation is defined by $\mathcal{G} \vee \mathcal{U} = (\mathcal{G} \vee \mathcal{U})^\varphi$, where the least element is \mathcal{D} .

Theorem 4.7. For any $\mathcal{G} \in \mathfrak{F}(\mathcal{L})$ and $\mu, \pi \in \mathcal{L}$, define a binary relation $\Theta(\mathcal{G})$ on \mathcal{L} as follows:

$$(\mu, \pi) \in \Theta(\mathcal{G}) \text{ if and only if } \{\mathcal{D} \vee [\mu]\} \cap (\theta, \mathcal{D}) = \{\mathcal{D} \vee [\pi]\} \cap (\theta, \mathcal{D}),$$

for some $\theta \in \mathcal{G}$. Then $\Theta(\mathcal{G})$ is congruence on \mathcal{L} .

Proof. It is evident that $\Theta(\mathcal{G})$ defines an equivalence relation on \mathcal{L} . Let $(\mu, \pi) \in \Theta(\mathcal{G})$. Then $\{\mathcal{D} \vee [\mu]\} \cap (\theta, \mathcal{D}) = \{\mathcal{D} \vee [\pi]\} \cap (\theta, \mathcal{D})$ for some $\theta \in \mathcal{G}$. For any $\sigma \in \mathcal{L}$, we have $\{\mathcal{D} \vee [\mu \vee \sigma]\} \cap (\theta, \mathcal{D}) = \{\mathcal{D} \vee [\mu]\} \cap \{\mathcal{D} \vee [\sigma]\} \cap (\theta, \mathcal{D}) = \{\mathcal{D} \vee [\pi]\} \cap \{\mathcal{D} \vee [\sigma]\} \cap (\theta, \mathcal{D})$

$= \{\mathcal{D} \vee [\pi \vee \sigma]\} \cap (\theta, \mathcal{D})$. Therefore $(\mu \vee \sigma, \pi \vee \sigma) \in \Theta(\mathcal{G})$. Again, $\{\mathcal{D} \vee [\mu \wedge \sigma]\} \cap (\theta, \mathcal{D}) = \{\mathcal{D} \vee [\mu] \vee [\sigma]\} \cap (\theta, \mathcal{D}) = \{\{\mathcal{D} \vee [\mu]\} \cap (\theta, \mathcal{D})\} \vee \{[\sigma] \cap (\theta, \mathcal{D})\} = \{\{\mathcal{D} \vee [\pi]\} \cap (\theta, \mathcal{D})\} \vee \{[\sigma] \cap (\theta, \mathcal{D})\} = \{\mathcal{D} \vee [\pi \wedge \sigma]\} \cap (\theta, \mathcal{D})$. Hence $(\mu \wedge \sigma, \pi \wedge \sigma) \in \Theta(\mathcal{G})$. Therefore $\Theta(\mathcal{G})$ is a congruence on \mathcal{L} . \square

Lemma 4.8. *Let \mathcal{L} be an ADL. For any $\mu \in \mathcal{L}$, the following properties hold:*

- (1) $\{\mathcal{D} \vee (([\mu], \mathcal{D}), \mathcal{D})\} = ((\mu, \mathcal{D}), \mathcal{D})$;
- (2) $\{\mathcal{D} \vee [\mu]\} \cap (\mu, \mathcal{D}) = \mathcal{D}$.

Proposition 4.9. *For each $\mathcal{G} \in \mathfrak{F}(\mathcal{L})$, define the dense-kernel $\text{Ker}^{\mathcal{D}}\Theta(\mathcal{G})$ of $\Theta(\mathcal{G})$ as follows:*

$$\text{Ker}^{\mathcal{D}}\Theta(\mathcal{G}) = \{\mu \in \mathcal{L} \mid \{\mathcal{D} \vee [\mu]\} \cap (\theta, \mathcal{D}) = \mathcal{D} \text{ for some } \theta \in \mathcal{G}\}.$$

Then $\text{Ker}^{\mathcal{D}}\Theta(\mathcal{G}) \in \mathfrak{F}(\mathcal{L})$ containing \mathcal{G} .

Proof. It is evident that $\mathcal{D} \subseteq \text{Ker}^{\mathcal{D}}\Theta(\mathcal{G})$. Let $\mu, \pi \in \text{Ker}^{\mathcal{D}}\Theta(\mathcal{G})$. Then $\{\mathcal{D} \vee [\mu]\} \cap (\theta, \mathcal{D}) = \{\mathcal{D} \vee [\pi]\} \cap (\theta, \mathcal{D}) = \mathcal{D}$ for some $\theta, \vartheta \in \mathcal{G}$. Now $\{\mathcal{D} \vee [\mu \wedge \pi]\} \cap ((\theta \wedge \vartheta), \mathcal{D}) = \{\mathcal{D} \vee [\mu] \vee \mathcal{D} \vee [\pi]\} \cap (\theta, \mathcal{D}) \cap (\vartheta, \mathcal{D}) = \{(\mathcal{D} \vee [\mu]) \cap (\theta, \mathcal{D}) \cap (\vartheta, \mathcal{D})\} \vee \{(\mathcal{D} \vee [\pi]) \cap (\theta, \mathcal{D}) \cap (\vartheta, \mathcal{D})\} = \{\mathcal{D} \cap (\vartheta, \mathcal{D})\} \vee \{\mathcal{D} \cap (\theta, \mathcal{D})\} = \mathcal{D}$. Hence $\mu \wedge \pi \in \text{Ker}^{\mathcal{D}}\Theta(\mathcal{G})$. Let $\mu \in \text{Ker}^{\mathcal{D}}\Theta(\mathcal{G})$ and $\mu \leq \pi$. Then there is $\theta \in \mathcal{G}$ such that $\{\mathcal{D} \vee [\pi]\} \cap (\theta, \mathcal{D}) \subseteq \{\mathcal{D} \vee [\mu]\} \cap (\theta, \mathcal{D}) = \mathcal{D}$. Which gives $\pi \in \text{Ker}^{\mathcal{D}}\Theta(\mathcal{G})$. Hence $\text{Ker}^{\mathcal{D}}\Theta(\mathcal{G}) \in \mathfrak{F}(\mathcal{L})$. Let $\mu \in \mathcal{G}$. From the above result, we get $\mu \in \text{Ker}^{\mathcal{D}}\Theta(\mathcal{G})$. Therefore $\mathcal{G} \subseteq \text{Ker}^{\mathcal{D}}\Theta(\mathcal{G})$. \square

Theorem 4.10. *Let \mathcal{G} be a filter in an ADL \mathcal{L} . Then the following are equivalent:*

- (1) \mathcal{G} is a π -filter;
- (2) $\mathcal{G} = \text{Ker}^{\mathcal{D}}\Theta(\mathcal{G})$;
- (3) for $\mu, \pi \in \mathcal{L}$, $(\mu, \mathcal{D}) = (\pi, \mathcal{D})$ and $\mu \in \mathcal{G} \Rightarrow \pi \in \mathcal{G}$;
- (4) $\mu \in \mathcal{G} \Leftrightarrow \mu \in ((\theta, \mathcal{D}), \mathcal{D})$ for some $\theta \in \mathcal{G}$.

Proof. (1) \Rightarrow (2): Assume (1). Clearly $\mathcal{G} \subseteq \text{Ker}^{\mathcal{D}}\Theta(\mathcal{G})$. Let $\mu \in \text{Ker}^{\mathcal{D}}\Theta(\mathcal{G})$. Then $\{\mathcal{D} \vee [\mu]\} \cap (\theta, \mathcal{D}) = \mathcal{D}$ for some $\theta \in \mathcal{G}$. Since \mathcal{G} is a π -filter, $\mu \in \mathcal{D} \vee [\mu] \subseteq ((\theta, \mathcal{D}), \mathcal{D}) \subseteq \mathcal{G}$. Therefore $\text{Ker}^{\mathcal{D}}\Theta(\mathcal{G}) \subseteq \mathcal{G}$. Hence $\mathcal{G} = \text{Ker}^{\mathcal{D}}\Theta(\mathcal{G})$.

(2) \Rightarrow (3): Assume that $\mathcal{G} = \text{Ker}^{\mathcal{D}}\Theta(\mathcal{G})$. Let $\theta, \vartheta \in \mathcal{L}$ such that $(\theta, \mathcal{D}) = (\vartheta, \mathcal{D})$. Suppose $\theta \in \mathcal{G}$. Then $\{\mathcal{D} \vee [\theta]\} \cap (\nu, \mathcal{D}) = \mathcal{D}$ for some $\nu \in \mathcal{G}$. Then we get $\{\mathcal{D} \vee [\theta]\} \cap (\nu, \mathcal{D}) = \mathcal{D} \Rightarrow ((\{\mathcal{D} \vee [\theta]\}, \mathcal{D}), \mathcal{D}) \cap (\nu, \mathcal{D}) = ((\mathcal{D}, \mathcal{D}), \mathcal{D}) = \mathcal{D} \Rightarrow ((\theta, \mathcal{D}), \mathcal{D}) \cap (\nu, \mathcal{D}) = \mathcal{D} \Rightarrow \{\mathcal{D} \vee [\vartheta]\} \cap (\nu, \mathcal{D}) \subseteq ((\{\mathcal{D} \vee [\vartheta]\}, \mathcal{D}), \mathcal{D}) \cap (\nu, \mathcal{D}) = \mathcal{D} \Rightarrow \vartheta \in \text{Ker}^{\mathcal{D}}\Theta(\mathcal{G}) = \mathcal{G}$.

(3) \Rightarrow (4): Assume (3). Let $\mu \in \mathcal{G}$. Then clearly $\mu \in ((\mu, \mathcal{D}), \mathcal{D})$. Again, let $\mu \in ((\theta, \mathcal{D}), \mathcal{D})$ for some $\theta \in \mathcal{G}$. Hence $((\mu, \mathcal{D}), \mathcal{D}) \subseteq ((\theta, \mathcal{D}), \mathcal{D})$, which yields $((\mu, \mathcal{D}), \mathcal{D}) = ((\mu, \mathcal{D}), \mathcal{D}) \cap ((\theta, \mathcal{D}), \mathcal{D}) = (((\mu \vee \theta), \mathcal{D}), \mathcal{D})$. Thus $(\mu, \mathcal{D}) = ((\mu \vee \theta), \mathcal{D})$ and $\mu \vee \theta \in \mathcal{G}$. By (3), we have $\mu \in \mathcal{G}$.

(4) \Rightarrow (1): Assume (4). Let $\mu \in \mathcal{G}$. Hence $\mu \in ((\theta, \mathcal{D}), \mathcal{D})$ for some $\theta \in \mathcal{G}$. Let $\nu \in ((\mu, \mathcal{D}), \mathcal{D})$. Then for this $\theta \in \mathcal{G}$, we get that $\nu \in ((\mu, \mathcal{D}), \mathcal{D}) \subseteq ((\theta, \mathcal{D}), \mathcal{D})$. Hence by (4), we have $\nu \in \mathcal{G}$. Therefore $((\mu, \mathcal{D}), \mathcal{D}) \subseteq \mathcal{G}$. Thus F is a π -filter of \mathcal{L} . \square

It is a well known fact that an ADL is a Boolean algebra if and only if it has a unique dense element. Hence the following result is a direct consequence.

Theorem 4.11. *The following assertions are equivalent in an ADL \mathcal{L} .*

- (1) \mathcal{L} is a Boolean algebra;
- (2) every filter is a \mathcal{D} -filter;
- (3) every filter is a π -filter;
- (4) every prime filter is a π -filter.

It has been observed that every minimal prime \mathcal{D} -filter is also a prime π -filter. However, the reverse is not necessarily true. Nevertheless, a condition is provided that is sufficient for a prime π -filter to become a minimal prime \mathcal{D} -filter. let's denote the set of all prime π -filters of \mathcal{L} as $Spec_{\mathcal{G}}^{\pi}(\mathcal{L})$.

Proposition 4.12. *If every principal filter of the form (μ, \mathcal{D}) for $\mu \in \mathcal{L}$ is a principal filter, then every prime π -filter is a minimal prime \mathcal{D} -filter.*

Proof. Let $\mathcal{Q} \in Spec^{\pi} F(\mathcal{L})$ and $\mu \in \mathcal{Q}$. Then $(\mu, \mathcal{D}) = [\pi]$ for some $\pi \in \mathcal{L}$. Therefore $\mu \vee \pi \in \mathcal{D}$. Now $((\mu \wedge \pi), \mathcal{D}) = (\mu, \mathcal{D}) \cap (\pi, \mathcal{D}) = (\mu, \mathcal{D}) \cap ((\mu, \mathcal{D}), \mathcal{D}) = \mathcal{D}$. Hence $\mu \wedge \pi \notin \mathcal{Q}$, which implies that $\pi \notin \mathcal{Q}$. Therefore \mathcal{Q} is a minimal prime \mathcal{D} -filter. \square

Theorem 4.13. *In an ADL, the following are equivalent:*

- (1) any π -filter is a principal filter;
- (2) any (μ, \mathcal{D}) is a principal filter and every minimal prime \mathcal{D} -filter is non-condensed;
- (3) any prime π -filter is a principal filter.

Proof. (1) \Rightarrow (2): Assume each (μ, \mathcal{D}) is a π -filter. To prove that every minimal prime \mathcal{D} -filter is non-condensed, consider a minimal prime \mathcal{D} -filter \mathcal{Q} . From Proposition 4.3, we know that \mathcal{Q} is a π -filter, which implies that $\mathcal{Q} = [\theta]$ for some $\theta \in \mathcal{L}$. Suppose, for the sake of contradiction, that $(\mathcal{Q}, \mathcal{D}) = \mathcal{D}$. In this case, we would have $(\theta, \mathcal{D}) = \mathcal{D}$, which implies $\mathcal{L} = ((\theta, \mathcal{D}), \mathcal{D}) \subseteq \mathcal{Q}$, leading to a contradiction. Thus, $(\mathcal{Q}, \mathcal{D}) \neq \mathcal{D}$.

(2) \Rightarrow (3): Assume condition (2) holds. Let \mathcal{Q} be a prime π -filter of \mathcal{L} . Since every (μ, \mathcal{D}) is a principal filter, by the previous result, we deduce that \mathcal{Q} is a minimal prime \mathcal{D} -filter and that $(\mathcal{Q}, \mathcal{D}) \neq \mathcal{D}$. Therefore, there exists an element $\mu \neq \mathcal{D}$ such that $\mu \in (\mathcal{Q}, \mathcal{D})$. This leads to the conclusion that $\mathcal{Q} \subseteq ((\mathcal{Q}, \mathcal{D}), \mathcal{D}) \subseteq (\mu, \mathcal{D})$. On the other hand, let $\nu \in (\mu, \mathcal{D})$. Then

$\nu \vee \mu \in \mathcal{D} \subseteq \mathcal{Q}$. Since \mathcal{Q} is prime and $\mu \notin (\mu, \mathcal{D}) = \mathcal{Q}$, it follows that $\nu \in \mathcal{Q}$. Therefore, $\mathcal{Q} = (\mu, \mathcal{D})$, which shows that, under condition (2), $\mathcal{Q} = (\mu, \mathcal{D})$ is indeed a principal filter.

(3) \Rightarrow (1): Suppose every prime π -filter in \mathcal{L} is principal. Consider a π -filter \mathcal{G} in \mathcal{L} , and assume that \mathcal{G} is not principal.

$$\mathfrak{G} = \{\mathcal{U} \mid \mathcal{U} \text{ is a } \pi\text{-filter which is not a principal filter}\}.$$

Note that $\mathcal{G} \in \mathfrak{G}$, and consequently, there exists an index $i \in \Delta$ such that $\theta \in \mathcal{U}_i$. This implies that $[\theta] \subseteq \mathcal{U}_i$ for some $i \in \Delta$. Since \mathcal{U}_i is a filter, we also know that $\mathcal{U}_i \subseteq \bigcup_{i \in \Delta} \mathcal{U}_i = [\theta]$, so we must have $\mathcal{U}_i = [\theta]$ for some $i \in \Delta$. This leads to a contradiction, since \mathcal{U}_i cannot equal $[\theta]$ by assumption. Now, $\bigcup_{i \in \Delta} \mathcal{U}_i$ serves as an upper bound for the set $\{\mathcal{U}_i\}_{i \in \Delta}$ within \mathfrak{G} . By Zorn's Lemma, there exists a maximal filter \mathcal{N} in \mathfrak{G} containing \mathcal{G} . Next, let $\mu \notin \mathcal{N}$ and $\pi \notin \mathcal{N}$. Since \mathcal{N} is a filter, we have $\mathcal{N} \subseteq \{\mathcal{N} \vee [\mu]\}^\varphi$ and $\mathcal{N} \subseteq \{\mathcal{N} \vee [\pi]\}^\varphi$. This implies that $\{\mathcal{N} \vee [\mu]\}^\varphi = [\vartheta]$ and $\{\mathcal{N} \vee [\pi]\}^\varphi = [\sigma]$ for some $\vartheta, \sigma \in \mathcal{L}$. Therefore, we can conclude that $\{\mathcal{N} \vee [\mu \vee \pi]\}^\varphi = \{\mathcal{N} \vee [\mu]\}^\varphi \cap \{\mathcal{N} \vee [\pi]\}^\varphi = [\vartheta] \cap [\sigma] = [\vartheta \vee \sigma]$. If $\mu \vee \pi \in \mathcal{N}$, then $\mathcal{N} = \mathcal{N}^\varphi = [\vartheta \vee \sigma]$, which contradicts the assumption in condition (3). Therefore, it follows that \mathcal{G} must be a principal filter. \square

5. THE SPACE OF PRIME π -FILTERS

This section explores the topological properties of the set of all prime π -filters within an ADL. It provides several equivalent conditions under which the prime π -filter space of an ADL becomes a Hausdorff space.

Theorem 5.1. *Given an ideal \mathcal{I} , let \mathcal{G} be a π -filter of \mathcal{L} with $\mathcal{G} \cap \mathcal{I} = \emptyset$. Then there is $\mathcal{Q} \in \text{Spec}_F^\pi(\mathcal{L})$ such that $\mathcal{G} \subseteq \mathcal{Q}$ and $\mathcal{Q} \cap \mathcal{I} = \emptyset$.*

Proof. Consider

$$\mathfrak{G} = \{\mathcal{U} \mid \mathcal{U} \text{ is a } \pi\text{-filter, } \mathcal{G} \subseteq \mathcal{U} \text{ and } \mathcal{U} \cap \mathcal{I} = \emptyset\}.$$

It is clear that $\mathcal{G} \in \mathfrak{G}$ and \mathfrak{G} satisfies the hypothesis of Zorn's Lemma. Hence choose a maximal element \mathcal{N} in \mathfrak{G} . Let $\mu, \pi \in \mathcal{L}$ be such that $\mu \notin \mathcal{N}$ and $\pi \notin \mathcal{N}$. Then $\mathcal{N} \subset \mathcal{N} \vee [\mu] \subseteq \{\mathcal{N} \vee [\mu]\}^\varphi$ and $\mathcal{N} \subset \mathcal{N} \vee [\pi] \subseteq \{\mathcal{N} \vee [\pi]\}^\varphi$. As \mathcal{N} is maximal, $\{\mathcal{N} \vee [\mu]\}^\varphi \cap \mathcal{I} \neq \emptyset$ and $\{\mathcal{N} \vee [\pi]\}^\varphi \cap \mathcal{I} \neq \emptyset$. Choose $\theta \in \{\mathcal{N} \vee [\mu]\}^\varphi \cap \mathcal{I}$ and $\vartheta \in \{\mathcal{N} \vee [\pi]\}^\varphi \cap \mathcal{I}$. Therefore $\theta \vee \vartheta \in \mathcal{I}$ and $\theta \vee \vartheta \in \{\mathcal{N} \vee [\mu]\}^\varphi \cap \{\mathcal{N} \vee [\pi]\}^\varphi = \{(\mathcal{N} \vee [\mu]) \cap (\mathcal{N} \vee [\pi])\}^\varphi = \{\mathcal{N} \vee [\mu \vee \pi]\}^\varphi$. If $\mu \vee \pi \in \mathcal{N}$. Then $\theta \vee \vartheta \in \mathcal{N}^\varphi = \mathcal{N}$. Hence $\theta \vee \vartheta \in \mathcal{N} \cap \mathcal{I}$, which is a contradiction. Thus $\mathcal{N} \in \text{Spec}_F^\pi(\mathcal{L})$. \square

Corollary 5.2. *Let \mathcal{G} be a π -filter of \mathcal{L} and $\mu \notin \mathcal{G}$. Then there is $\mathcal{Q} \in \text{Spec}_F^\pi(\mathcal{L})$ such that $\mu \notin \mathcal{Q}$ and $\mathcal{G} \subseteq \mathcal{Q}$.*

Corollary 5.3. *For any π -filter \mathcal{G} of \mathcal{L} , we obtain*

$$\mathcal{G} = \bigcap \{\mathcal{Q} \mid \mathcal{Q} \in \text{Spec}_F^\pi(\mathcal{L}), \mathcal{G} \subseteq \mathcal{Q}\}.$$

Corollary 5.4. \mathcal{D} is equal to the intersection of all members of $\text{Spec}_F^\pi(\mathcal{L})$.

For every $\mathcal{S} \subseteq \mathcal{L}$, $\mathcal{J}'(\mathcal{S}) = \{\mathcal{Q} \in \text{Spec}_F^\pi(\mathcal{L}) \mid \mathcal{S} \not\subseteq \mathcal{Q}\}$. In specific for $\mu \in \mathcal{L}$, $\mathcal{J}'(\mu) = \mathcal{J}'(\mu)$.

Lemma 5.5. *Every $\mu, \pi \in \mathcal{L}$ gives us*

- (1) $\bigcup_{\mu \in \mathcal{L}} \mathcal{J}'(\mu) = \text{Spec}_F^\pi(\mathcal{L})$;
- (2) $\mathcal{J}'(\mu) \cap \mathcal{J}'(\pi) = \mathcal{J}'(\mu \vee \pi)$;
- (3) $\mathcal{J}'(\mu) \cup \mathcal{J}'(\pi) = \mathcal{J}'(\mu \wedge \pi)$;
- (4) $\mathcal{J}'(\mu) = \emptyset$ if and only if $\mu \in \mathcal{D}$;
- (5) $\mathcal{J}'(0) = \text{Spec}_F^\pi(\mathcal{L})$.

It is simple to see from the above lemma that a topology on $\text{Spec}_F^\pi(\mathcal{L})$ has as its basis $\{\mathcal{J}'(\mu) \mid \mu \in \mathcal{L}\}$.

Theorem 5.6. *The set of all compact open sets of $\text{Spec}_F^\pi(\mathcal{L})$ is the base $\{\mathcal{J}'(\mu) \mid \mu \in \mathcal{L}\}$.*

Proof. Let $\mu \in \mathcal{L}$. Let $\mathcal{S} \subseteq \mathcal{L}$ with $\mathcal{J}'(\mu) \subseteq \bigcup_{\pi \in \mathcal{S}} \mathcal{J}'(\pi)$ and $\mathcal{G} = [\mathcal{S}]$. If $\mu \notin \mathcal{G}^\varphi$. By Corollary 4.2, there is $\mathcal{Q} \in \text{Spec}_F^\pi(\mathcal{L})$ such that $\mathcal{G}^\varphi \subseteq \mathcal{Q}$ and $\mu \notin \mathcal{Q}$. Hence $\mathcal{Q} \in \mathcal{J}'(\mu) \subseteq \bigcup_{\pi \in \mathcal{S}} \mathcal{J}'(\pi)$. Therefore $\pi \notin \mathcal{Q}$ for some $\pi \in \mathcal{S}$, which gives a contradiction. Therefore $\mu \in \mathcal{G}^\varphi$. Then there is $\theta \in \mathcal{G}$ such that $\mu \in ((\theta, \mathcal{D}), \mathcal{D})$. AS $\mathcal{G} = [\mathcal{S}]$, there are $\theta_1, \theta_2, \dots, \theta_n \in \mathcal{S}$ such that $\theta = \theta_1 \wedge \theta_2 \wedge \dots \wedge \theta_n$. Hence $\mu \in ((\theta, \mathcal{D}), \mathcal{D}) = ((\theta_1 \wedge \theta_2 \wedge \dots \wedge \theta_n, \mathcal{D}), \mathcal{D})$. It is noted that $\mathcal{J}'(\mu) \subseteq \bigcup_{i=1}^n \mathcal{J}'(\theta_i)$. Thus $\mathcal{J}'(\mu)$ is compact in $\text{Spec}_F^\pi(\mathcal{L})$. It suffices to show that every compact open subset of $\text{Spec}_F^\pi(\mathcal{L})$ can be expressed as $\mathcal{J}'(\mu)$ for some $\mu \in \mathcal{L}$. Let \mathcal{B} be a compact open subset of $\text{Spec}_F^\pi(\mathcal{L})$. Since \mathcal{B} is open, so that $\mathcal{B} = \bigcup_{\theta \in \mathcal{S}} \mathcal{J}'(\theta)$ for some $\mathcal{S} \subseteq \mathcal{L}$. Since \mathcal{B} is compact, there are $\theta_1, \theta_2, \dots, \theta_n \in \mathcal{S}$ such that $\mathcal{B} = \bigcup_{i=1}^n \mathcal{J}'(\theta_i) = \mathcal{J}'(\bigwedge_{i=1}^n \theta_i)$. Hence $\mathcal{B} = \mathcal{J}'(\mu)$ for some $\mu \in \mathcal{L}$. \square

A maximal π -filter is a filter that is maximal within the collection of proper π -filters in an ADL. Since the set of all π -filters forms a distributive lattice, it follows that every maximal π -filter is necessarily a prime π -filter. The following derivation outlines a set of equivalent conditions under which every prime π -filter becomes a minimal prime \mathcal{D} -filter.

Theorem 5.7. *In an ADL, the following subsequent statements are equivalent:*

- (1) *each member of $\text{Spec}_F^\pi(\mathcal{L})$ is a member of $\text{Min}_F^\mathcal{D}(\mathcal{L})$;*
- (2) *$\text{Spec}_F^\pi(\mathcal{L})$ is a T_1 -space;*

- (3) each member of $Spec_F^\pi(\mathcal{L})$ is maximal;
- (4) each member of $Spec_F^\pi(\mathcal{L})$ is minimal;
- (5) for each $\mu \in \mathcal{L}$, $(\mu, \mathcal{D}) \underline{\vee} ((\mu, \mathcal{D}), \mathcal{D}) = \mathcal{L}$;
- (6) $Spec_F^\pi(\mathcal{L})$ is a Hausdorff space;
- (7) for any $\mu, \pi \in \mathcal{L}$, there exists $\psi \in \mathcal{L}$ such that $\mu \vee \psi \in \mathcal{D}$ and

$$\mathcal{J}'(\pi) \cap \{Spec_F^\pi(\mathcal{L}) - \mathcal{J}'(\mu)\} = \mathcal{J}'(\pi \vee \psi).$$

Proof. (1) \Rightarrow (2): Assume (1). Let $\mathcal{Q}, \mathcal{P} \in Spec_F^\pi(\mathcal{L})$ with $\mathcal{Q} \neq \mathcal{P}$. As \mathcal{Q} and \mathcal{P} are minimal, we have $\mathcal{Q} \not\subseteq \mathcal{P}$ and $\mathcal{P} \not\subseteq \mathcal{Q}$. Select $\mu \in \mathcal{Q} \setminus \mathcal{P}$ and $\pi \in \mathcal{P} \setminus \mathcal{Q}$. As a result, \mathcal{P} lies in the open set $\mathcal{J}'(\mu) \setminus \mathcal{J}'(\pi)$, and \mathcal{Q} lies in the open set $\mathcal{J}'(\pi) \setminus \mathcal{J}'(\mu)$. This shows that $Spec_F^\pi(\mathcal{L})$ satisfies the conditions of a T_1 -space.

(2) \Rightarrow (3): Assume (2). Let $\mathcal{Q} \in Spec_F^\pi(\mathcal{L})$. Suppose \mathcal{P} is a maximal π -filter of \mathcal{L} such that $\mathcal{Q} \subset \mathcal{P}$. Since $Spec_F^\pi(\mathcal{L})$ is a T_1 -space, there exist two basic open sets $\mathcal{J}'(\mu)$ and $\mathcal{J}'(\pi)$ such that $\mathcal{P} \in \mathcal{J}'(\mu) \setminus \mathcal{J}'(\pi)$ and $\mathcal{Q} \in \mathcal{J}'(\pi) \setminus \mathcal{J}'(\mu)$. Since $\mu \in \mathcal{Q} \subset \mathcal{P}$, it follows that $\mathcal{P} \notin \mathcal{J}'(\mu)$, leading to a contradiction. Therefore, \mathcal{Q} must be a maximal π -filter.

(3) \Rightarrow (4): It is straightforward.

(4) \Rightarrow (5): Assume (4). Then every prime π -filter is also a minimal prime \mathcal{D} -filter. Consider the case where $(\mu, \mathcal{D}) \sqcup ((\mu, \mathcal{D}), \mathcal{D}) \neq \mathcal{L}$ for some $\mu \in \mathcal{L}$. In this scenario, there exists a prime π -filter \mathcal{Q} such that $((\mu, \mathcal{D}), \mathcal{D}) \sqcup ((\mu, \mathcal{D}), \mathcal{D}) \subseteq \mathcal{Q}$. This implies $\mu \in ((\mu, \mathcal{D}), \mathcal{D}) \subseteq \mathcal{Q}$. Since \mathcal{Q} is a minimal prime \mathcal{D} -filter and $((\mu, \mathcal{D}), \mathcal{D}) \subseteq \mathcal{Q}$, we obtain a contradiction, as $\mu \notin \mathcal{Q}$. Therefore, we must have $(\mu, \mathcal{D}) \sqcup ((\mu, \mathcal{D}), \mathcal{D}) = \mathcal{L}$.

(5) \Rightarrow (6): Assume (5). Let $\mathcal{Q}, \mathcal{P} \in Spec_F^\pi(\mathcal{L})$ with $\mathcal{Q} \neq \mathcal{P}$. Let $\mu \in \mathcal{Q}$ be such that $\mu \notin \mathcal{P}$. According to the assumption, we have $((\mu, \mathcal{D}), \mathcal{D}) \sqcup ((\mu, \mathcal{D}), \mathcal{D}) = \mathcal{L}$. Consequently, $0 \in (\mu, \mathcal{D}) \sqcup ((\mu, \mathcal{D}), \mathcal{D}) = \{(\mu, \mathcal{D}) \vee ((\mu, \mathcal{D}), \mathcal{D})\}^\varphi$. Thus, there exists some $\theta \in ((\mu, \mathcal{D}) \vee ((\mu, \mathcal{D}), \mathcal{D}))$ such that $(\theta)^\circ \subseteq (0, \mathcal{D}) = \mathcal{D}$. Now, $\theta = \tau \wedge \omega$ for some $\tau \in (\mu, \mathcal{D})$ and $\omega \in ((\mu, \mathcal{D}), \mathcal{D})$, which implies $\tau \vee \mu \in \mathcal{D}$. Suppose $\tau \in \mathcal{Q}$. Since \mathcal{Q} is a π -filter, we get $((\tau, \mathcal{D}), \mathcal{D}) \subseteq \mathcal{Q}$. Then, $(\tau, \mathcal{D}) \cap (\omega, \mathcal{D}) = ((\tau \wedge \omega), \mathcal{D}) = (\theta, \mathcal{D}) = \mathcal{D}$, which means $(\omega, \mathcal{D}) \subseteq ((\tau, \mathcal{D}), \mathcal{D}) \subseteq \mathcal{Q}$. Since $\omega \in ((\mu, \mathcal{D}), \mathcal{D})$, we have $((\mu, \mathcal{D}), \mathcal{D}) \subseteq (\omega, \mathcal{D}) \subseteq \mathcal{Q}$, and since $\mu \in \mathcal{Q}$, it follows that $\mathcal{L} = (\mu, \mathcal{D}) \sqcup ((\mu, \mathcal{D}), \mathcal{D}) \subseteq \mathcal{Q}$, which is a contradiction. Therefore, $\tau \notin \mathcal{Q}$. Hence, $\mathcal{Q} \in \mathcal{J}'(\tau)$. Similarly, $\mathcal{P} \in \mathcal{J}'(\mu)$. Since $\mu \vee \tau \in \mathcal{D}$, we have $\mathcal{J}'(\mu) \cap \mathcal{J}'(\tau) = \mathcal{J}'(\mu \vee \tau) = \emptyset$. Therefore, $Spec_F^\pi(\mathcal{L})$ is Hausdorff.

(6) \Rightarrow (7): Assume (6). Then, for each $\theta \in \mathcal{L}$, $\mathcal{J}'(\theta)$ is a compact subset of $Spec_F^\pi(\mathcal{L})$. Consequently, $\mathcal{J}'(\theta)$ is a clopen set in $Spec_F^\pi(\mathcal{L})$. Now, let $\mu, \pi \in \mathcal{L}$ be distinct elements. The intersection $\mathcal{J}'(\pi) \cap (Spec_F^\pi(\mathcal{L}) \setminus \mathcal{J}'(\mu))$ is a compact subset of the compact space $\mathcal{J}'(\pi)$. Since $\mathcal{J}'(\pi)$ is open in $Spec_F^\pi(\mathcal{L})$, this intersection is a compact open subset of $Spec_F^\pi(\mathcal{L})$. By Theorem 5.6, there exists an element $\psi \in \mathcal{L}$ such that $\mathcal{J}'(\psi) = \mathcal{J}'(\pi) \cap (Spec_F^\pi(\mathcal{L}) \setminus \mathcal{J}'(\mu))$. This implies that $\mathcal{J}'(\pi) \cap (Spec_F^\pi(\mathcal{L}) \setminus \mathcal{J}'(\mu)) = \mathcal{J}'(\pi) \cap \mathcal{J}'(\psi) = \mathcal{J}'(\pi \vee \psi)$. Furthermore, we

have $\mathcal{J}'(\mu \vee \psi) = \mathcal{J}'(\mu) \cap \mathcal{J}'(\psi) = \emptyset$, which implies that $\mu \vee \psi \in \mathcal{D}$.

(7) \Rightarrow (1): For each $\mathcal{Q} \in \text{Spec}_F^\pi(\mathcal{L})$, choose $\mu, \pi \in \mathcal{L}$ such that $\mu \in \mathcal{Q}$ and $\pi \notin \mathcal{Q}$. Then by the condition (7), there is $\psi \in \mathcal{L}$ such that $\mu \vee \psi \in \mathcal{D}$ and

$$\mathcal{J}'(\pi) \cap \{\text{Spec}_F^\pi(\mathcal{L}) \setminus \mathcal{J}'(\mu)\} = \mathcal{J}'(\pi \vee \psi).$$

It follows that $\mathcal{Q} \in \mathcal{J}'(\pi) \cap (\text{Spec}_F^\pi(\mathcal{L}) \setminus \mathcal{J}'(\mu)) = \mathcal{J}'(\pi \vee \psi)$. If $\psi \in \mathcal{Q}$, then $\pi \vee \psi \in \mathcal{Q}$, which contradicts the assumption that $\mathcal{Q} \in \mathcal{J}'(\pi \vee \psi)$. Therefore, $\psi \notin \mathcal{Q}$. Thus, for every $\mu \in \mathcal{Q}$, there exists a $\psi \notin \mathcal{Q}$ such that $\mu \vee \psi \in \mathcal{D}$. This implies that \mathcal{Q} is a minimal prime \mathcal{D} -filter of \mathcal{L} . \square

6. CONCLUSIONS

This study established conditions for converting \mathcal{D} -filters into regular filters and identified a homomorphism with a dense kernel as a regular filter. A necessary condition for ADLs to become relatively complemented was derived, along with equivalent conditions for ADLs to behave as Boolean algebras. Additionally, a topological investigation of prime π -filters provided. Future work may explore the extension of \mathcal{D} -filters to fuzzy \mathcal{D} -filters in an ADL, investigating their algebraic and topological properties.

7. ACKNOWLEDGMENTS

The authors sincerely appreciate the reviewers' helpful comments and suggestions, which have strengthened the paper

REFERENCES

- [1] G. Birkhoff, *Lattice Theory*, American Mathematical Soc., USA, 1967.
- [2] G. Grätzer, *General Lattice Theory*, Academic Press, New York, 1978.
- [3] N. Rafi, P. Vijaya Saradhi and M. Balaiah, *The space of minimal prime D -filters of almost distributive lattices*, *Discussiones Mathematicae - General Algebra and Applications*, **44** (2024) 343-368.
- [4] N. Rafi, P. Vijaya Saradhi and M. Balaiah, *w-filters of almost distributive lattices*, *J. Algebr. Syst.*, **13** No. 2 (2025) 37-52.
- [5] G. C. Rao, *Almost Distributive Lattices*, Doctoral Thesis, Andhra University, Visakhapatnam, 1980.
- [6] G. C. Rao and S. R. Kumar, *Minimal prime ideals in an ADL*, *Int. J. Contemp. Sciences*, **4** No. 10 (2009) 475-484.
- [7] M. S. Rao and A. P. Kumar, *Regular filters of distributive lattices*, *J. Algebr. Syst.*, **12** No. 2 (2025) 283-299.
- [8] U. M. Swamy and G. C. Rao, *Almost distributive lattices*, *Jour. Aust. Math. Soc. Series A*, **31** (1981) 77-91.

Rafi Noorbasha

Department of Mathematics,
Bapatla Engineering College,
Bapatla, Andhra Pradesh,
India-522 102.

rafimaths@gmail.com

Mukkamala Sambasiva Rao

Department of Mathematics,
MVGR College of Engineering,
Vizianagaram, India-535 005.

mssraomaths35@rediffmail.com