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ABSTRACT. The concepts have been presented in Almost Distributive Lattices (ADLs),
namely, regular filters and n-filters. A set of conditions has been identified that are equiva-
lent to becoming an D-filter into a regular filter. Moreover, it has been shown that for any
D-filter, there is a homomorphism with a dense kernel, which is itself a regular filter. The
characterization of w-filters in relation to congruences and regular filters has been established.
Additionally, equivalent conditions have been derived to show that the space containing all

prime filters forms a Hausdorff space.

1. INTRODUCTION

An Almost Distributive Lattice (ADL) was originated by Swamy and Rao in [E], as a
common abstraction of many existing ring theoretic generalizations of a Boolean algebra on

one hand and the class of distributive lattices on the other. In that paper, the concept of an
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ideal in an ADL was introduced analogous to that in a distributive lattice and it was observed
that the set PZ(L) of principal ideals of an ADL, forms a distributive lattice. This enables
us to extend many existing concepts from the class of distributive lattices to the class of
ADLs. Furthermore, “w—filters” are introduced in ADLs and [4] investigates their properties.
In [3], the concept of D—filters is introduced in an ADL and its properties are discussed.
In [[7], the concept of regular filters is introduced by M.S. Rao in distributive lattices, and
studied their properties. The aim of this work is to investigate the characteristics of D-filters
and dense elements within ADLs. The study establishes an equivalent set of conditions that
determine if a D-filter may be converted into a regular filter. For a D-filter of an ADL, it is
demonstrate that there is a homomorphism whose dense kernel is a regular filter. Moreover,
the study derives a necessary condition, stated in terms of regular filters, for every ADL to
become relatively complemented. Additionally, give equivalent conditions that allow an ADL
to become a Boolean algebra. This provides clarity on the algebraic qualities of ADLs and
the conditions in which they show properties of Boolean algebras. Additionally, topological

studies are done on a few characteristics of the space containing all prime 7w-filters of ADLs.

2. PRELIMINARIES

The definitions and significant results from [b, 8] are gathered and given in this part; these

will be needed during the entire document.

Definition 2.1. [8] An algebraic structure (£, V,A,0) of type (2,2,0) is an ADL with zero if
it satisfies the conditions given below:
(1) (OVI)ANo=(0ANo)V (IAo);

0ANO =0, for any 6,¢,0 € L.

To define a partial order < on L, consider the condition 8 = 6 A ¥ or equivalently 6 V¢ = ¢
for every 6,9 € L. This condition ensures that 6 < ¥, establishing < as a partial order on L.
When m € £ is maximal with respect to this partial order, it is referred to as maximal. The
collection of all such maximal elements in £ is indicated by Max.elts-

An ADL L exhibits many properties of a distributive lattice [, 2], with the exception of
commutativity of V and A and lack of right distributivity of V over A, as highlighted in Swamy’s
work[g]. If either of these properties held, £ would be classified as a distributive lattice. We
define a non-void subset Z of £ as an ideal(a filter) if it satisfies that for any elements 0,9 € Z
and p € L, the subset Z must include § A pand O V¢ ( pV 6 and 0 A 9). A maximal ideal
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(filter) contains every proper ideal (filter) of £. The smallest ideal containing a subset S of £
is defined as (S] := {(Vi=,0;) Ap | 0; € S, € L,n € N}. A principal ideal generated by an
element 0 is denoted as (6]. Similarly, for each subset S of £, the smallest filter containing S
is defined as [S) = {pV (A/_10i) | 0 € S, € L,n € N}. A principal filter generated by an
element 6 is denoted as [f). It is established that (8] vV (9] = (8 VvV 9] and (8] N (J] = (0 A 9]
for any 6,9 € L. Represented all principal ideals of £ by the set (PZ(L),V,N), this brings
out a sublattice of the distributive lattice (Z(L£),V,N) of all ideals of £. Furthermore, the set
(§(L),V,N) of all filters of £ forms a bounded distributive lattice. In an ADL [6], a prime
ideal Q of L exists if and only if £\ Q is a prime filter of L.

Theorem 2.2. 8] Suppose G is a filter and T is an ideal in L, with the condition that GNZI = ().
Then, there is a prime filter Q in L such that G C Q and QNT = (.

An ADL L is called relatively complemented [5] if, for any elements p, m € £ where p <,
the interval [u, ] forms a complemented distributive lattice. For any non-empty subset S of
an Almost distributive lattice (ADL) £, the set S* ={pu € L] Ap =0 for all § € S} forms
an ideal of £. Specifically, for any 6 € L, it holds that {6}* = (6)*, where () = (0]. The
set (0)* ={pu € L | pN6b =0} is referred to as the annihilator of §. An element e € L is
called dense if (e)* = {0}. The collection of all dense elements in £ is denoted by D. If D is
non-empty, it forms a filter in L.

For any 0 € £, both (6, D) and ({0}, D) are well-defined, with ()* forming the basis for these
definitions. According to [B], a filter G of L is called a D-filter if D C G. The smallest D-filter
in £ is precisely D. For any subset S C L, the set (S,D) ={pu€ L]0V pueDforall S}
can be defined. It is observed that (£,D) = D and (D, D) = L. Furthermore, for every subset
S of L, the inclusion D C (S,D) holds. For each 6 € L, the set ({6}, D) is denoted as (6, D).
In particular, if m € £ is a maximal element, then (m,D) = L. Importantly, for any subset S
of L, (§,D) forms a D-filter.

Lemma 2.3. [B| For all subsets S and T of L, we have:
(1) S C T implies (T,D) C (S,D);
(2) SC((S,D),D);
3) (((5,D),D),D) = (5, D);
4) (§,D)=L<=SCD.

Proposition 2.4. [3| For all filters G,U,V of L, we have
(1) (G, P)n((9,D),D) = D;
(2) GNU C D implies G C (U, D);
(3) ((GVvU),D)=(G,D)NU,D);
(4) (((gnU),D),D) = ((¢,D),D)N (U, D), D).
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It is evident that ([x), D) = (i, D). Then obviously (0,D) = D.

Corollary 2.5. [3] For 0,9,0 € L, we have
(1) 6 <9 implies (0,D) C (9,D);
(2) (B A9),D) = (0,D)N (9, D);
(3) (0 V9), D), D) = ((6,D), D) 1 (9, D), D);
(4) (8,D) = L if and only if 6 is dense.

Suppose G is a D-filter and p ¢ G. Then, there is a prime D-filter Q such that G C Q and
u ¢ Q. A prime D-filter Q in L is said to be minimal if no prime D-filter P exists with P C Q.

Theorem 2.6. [3] In ADL L, a prime D-filter Q is minimal if, for every p € Q, there exists
some ¢ Q with pV e D.

Throughout this article, £ denotes an ADL with maximal elements unless otherwise men-

tioned.

3. REGULAR FILTERS OF ADLS

This section introduces the notion of regular filters in ADL. It then examines certain
properties of D-filters. A set of equivalent conditions is established to determine when a D-
filter of an ADL becomes as a regular filter. The collection of all D-filters, prime D-filters and
set of all minimal prime D-filters of an ADL £ is denoted by §P (L), SpecR(L) and MinP (L)

respectively.
Definition 3.1. A filter G of an ADL L is called regular if G = ((G, D), D).

Example 3.2. Let £ ={0,0,9,0,¢,p,p} and define V, A on L as follows:

ANOlO|D|olelpl]p VIi0|O|Yd|ole|lp]|p
0/0]0]0]0|0O]0O]O 0l0|0(F|a|le|le|p
0108 |V|olele]|p 0100|600 0]0]|806
V0|0 |d|olele]|p d9 |9 || I |||
c|0|o|o|o|0|o|o clo|0]|F|a|le|lp]|p
el0lele|lO|le|lele elel@|V]|p|le|lp]|p
el0lplplolelp|y ple|0|d]ele|e]|p
p|lOflplplojele]|p p 01| plp|lp|p

Then (L£,V, A) is an ADL. Clearly, we have that D = {60,9, ¢, p} is the dense set of L.
Consider the filters G = {0,9,p}, Go = {0,9,e,0,p}, Gs = {6,9,0,¢0,p}, G4 = {0,9}.
Clearly we have that ((G2, D), D) = G2 and hence Gs is a regular filter of £. But G; is not a
regular filter of £ because ((G1,D),D) =D # Gi.
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FR(L) represents the class of all regular filters of £. The following result can be verified

easily.

Lemma 3.3. Let L be an ADL with dense set D. Then we have the following:
(1) for any non-empty subset S of L, (S,D) € F~(L);
(2) D is the smallest reqular filter;
(3) each regular filter is D— filter.

Theorem 3.4. F®(L) constitutes a complete Boolean algebra.

Proof. Tt is observed that (§7(£), C) is a poset. Let G,U be any two regular filters of £. Then
clearly ((G,D), D) N (U, D), D) = (((GNU),D), D) is the infimum of both G and U in F*(L).
Consider GUU = (G, D)N((U, D), D) as the binary operation LI on F*(L). It is obvious that the
supremum for G and U in F%(L) is (G, D)N((U, D), D). In F*(L), D and L have to be the least
and largest elements, respectively. It gives (F%(£),N, U, D, £) is a bounded distributive lattice.
(G (G.D) = (6.D),D) N (6, D) = D and G U (6,D) = (6,D) N (. D), D) = (D,D) = L
are obtained for any G € F¥(L£). As a result, the unique complement of G in F*(L) is (G, D).
Hence, a complete Boolean algebra is (§7(£),N,U, D, L, D).

For any p € £, (1, D) € F*(L) and hence supremum and infimum of (y, D) and (7, D) in
§*(£L) are (4, D) U (7, D) = ((1, D), D) N (((7,D),D), D) = ((uV 7,D),D),D) = (uV m,D)
are (u, D) N (w,D) = (u A 7, D) respectively.

The following theorem is an immediate outcome of the preceding observation.

Theorem 3.5. The set RF4(L), which consists of all reqular filters of the form (u, D) where
w € L, forms a lattice under the operations N and U. This lattice (RF«(L),N,L) is also
a sublattice of the distributive lattice (RF(L),N,U), which includes all regular filters of L.
Additionally, RFe(L) has a greatest element, denoted by L = (e,D) for any e € D, and a

smallest element, (0,D), corresponding to D.

Theorem 3.6. Consider a D-filter G of an ADL L. Then GV (G, D) = L holds if and only if
G is regular and (G,D) V ((G,D),D) = L.

Proof. Assume that GV (G,D) = L. Then ((G,D),D) = ((G,D),D)NL = ((G,D),D)N (G V
(G,D)) = ((6,D),D)NnGV ((G,D),D)N (G,D) = GV D = G. Hence G is regular. Also
(G,D)V ((G,D),D) = (G,D) VG = L. The converse is obvious.

Equivalent conditions are identified for a prime D-filter of £ to become a minimal prime
D-filter.
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Theorem 3.7. In an ADL, the conditions listed below are equivalent:
(1) each prime D-filter is minimal;
(2) (W) V (u, D) =L, for all p € L;
(3) [1) = (1, D), D) and (u, D)V ((1, D), D) = L, for all p € L.

Proof. (1) = (2) : Assume that every prime D-filter is minimal. Let p € £. Suppose [u) V
(1, D) # L. Hence there is a prime filter Q such that [u) V (1, D) € Q. Given that (u, D) is
a D-filter, it follows that Q € FP(L). According to the given hypothesis, Q is minimal. Since
(1, D) C Q, we conclude that p ¢ Q, it leads to a contradiction. Therefore, it must be that
(1) V (n, D) = L.

(2) = (3) : It’s obvious.

(3) = (1) : Assume (3). Let Q € SpecP(L). Suppose there is another P € SpecP (L) such that
P C Q. Now, select an element p € Q \ P. Since p ¢ P, it follows that (u, D) C P. Given
that p is in Q, applying the assumed condition yields £ = ((u, D), D)V (i, D) = [p) V (u, D) C
QV P = Q, it gives a contradiction. Hence, Q € Min2(L). g

Definition 3.8. A filter G of an ADL L is said to be condensed if it satisfies the condition
(G,D) =D.

Example 3.9. Consider a discrete ADL C = {0,060} and a distributive lattice £’ = {0,d,7n, 7,1}

whose Hasse-diagram is given below

Clearly, £ = C x £ = {(0,0),(0,6),(0,7), (0,7), (0,1), (6,0), (6,), (0,1), (6,7), (6, 1)} s
an ADL with zero element (0,0). Take £ = {o,v, 9,0, x,¥,w, 7, e, £}, where o = (0,0),v =
(075)7¢ = (0777)70 = (077),X = (071)7w = (070)7("} = (975)77r = (0777)76 = (977_)75 = (07 1)
Define A, V of L as
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ANlolv o8| x| Y| lw|m| el
ololo|lo|o|lo|o|lo|o|o]o
olv|io|lv|jv|o|lv|o|lv|wv
plojolo|d|o|lolo|lod|o|P
Olojlv|ip|0|0|o|lv|¢| 0|0
xXlolv|o|O|x|o|lv|o| 0] x
Yiojolololo|lY Y|P Y|
wlolv|iolv|iv|iv|w|Y|lw|lw
mlo|lo|p|lp|lo|lW|Y ||| T
elolv| |00y |w|7|e|e
Elojv|o| 0| x|Y|w|Tm|e|l
Violv|o|O|x|v|lw|m|el&
olo|lv|o|O| x|V |w|m|lel|l
viv| 00| x|lw|lw|elel|
ol 0|l 0| x|7m|lelmle|
010|601 0|0|x|elelel|lel&
X X[ x| x|x|x]|§ £ ¢
Vivjwimle| |l |w|mle|l
wlwlwlele|ll|lw|lw|el|le|
mlmle|m|lelé|m|e|m|el|&
elelelelelllelelelel&
E1 818181818 &]81&6]6¢

Consider a filter G = {¢,0, x, 7, e,£} and the dense set D = {e,£}. Clearly, we have that
(G,D) = D and hence G is a condensed filter of £. But G is not a regula filter because
((Q,D),D) =L 7& g.

It is evident that the collection of all condensed filters in an ADL L constitutes a sublattice
within the lattice of all filters of £. Generally, a proper condensed filter is not necessarily a
regular filter. However, several equivalent conditions have been established for a D-filter of £

to qualify as a regular filter.

Theorem 3.10. If each proper filter is non-condensed, then the conditions listed below are
equivalent:
(1) each member in FP(L) is a member of F=(L);

(2) each member in Spec (L) is a member of FX(L);
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3) each member in SpecR (L) is minimal;
F

(4) each member in SpecB(L) is mazimal.

Proof. (1) = (2): It is evident.

(2) = (3): Assume (2). Let Q € SpecR(L). Then, (Q,D),D) = Q. Now, assume Q ¢
MinB(L). This means there is P € SpecE (L) such that P C Q. Choose an element 1 € Q\ P.
Let 0 € (Q,D). Since p € Q, we have 6V u € D CP. As P is prime and p ¢ P, it follows that
0 € P C Q. Therefore, (Q,D) C Q C ((Q,D),D). Thus, (Q,D) =(9,D)N((Q,D),D) = D.
This leads to the contradiction @ = (Q, D), D) = L. Therefore, Q € MinP(L).

(3) = (4): It is obvious.

(4) = (1): Assume (4). Let G be a non-dense filter. Evidently, G C ((G,D),D). Let u €
((G,D),D). This implies (G,D) C (u, D). Suppose u ¢ G. Then, there is @ € SpecE(L)
such that G C Q, p ¢ Q. By (4), Q is maximal. As u ¢ Q, we obtain Q V [u) = L. Thus,
(9, D)N(u,D) =(QV[n),D) = (L,D) =D. Therefore, (Q,D) = (Q,D) N (G,D) =D, which
leads to a contradiction. Hence, u € G, and so, ((G,D),D) C G. Consequently, G is a regular
filter of L.

Given a filter G of an ADL L, define Hom,(G) as the set of all homomorphisms on G. It is
clear that Hom,(G) is an ADL when endowed with the pointwise operations.

The following statement can be easily verified.

Proposition 3.11. Forany G € §(L), T € L, define the function ¢ : G — G by ¢ (1) = pV 7
for all p € G. The following statements are valid:

(1) ¢ is homomorphism;

(2) prrw = br N du for T,w € L;

(3) ¢rvw = &7 V @y, for T,w € L.

Definition 3.12. Let G € S"D([,). A homomorphism v : G — G is referred as dense-valued if,
for each pp € G, v(n) € D.

from the example @, for a filter Gy, define v : Go — Go as v(0) = 6,v(F) = V,v(e) =
?,0(p) = p,v(p) = p. Clearly, v is dense-valued homomorphism.

Assume the collection of all v € Hom,(G) where v represents a dense-valued homomor-
phism, denoted as D(G). It’s evident that the identity element of Hom,(G) belongs to D(G).
Specifically, the mapping 1 : G — G defined by 1(u) = p for all 4 € G, constitutes a dense-
valued homomorphism. Thus, 1 belongs to D(G). Furthermore, It’s easy to see that, D(G)
forms a filter on Hom(G). Additionally, for every e € D, ®, € D(G).
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Definition 3.13. Let G € FP(L) with p : £ — Hom,(G) is homomorphism. The dense kernel
of p, denoted as KerP(p), is defined by KerP(p) = {u € L | p() € D(G)}. Additionally, let
g : L — Homg(G) be a map such that &g(7) = ®, for all 7 € L. It is noted that KerP(p)

forms a filter in L.

From the example @, for a filter Gy, define p : L — Hom/L(G2) as p(i) = ¢;, for all i € G.
Claerly, we have that Ker®(p) = {6,9, 0, p, p}

Theorem 3.14. For each G € FP(L), we have (G,D) = KerP(®g). So, the pair (G, D) can

be regarded as the dense kernel of a homomorphism.

Proof. Suppose 7 € Ker?(®g). By definition, this means ®, € D(G), which implies that
uV T =@, (p)is a dense element for all 4 € G. Thus, we conclude that 7 € (G, D). Conversely,
assume 7 € (G, D). This indicates that uV 7 € D for every u € G. Therefore, &, maps every
element of G to a dense element. As a result, ®g(7) = ®, € D(G). Hence, 7 € KerP(®g).

Theorem 3.15. If each member in FF (L) is a member of (L), any two prime D-filters are

incomparable.

Proof. Suppose each member in P (L) is a member of F~(L). If there exist Q, P € SpecR(L)
with @ # P, Q C P. Select an element n € P\ Q. For any u € (P,D), it follows that
wVneDCQ. As Q is prime and 1 ¢ Q, we conclude that y € Q. Thus, (P,D) C Q C P.
This implies (P, D) = PN (P, D) = D. Since every D-filter is assumed to be regular, P is also
regular. Therefore, P = ((P,D),D) = (D, D) = L, it gives a contradiction.

The following result establishes a sufficient condition, expressed by using regular filters, for

an ADL to be relatively complemented.

Theorem 3.16. Suppose each principal filter is a D-filter. Then every D-filter is reqular if

and only if L is relatively complemented.

Proof. Let L be an ADL where every principal filter is a D-filter, and every D-filter is a
regular filter. Assume, for contradiction, that £ is not relatively complemented. Then there
exist elements 0,19, 0 € L such that ¥ < ¢ < @, and o lacks a complement within the interval
[7,0]. Define the set Z = {u € L | o A p < 9}, Tt is straightforward to verify that Z
is an ideal in £. Now, construct the ideal C = Z V (¢]. Assume 6 € C. Then 6 can be
expressed as 0 = o Vi for some i € Z. Therefore, § = 0V = (cVi)VI = oV (iVD),
and (VI Ao =(iNo)V(WIAg)=(ocAi)VI =1, since i € Z. This implies that i vV

is a relative complement of o in the interval [¢, 0], which contradicts the assumption that o
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has no complement. Thus, 6 ¢ C, leading to [¢) NC = 0. Since [#) is a D-filter, there exists
a prime D-filter Q in £ such that [#) C Q and QN C = 0. Consequently, Q NZ = () and
QN (o] = 0. Now define G = [0) V Q. Clearly, G is a D-filter in L. Suppose ¢ € G. Then
¥ € [0) V Q, which means ¢ = o V4§ for some € Q. This implies ¢ € Z, contradicting the fact
that § € QNZ = (). Hence, ¥ ¢ G, and G N (¢¥] = (. Then there exists a prime D-filter P such
that G C P and (W]NP = 0. Thus, @ C G C P. This implies that Q and P are distinct prime
D-filters with @ C P. This shows that two prime D-filters are comparable, which contradicts
the earlier result. Therefore, £ must be relatively complemented. Conversely assume that £
is relatively complemented. Let G be a D-filter of L. Clearly we have that G C ((G,D), D). Let
4 € ((6,D), D). Then )  ((G,D), D) and hence (G, D) = (G,D),D) = ([u),D). s ¢ G
then there exists a prime D-filter Q such that G C Q and p ¢ Q. There fore (Q,D) C (G, D).
We prove that Q is maximal. Suppose P is a prime D-filter such that Q@ C P. Let § € L.
Choose § € P\ Q and v € Q. Then 0 < § < 6 V¥V v. Since L relatively complemented, there
exists a relative complement ¢ € [0, 8 V9 V v] such that 0 Ay = 0and 6V =0V IV
Since Q is a filter and v € Q, we have § VI Vv € Q and hence 0 V ¢ € Q. Since Q is prime,
we get 0 € Q or 1 € Q. Since § ¢ Q, we get 1 € Q and hence ¢ € P. Since 0,19 € P, we have
0 A1 € P and hence 0 € P. Therefore P = L, we get a contradiction. Thus Q is maximal.
Since p ¢ Q, we get QV [u) = L. Therefore (Q,D)N([n),D) = (QV ), D) = (L,D) = D. Now
(9,D)=(9,D)N(G,D) C (Q,D)N (|n), D) = (L, D) =D, we get a contradiction. Therefore
p € G and hence ((G,D),D) C G. Thus G is a regular filter of L.

4. w-FILTERS OF ADLS

This section explores the notion of zw-filters in an ADL. It provides a characterization
of these filters through regular filters and congruences. Additionally, a series of equivalent

criteria are established for an ADL can be transformed into a Boolean algebra.

Definition 4.1. A filter G in L is called a 7-filter if, for every p € G, the condition ((u, D), D) C
G holds.

From the example @, clearly we have that Gs is a w-filter of an ADL L.

Lemma 4.2. In an ADL, the subsequent properties are true:
(1) D is the smallest w-filter;
(2) Every regular filter is a m-filter.

Proposition 4.3. Fach minimal prime D-filter in L is a w-filter.

Proof. Let @ € MinR(L), and assume p € Q. Then there exists an element 7 ¢ Q such that
uwV e D. Consider v € ((1r, D), D). By the definition of the filter, (u,D) C (v,D). As a
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result, 7 € (v, D). This leads to the conclusion that v € ((v,D),D) C (7, D) C Q since 7 is
not in Q. Hence, we have ((i, D), D) C Q. This shows that Q is a w-filter of L.

Definition 4.4. For each G € §(L), define the set G¥ = {u € L | (§,D) C (u, D) for some 0 €

G}. This set G¥ is referred to as an extension of G.
This result is a straightforward consequence of the previous definition

Lemma 4.5. For any G, U € F(L), the properties listed below hold:
(1) D C G¥ and D¥ = D;
(2) G CU implies G¥ CU%;
(3) (GNU)? =G¥NU?;
(4) (G°)9 =G°%.

Proposition 4.6. For any G € (L), G¥ is the smallest w-filter such that G C G¥.

Proof. 1t is evident that D C G¥. Let u,m € G¥. Then, there exist 8,9 € G such that
(0,D) C (u, D) and (¥,D) C (w, D). Therefore, (§ NI, D) = (0,D)N(I,D) C (u, D)N (7, D) =
(u A 7, D), implying u A € GP. Next, let u € G¥ and u < 7. Then, for some 0 € G, we
have (0,D) C (u,D) C (w, D). This shows that G¥ is a filter of £. Furthermore, it is clear
that G C G¥. Now, let u € G¥ and v € ((u, D), D). Then, there exists § € G such that
(0,D) C (u, D) C (v, D). Hence, ((n, D), D) C G¥, meaning G¥ is a 7-filter of L. Finally, let
U be a w-filter of L such that G C U. Let u € G¥. Then, there exists § € G C U such that
(0,D) C (i, D). Since U is a w-filter, we conclude that p € ((u,D),D) C ((6,D),D) C U.
Therefore, G¥ C U, showing that G¥ is the smallest 7-filter of £ such that G C G¥.

From the previous results, it follows that a filter G is a w-filter if and only if G = G¥,
establishing that D is the minimal 7-filter in £. Additionally, combining these observations,
we conclude that the set of all w-filters of an ADL £, denoted §" (L), forms a complete
distributive lattice. In this lattice, the meet operation is given by G AU = GNU, and the join
operation is defined by GVU = (G V U)?, where the least element is D.

Theorem 4.7. For any G € §(L) and u,m € L, define a binary relation ©(G) on L as follows:
(4,) € ©(G)ifandonlyi f{D V ()} N (6,D) = {DV [r)} N (6, D),
for some 6 € G. Then ©(G) is congruence on L.

Proof. 1t is evident that ©(G) defines an equivalence relation on £. Let (u,7) € ©(G). Then
{DV[w)}n(0,D)={DV[r)}N(0,D) for some § € G. For any o € L, we have {DV [uV o)} N
(0, D) ={DV W)} N{DVI[o)} N (0, D) ={DV[m)} N{DVIo)} N (6,D)



28 N. Rafi and M. S. Rao

={DVrVo)}Nn(0 D). Therefore (uV o,mV o) e O(G). Again, {DV[uAo)}N(6,D) =
{DVIp)V[e)3n(0, D) = {{DVIw)}3n(®, D)} v{[e)n(0, D)} = {{DV[m)}n(0, D)}V{[o)N(0, D)} =
{DV[rAo)}N(0,D). Hence (uAo,m Ao) € O(G). Therefore ©(G) is a congruence on L.

Lemma 4.8. Let L be an ADL. For any u € L, the following properties hold:
(1) {D Vv (([),D),D)} = (1, D), D);
(2) {DV [1)} N (1, D) = D.

Proposition 4.9. For each G € F(L), define the dense-kernel KerPO(G) of ©(G) as follows:
KerPO(G)={pne L | {DVI[u)}n(0,D)="D for somed € G}.
Then KerPO(G) € §(L) containing G.

Proof. Tt is evident that D C KerPO(G). Let u,7 € KerP?O(G). Then {DV [u)} N (6,D) =
{DV[m)}n@©,D) =D for some 6,9 € G. Now {DV [uAm)}N((OANDI),D)={DVuV
DV (M)} N (60,D) N (8,D) = {(DV [1) N (6,D) N (8, D)} v {(DV [r)) 1 (6,D) N (9, D)} =
{DNW,D)} v{DN (D)} =D. Hence pu A7 € KerPO(G). Let u € KerPO(G) and p < 7.
Then there is # € G such that {D Vv [1)} N (0,D) C {DV [u)} N (0,D) = D. Which gives
m € KerPO(G). Hence KerPO(G) € F(L£). Let u € G. From the above result, we get
p € KerPO(G). Therefore G C KerPO(G). g

Theorem 4.10. Let G be a filter in an ADL L. Then the following are equivalent:
(1) G is a w-filter;
(2) G = KerPO(G);
(3) for pyme L,(u, D) = (n,D) and p € G = 7w €G;
4)pegGepue((0,D),D) for somed € G.

Proof. (1) = (2): Assume (1). Clearly G C KerPO(G). Let u € KerPO(G). Then {DV [u)}N
(0,D) = D for some 0 € G. Since G is a w-filter, p € DV [u) C ((0,D), D) C G. Therefore
KerPO(G) C G. Hence G = KerPO(G).

(2) = (3): Assume that G = Ker?O(G). Let 6,9 € L such that (§,D) = (9J,D). Suppose
0 €G. Then {DVI[0)} N (v,D) =D for some v € G. Then we get {DV [#)} N (v,D) =D =
({pVvI[9)},D),D)n(v,D) = (D,D),D) =D = ((6,D),D)N (v,D) =D = ((9¥,D),D) N
(v,D)=D={DV[)}N(y,D) C({DV[¥)},D),D)N(,D)=D =19 € KerPO(G) =G.
(3) = (4): Assume (3). Let u € G. Then clearly p € ((u, D), D). Again, let p € ((0,D),D)
for some # € G. Hence ((u,D),D) C ((6,D),D), which yields ((u,D),D) = ((u,D),D) N
((0,D),D) = (pV 6),D),D). Thus (,D) = (Vv 0),D) and VO € G. By (3), we have
neq.
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(4) = (1): Assume (4). Let p € G. Hence p € ((8,D), D) for some 6 € G. Let v € ((i, D), D).
Then for this § € G, we get that v € ((u,D),D) C ((0,D),D). Hence by (4), we have v € G.
Therefore ((u, P),D) C G. Thus F is a w-filter of L.

It is a well known fact that an ADL is a Boolean algebra if and only if it has a unique dense

element. Hence the following result is a direct consequence.

Theorem 4.11. The following assertions are equivalent in an ADL L.
(1) £ is a Boolean algebra;
(2) every filter is a D-filter;
(3) every filter is a w-filter;
(4)

4) every prime filter is a w-filter.

It has been observed that every minimal prime D-filter is also a prime w-filter. However,
the reverse is not necessarily true. Nevertheless, a condition is provided that is sufficient for a

prime w-filter to become a minimal prime D-filter. let’s denote the set of all prime w-filters of
L as Specg(L).

Proposition 4.12. If every principal filter of the form (u,D) for u € L is a principal filter,

then every prime w-filter is a minimal prime D-filter.

Proof. Let Q € Spec™F(L) and p € Q. Then (u,D) = [r) for some m € L. Therefore
§V €D, Now ((Am),D) = (1,D) 1 (r,D) = (1,D) N (1, D), D) = D. Hence p A7 ¢ Q,
which implies that © ¢ Q. Therefore Q is a minimal prime D-filter.

Theorem 4.13. In an ADL, the following are equivalent:
(1) any w-filter is a principal filter;
(2) any (u, D) is a principal filter and every minimal prime D-filter is non-condensed;

(3) any prime w-filter is a principal filter.

Proof. (1) = (2): Assume each (u, D) is a w-filter. To prove that every minimal prime D-filter
is non-condensed, consider a minimal prime D-filter Q. From Proposition @, we know that Q
is a m-filter, which implies that Q = [0) for some 6 € L. Suppose, for the sake of contradiction,
that (Q,D) = D. In this case, we would have (0, D) = D, which implies £ = ((#,D),D) C Q,
leading to a contradiction. Thus, (Q,D) # D.

(2) = (3): Assume condition (2) holds. Let Q be a prime 7-filter of £. Since every (u,D)
is a principal filter, by the previous result, we deduce that Q is a minimal prime D-filter and
that (Q, D) # D. Therefore, there exists an element p # D such that p € (Q, D). This leads
to the conclusion that Q C ((Q,D),D) C (u,D). On the other hand, let v € (u, D). Then
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vVu €D C Q. Since Q is prime and p ¢ (u,D) = Q, it follows that v € Q. Therefore,
Q = (u, D), which shows that, under condition (2), Q@ = (u, D) is indeed a principal filter.
(3) = (1): Suppose every prime n-filter in £ is principal. Consider a n-filter G in £, and

assume that G is not principal.
& = {UUisar — filterwhichisnotaprincipal filter}.

Note that G € &, and consequently, there exists an index i € A such that § € U;. This implies
that [#) C U; for some i € A. Since U; is a filter, we also know that U; C (J;ca Ui = [0), so
we must have U; = [f) for some i € A. This leads to a contradiction, since U; cannot equal
[0) by assumption. Now, |J;ca Ui serves as an upper bound for the set {U/;}ica within &.
By Zorn’s Lemma, there exists a maximal filter N in & containing G. Next, let u ¢ A and
m ¢ N. Since N is a filter, we have N' C {N V [p)}¥ and N C {N V [r)}¥. This implies
that {N V [u)}? = [9¥) and {N V [7)}¥ = [o) for some J,0 € L. Therefore, we can conclude
that {(NV [pvm)}? = {NV[}*Nn{NV[n)}*=0)Nlo)=[Vo).If uvr e N, then
N = N?¥ = [9V o), which contradicts the assumption in condition (3). Therefore, it follows
that G must be a principal filter.

5. THE SPACE OF PRIME 7-FILTERS

This section explores the topological properties of the set of all prime w-filters within an
ADL. It provides several equivalent conditions under which the prime 7-filter space of an ADL

becomes a Hausdorff space.

Theorem 5.1. Given an ideal I, let G be a w-filter of L with GNTI = (. Then there is
Q € Speci.(L) such that G C Q and QNZ = 0.

Proof. Consider
& ={U|Uisanfilter, G CUandUNT = 0}.

It is clear that G € 6 and & satisfies the hypothesis of Zorn’s Lemma. Hence choose a maximal
element N in &. Let u,m € £ be such that 4 ¢ N and w ¢ N. Then N C N'V[u) C{NV[u)}¥
and NV C NV [r) C{NV[r)}?. As N is maximal, {N'V [u)}¥*NZ # 0 and {N V[7)}?NT # 0.
Choose 0 € {N' V [1)}*NZ and ¥ € {N V [7)}? NZ. Therefore 6 VI € Z and 6 V 9 €
NV {N VT ={WNV)NWN V[T ={NVpvm)}?. If uvVreN. Then
0Vv9eN¥=N. Hence VY € NNZ, which is a contradiction. Thus N € Specf(L). o

Corollary 5.2. Let G be a w-filter of L and ¢ G. Then there is Q € Spec.(L) such that
p¢QandGC Q.
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Corollary 5.3. For any w-filter G of L, we obtain
G=({Q| Qe Speck(L), G C Q}.

Corollary 5.4. D is equal to the intersection of all members of Spech.(L).

For every S C L, J'(S) = {Q € Spech(L)|S ¢ Q}. In specific for € L, J'(n) = T (1n).
Lemma 5.5. Fvery p,m € L gives us

(1) U J' (1) = Speci(L);
2 )NT'(m) =T (1w V m);
3) T'(w) VT (m) =T (pAm);

(
VA
4) J'(u) = 0 if and only if p € D;
5) J'(0) = Speck(L).

~~ ~~ —~~

)
)
)
)

It is simple to see from the above lemma that a topology on Specf.(L) has as its basis

{7 ()ln € L.
Theorem 5.6. The set of all compact open sets of Spech,(L) is the base {J'(p)|p € L}.

Proof. Let p € L. Let S C £ with J'(p) € |J J'(w) and G = [S). If u ¢ G¥. By Corollary
TES
4.2, there is Q € SpecT.(L) such that G¥ C Q and u ¢ Q. Hence Q € J'(u) € U J'(n).
TES
Therefore 7 ¢ Q for some m € S, which gives a contradiction. Therefore y € G¥. Then

there is § € G such that p € ((#,D),D). AS G = [S), there are 01,02, ...,60, € S such that
0 =01 /N 92 A...N0,. Hence pe€ ((6,D),D) = (1 ANb2 A...\0,,D)D). It is noted that

J'(n) C U J’ ( ;). Thus J' () is compact in SpecT,(£). It suffices to show that every compact
open subset of SpecT,(L) can be expressed as J'(u) for some p € L. Let B be a compact open

subset of Spec.(L). Since B is open, so that B = |J J'(#) for some S C L. Since B is
oes

compact, there are 01,09, ...,60,, € S such that B= {J J'(6;) = T (A,0;). Hence B = J'(p)
i=1

for some p € L.

A maximal w-filter is a filter that is maximal within the collection of proper w-filters in an
ADL. Since the set of all w-filters forms a distributive lattice, it follows that every maximal
m-filter is necessarily a prime rw-filter. The following derivation outlines a set of equivalent

conditions under which every prime 7-filter becomes a minimal prime D-filter.

Theorem 5.7. In an ADL, the following subsequent statements are equivalent:
(1) each member of Specs(L) is a member of MinR(L);
(2) Spect.(L) is a T1-space;



32 N. Rafi and M. S. Rao

(3) each member of Specl.(L) is mazimal;

(4) each member of Spec.(L) is minimal;

(5) for cach p € £, (1, D)V (1, D), D) = L;

(6) Speci(L) is a Hausdorff space;

(7) for any p,m € L, there exists ¥ € L such that uV 1 € D and

J'(m) N {Speci-(L) = T' (W)} = T'(w v ).

Proof. (1) = (2): Assume (1). Let Q, P € Spec,(L£) with Q # P. As Q and P are minimal,
we have Q@ Z P and P Z Q. Select p € Q\ P and m € P\ Q. As a result, P lies in the open
set J'(p)\ J'(m), and Q lies in the open set J'(m)\ J'(1). This shows that Spec].(L) satisfies
the conditions of a Ti-space.

(2) = (3): Assume (2). Let Q € Specl.(L£).Suppose P is a maximal w-filter of £ such that
Q C P. Since Spec,(L) is a Ti-space, there exist two basic open sets J'(u) and J'(7) such
that P € J'(u) \ J'(7) and Q € J'(m) \ J'(n). Since p € Q C P, it follows that P ¢ J'(u),
leading to a contradiction. Therefore, @ must be a maximal w-filter.

(3) = (4): It is straightforward.

(4) = (5): Assume (4). Then every prime 7-filter is also a minimal prime D-filter. Consider
the case where (u, D) U ((u, D), D) # L for some p € L. In this scenario, there exists a prime
w-filter @ such that ((u, D), D)U((, D), D) C Q. This implies p € ((u, D), D) C Q. Since Q is
a minimal prime D-filter and ((u, D), D) C Q, we obtain a contradiction, as u ¢ Q. Therefore,
we must have (u, D) U ((p, D), D) = L.

(5) = (6): Assume (5). Let Q, P € Specj(L) with Q # P. Let p € Q be such that
w ¢ P. According to the assumption, we have ((u, D), D)U (1, D), D) = L. Consequently, 0 €
(1, D)U((11, D), D) = {(r, D)V ((r, D), D) }#. Thus, there exists some 6§ € ((1, D)V (1, D), D))
such that (0)° C (0,D) = D. Now, § = 7 Aw for some 7 € (u,D) and w € ((u, D), D),
which implies 7V € D. Suppose 7 € Q. Since Q is a 7-filter, we get ((7,D),D) C Q.
Then, (7,D) N (w,D) = ((t ANw),D) = (6,D) = D, which means (w,D) C ((1,D),D) C Q.
Since w € ((u, D), D), we have ((u,D),D) C (w,D) C Q, and since p € Q, it follows that
L= (u,D)U ((1,D),D) C Q, which is a contradiction. Therefore, 7 ¢ Q. Hence, Q € J'(7).
Similarly, P € J'(u). Since uV 7 € D, we have J'(u) N J' (1) = J'(uV 7) = 0. Therefore,
Spect.(L) is Hausdorff.

(6) = (7): Assume (6). Then, for each 0 € £, J'(0) is a compact subset of SpecT.(L).
Consequently, J'(6) is a clopen set in Specj.(L). Now, let p,m € L be distinct elements.
The intersection J'(7) N (Speck (L) \ J'(r)) is a compact subset of the compact space J'(7).
Since J'() is open in Speck(L£), this intersection is a compact open subset of SpecT.(L). By
Theorem @, there exists an element ¢ € £ such that J'(¢) = J'(7) N (Speck (L) \ T'(1)).
This implies that J'(7) N (Speck(L)\ J' (1)) = T (1) N T (¢) = T’ (7 V ¢). Furthermore, we
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have J'(nV ¥) = J' (1) N J'(¢) = 0, which implies that p V¢ € D.
(7) = (1): For each Q € Spech.(L), choose p, m € L such that € Q and m ¢ Q. Then by the
condition (7), there is 1) € £ such that V¢ € D and

J'(m) N {Speck(L)\ T (w)} = T' (v 1)).

It follows that Q € J'(m) N (Speck(L)\ T (1)) = T (V). If ¢ € Q, then m V¢ € Q, which
contradicts the assumption that @ € J'(7 V ¢). Therefore, ¢ ¢ Q. Thus, for every p € Q,
there exists a 1 ¢ Q such that p V1 € D. This implies that Q is a minimal prime D-filter of
L.

6. CONCLUSIONS

This study established conditions for converting D-filters into regular filters and identified
a homomorphism with a dense kernel as a regular filter. A necessary condition for ADLs
to become relatively complemented was derived, along with equivalent conditions for ADLs
to behave as Boolean algebras. Additionally, a topological investigation of prime m-filters
provided. Future work may explore the extension of D-filters to fuzzy D-filters in an ADL,

investigating their algebraic and topological properties.
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