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SUBMODULES HAVING THE SAME GENERALIZED PRIME IDEAL
FACTORIZATION

K. R. THULASI∗, T. DURAIVEL AND S. MANGAYARCARASSY

Abstract. In our recent work, we introduced a generalization of the prime ideal factorization

in Dedekind domains for submodules of finitely generated modules over Noetherian rings. In

this article, we show conditions for the intersection of two submodules to have the same

factorization as the submodules. We also find the relation between the factorizations of a

submodule N in an R-module M and the ideal Ann(M/N) in the ring R and give a condition

for their equality.

1. Introduction

Throughout this article, R will be a commutative Noetherian ring with identity, and M

will be a finitely generated unitary R-module. The references for standard terminology and
notations will be [4] and [6].
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Let N be a proper submodule of an R-module M . Then the ideal (N : M) in R is prime
if for any a ∈ R and x ∈ M , ax ∈ N implies a ∈ (N : M) or x ∈ N . We say N is a p-prime
submodule of M when (N : M) = p, and in this case, Ass(M/N) = {p} [5, Theorem 1].

We say a submodule K of M is a p-prime extension of N in M and denote it as N
p
⊂ K

if N is a p-prime submodule of K. A p-prime extension K of N is said to be maximal in
M if there is no p-prime extension L of N in M such that L ⊃ K. Since M is Noetherian,
maximal p-prime extensions exist. It is proved that if p is a maximal element in Ass(M/N),
then (N : p) is the unique maximal p-prime extension of N in M [2, Theorem 11] and it is
called a regular p-prime extension of N in M .

A filtration of submodules F : N = M0

p1
⊂ M1 ⊂ · · ·

pn
⊂ Mn = M is called a regular prime

extension (RPE) filtration of M over N if each Mi is a regular pi-prime extension of Mi−1 in
M , 1 ≤ i ≤ n. RPE filtrations are defined and studied in [2]. Also, RPE filtrations are weak
prime decompositions defined in [1].

The following result shows that Ass(M/N) is precisely the set of prime ideals occurring in
any RPE filtration of M over N .

Lemma 1.1. [2, Proposition 14] Let N be a proper submodule of M . If N = M0

p1
⊂ M1 ⊂

· · · ⊂ Mn−1

pn
⊂ Mn = M is an RPE filtration of M over N , then Ass(M/Mi−1) = {pi, . . . , pn}

for 1 ≤ i ≤ n. In particular, Ass(M/N) = {p1, . . . , pn}.

The following lemma characterizes the submodules occurring in an RPE filtration.

Lemma 1.2. [3, Lemma 3.1] Let N be a proper submodule of M . If N = M0

p1
⊂ M1 ⊂

· · · ⊂ Mi−1

pi⊂ Mi

pi+1

⊂ Mi+1 ⊂ · · ·
pn
⊂ Mn = M is an RPE filtration of M over N , then

Mi = {x ∈ M | p1 · · · pix ⊆ N} for 1 ≤ i ≤ n. In other words, Mi = (N : p1 · · · pi) for
1 ≤ i ≤ n.

The occurrences of two prime ideals in an RPE filtration can be interchanged provided they
satisfy the following condition.

Lemma 1.3. [2, Lemma 20] Let N be a proper submodule of M and N = M0 ⊂ · · · ⊂ Mi−1

pi⊂
Mi

pi+1

⊂ Mi+1 ⊂ · · · ⊂ Mn = M be an RPE filtration of M over N . If pi+1 ̸⊆ pi, then there
exists a submodule Ki of M such that N = M0 ⊂ · · · ⊂ Mi−1

pi+1

⊂ Ki

pi⊂ Mi+1 ⊂ · · · ⊂ Mn = M

is an RPE filtration of M over N .

Remark 1.4. So for every reordering p′1, . . . , p
′
n of p1, . . . , pn with p′i ̸⊂ p′j for i < j, we can

get an RPE filtration

N
p′1⊂ M ′

1

p′2⊂ M ′
2 ⊂ · · · ⊂ M ′

n−1

p′n⊂ M ′
n = M.
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In particular, if pi is minimal among {p1, . . . , pn}, then we can have an RPE filtration

N = M0

p1
⊂ M1 ⊂ · · ·

pi−1

⊂ Mi−1

pi+1

⊂ Ki

pi+2

⊂ Ki+1 ⊂ · · ·
pn
⊂ Kn−1

pi⊂ M,

[3, Remark 2.5]. In general, if pi occurs r times in an RPE filtration, then there exists an RPE
filtration

N = M0

p1
⊂ M1 ⊂ · · ·

pi−1

⊂ Mi−1

pi⊂ Mi

pi⊂ Mi+1 ⊂ · · ·
pi⊂ Mi+r−1

pi+1

⊂ Mi+r

pi+2

⊂ · · · ⊂ Mn = M,

where pj ̸⊆ pi for j < i.

It is proved that in any RPE filtration of M over N , the number of occurrences of each
prime ideal is unique [2, Theorem 22]. Hence, if N = M0

p1
⊂ M1 ⊂ · · ·

pn
⊂ Mn = M is an

RPE filtration, then the product p1 · · · pn is uniquely defined for N in M and it is called the
generalized prime ideal factorization of N in M . We write PM (N) = p1 · · · pn, and in short, we
call it the prime factorization of N in M . Generalized prime ideal factorization of submodules
is defined and studied in [7].

In [7] it was observed that in a finitely generated module over a Noetherian ring, distinct
submodules may have the same prime factorization. For example, in k[x, y], the ideals (x2, y)

and (x, y2) have the same prime factorization (x, y)2 [7, Example 2.5]. We see that their
intersection (x2, xy, y2) also has the prime factorization (x, y)2. In this article we show that this
need not always be true. For submodules N and K of an R-module M with PM (N) = PM (K),
we find conditions for PM (N ∩ K) = PM (N). We also compare the prime factorizations of
a submodule N in M and the ideal Ann(M/N) in R. We show that the product PM (N)

is a multiple of the product PR(Ann(M/N)) and give a sufficient condition for PM (N) =

PR(Ann(M/N)).
We use the following lemmas.

Lemma 1.5. [3, Lemma 2.8] If N
p
⊂ K is a regular p-prime extension in M , then for any

submodule L of M , N ∩L
p
⊂ K ∩L is a regular p-prime extension in L when N ∩L ̸= K ∩L.

Hence, intersecting a regular prime extension with a submodule gives a regular prime ex-
tension whenever equality does not occur.

Lemma 1.6. Let N1

p
⊂ N2 and K1

p
⊂ K2 be regular prime extensions in M . If N1 ∩ K1 ̸=

N2 ∩K2, then N1 ∩K1

p
⊂ N2 ∩K2 is a regular prime extension in M .

Proof. We have p ⊆ (N1∩K1 : N2∩K2) since pN2 ⊆ N1 and pK2 ⊆ K1. Now let a ∈ (N1∩K1 :

N2 ∩ K2) and x ∈ N2 ∩ K2 \ N1 ∩ K1. Then ax ∈ N1 ∩ K1. Without loss of generality, we
assume x /∈ N1. Then since N1

p
⊂ N2 is a prime extension, ax ∈ N1 implies a ∈ (N1 : N2) = p.

Hence (N1 ∩K1 : N2 ∩K2) = p.
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Let ax ∈ N1 ∩ K1 for some x ∈ N2 ∩ K2, a ∈ R such that x /∈ N1 ∩ K1. Without loss of
generality, assume x /∈ N1. Then ax ∈ N1 ∩K1 ⊆ N1 implies a ∈ (N1 : N2) = p. Therefore,
N2 ∩K2 is a p-prime extension of N1 ∩K1, and {p} = Ass(N2∩K2

N1∩K1
) ⊆ Ass( M

N1∩K1
).

Let L be any p-prime extension of N1 ∩K1 in M and let x ∈ L. Then px ⊆ N1 ∩K1, i.e.,
x ∈ (N1 : p) ∩ (K1 : p) = N2 ∩ K2 [Lemma 1.2], and hence L ⊆ N2 ∩ K2. So N2 ∩ K2 is a
maximal p-prime extension of N1 ∩K1 in M .

Suppose q ∈ Ass(M/N1 ∩K1) and q ⊇ p. Then q = (N1 ∩ K1 : x) for some x ∈ M .
Since p ⊆ q, px ⊆ N1 ∩ K1. That is, x ∈ (N1 : p) ∩ (K1 : p) = N2 ∩ K2. This implies,
q ∈ Ass(N2∩K2

N1∩K1
) = {p}. That is, q = p. Therefore, p is a maximal element in Ass(M/N1 ∩K1),

and hence N2 ∩K2 is a regular p-prime extension of N1 ∩K1 in M .

The next lemma gives a condition satisfied by the prime factorization of a submodule.

Lemma 1.7. Let N be a submodule of M having PM (N) = p1 · · · pn. Then p1 · · · pi−1 pi+1

· · · pnM ̸⊆ N whenever pi ̸⊃ pj for every 1 ≤ j ≤ n.

Proof. There exists an RPE filtration

N = N0

p1
⊂ N1 ⊂ · · · ⊂ Ni−1

pi⊂ Ni ⊂ · · · ⊂ Nn−1

pn
⊂ Nn = M.

If for some i, pi ̸⊃ pj for j = 1, . . . , n, by Remark 1.4 we can have an RPE filtration

N = N0

p1
⊂ N1 ⊂ · · ·

pi−1

⊂ Ni−1

pi+1

⊂ Ki

pi+2

⊂ Ki+1 ⊂ · · ·
pn
⊂ Kn−1

pi⊂ M.

Then by Lemma 1.2, Kn−1 = {x ∈ M | p1 · · · pi−1pi+1 · · · pnx ⊆ N}. So p1 · · · pi−1

pi+1 · · · pnM ⊆ N would imply M ⊆ Kn−1, which is a contradiction. Hence p1 · · · pi−1

pi+1 · · · pnM ̸⊆ N .

Lemma 1.7 does not hold if pj ⊂ pi for some j. Let R = k[x, y, z]/(xy − z2). Then
p1 = (x, y, z) and p2 = (x, z) are prime ideals in R and p2

2 has the RPE filtration

p2
2 = (x2, xy, xz)

p1
⊂ (x)

p2
⊂ (x, z)

p2
⊂ R.

If M = R and N = p2
2, then we have PM (N) = p1p2

2. But p2
2M = N .

Remark 1.8. For a prime ideal p in R, we have PR(p) = p [7, Example 2.2]. Moreover, the
only ideal in R having p as its generalized prime ideal factorization is p itself. For suppose
PR(a) = p for an ideal a in R. Then a

p
⊂ R is an RPE filtration, which implies (a : R) = p. So

p ⊆ a ⊆
√
a. Also, Ass(R/a) = {p} and therefore, a is p-primary, which gives

√
a = p. Hence,

we get a = p.
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2. Main Results

Proposition 2.1. Let a, b be ideals in R. If PR(a) = PR(b) and it is a product of at most
two prime ideals, then PR(a ∩ b) = PR(a).

Proof. If PR(a) = PR(b) = p for some prime ideal p in R, then by Remark 1.8, a = b = p.
Therefore, a ∩ b = p

p
⊂ R is an RPE filtration, and hence PR(a ∩ b) = p = PR(a).

If PR(a) = PR(b) = p1p2 for some prime ideals p1, p2 in R, we have RPE filtrations

a
p1
⊂ a1

p2
⊂ R,

b
p1
⊂ b1

p2
⊂ R.

By Remark 1.8, a1 = b1 = p2. Since a ⊂ a1 and b ⊂ b1, a∩b ⊂ p2 = a1∩b1. So, using Lemma
1.6, we have the RPE filtration a ∩ b

p1
⊂ p2

p2
⊂ R. Therefore PR(a ∩ b) = PR(a).

If PR(a) = PR(b) and it is a product of more than two prime ideals, then PR(a ∩ b)

need not be equal to PR(a). For example, in R = k[x, y, z], let a = (x2, y2, xy, xz) and
b = (x2, y2, xy, yz). Then we have PR(a) = PR(b) = (x, y, z)(x, y)(x, y) since there are RPE
filtrations

(x2, y2, xy, xz)
(x,y,z)
⊂ (x, y2)

(x,y)
⊂ (x, y)

(x,y)
⊂ R,

and

(x2, y2, xy, yz)
(x,y,z)
⊂ (x2, y)

(x,y)
⊂ (x, y)

(x,y)
⊂ R.

But PR(a ∩ b) = (x, y)(x, y) since

a ∩ b = (x2, y2, xy)
(x,y)
⊂ (x, y)

(x,y)
⊂ R,

is the RPE filtration of R over a ∩ b.
For submodules N and K of M having the same prime factorization p1 · · · pn, PM (N ∩K)

need not be equal to PM (N) even for n = 2. For example, in the Z-module Z ⊕ Z, we have
the RPE filtrations 2Z⊕ 0

2Z
⊂ Z⊕ 0

0
⊂ Z⊕ Z and 0⊕ 2Z

2Z
⊂ 0⊕ Z

0
⊂ Z⊕ Z. So the submodules

2Z ⊕ 0 and 0 ⊕ 2Z have the same prime factorization. But (2Z ⊕ 0) ∩ (0 ⊕ 2Z) = 0 ⊕ 0 and
PZ⊕Z(0⊕ 0) = 0 ̸= PZ⊕Z(2Z⊕ 0).

Now we find conditions for PM (N ∩ K) = PM (N) for submodules N and K of M with
PM (N) = PM (K).

Proposition 2.2. Let N and K be submodules of M with PM (N) = PM (K) = p1 · · · pn. Then
PM (N ∩K) = PM (N) if pi ̸⊃ pj for every i ̸= j.
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Proof. We prove by induction on n. If n = 1, then we have PM (N) = PM (K) = p for some
prime ideal p in R. So we have RPE filtrations N

p
⊂ M and K

p
⊂ M . By Lemma 1.6, M is a

regular p-prime extension of N ∩K, and hence N ∩K
p
⊂ M is an RPE filtration. Therefore

PM (N ∩K) = p = PM (N).
Now let n > 1, and assume the result is true for n−1. Suppose PM (N) = PM (K) = p1 · · · pn,

where pi ̸⊃ pj for every 1 ≤ i, j ≤ n, i ̸= j. Then we have RPE filtrations

N = N0

p1
⊂ N1 ⊂ · · ·

pn−1

⊂ Nn−1

pn
⊂ Nn = M,

K = K0

p1
⊂ K1 ⊂ · · ·

pn−1

⊂ Kn−1

pn
⊂ Kn = M.

Since PM (N1) = PM (K1) = p2 · · · pn, by induction hypothesis we get PM (N1 ∩ K1) =

PM (N1) = p2 · · · pn. So we have an RPE filtration

N1 ∩K1

p2
⊂ L2 ⊂ · · · ⊂ Ln−1

pn
⊂ Ln = M.

If N1 ∩K1 = N ∩K, then PM (N ∩K) = p2 · · · pn, which implies p2 · · · pnM ⊆ N ∩K. But
since p1 ̸⊃ pj for every 1 ≤ j ≤ n, by Lemma 1.7, we have p2 · · · pnM ̸⊆ N and p2 · · · pnM ̸⊆ K,
which is a contradiction. So N ∩K ⊂ N1 ∩K1. Then by Lemma 1.6, N ∩K

p1
⊂ N1 ∩K1 is a

regular p1-prime extension in M . Therefore,

N ∩K
p1
⊂ N1 ∩K1

p2
⊂ L2 ⊂ · · · ⊂ Ln−1

pn
⊂ Ln = M,

is an RPE filtration of M over N ∩K. Hence PM (N ∩K) = p1 · · · pn = PM (N).

For a proper submodule N of M , let a = Ann(M/N). Next, we compare the prime factor-
izations PR(a) and PM (N).

Lemma 2.3. Let N be a proper submodule of M . Then for any submodule K of M ,
Ass( R

(N :K)) ⊆ Ass(M/N).

Proof. Let p ∈ Ass( R
(N :K)). Then p = ((N : K) : a) = Ann(aK+N

N ) for some a ∈ R. So p is a
minimal element in Supp(aK+N

N ), and therefore p ∈ Ass(aK+N
N ) ⊆ Ass(M/N).

Lemma 2.4. Let N be a submodule of M with PM (N) = pn. Then for any submodule K of
M , PR((N : K)) = pr, where r ≤ n.

Proof. By Lemma 2.3, Ass( R
(N :K)) ⊆ Ass(M/N) = {p}. So PR((N : K)) = pr for some r.

Suppose r > n. Then pr−1 ⊆ pn. Also, by Lemma 1.7, pr−1 ̸⊆ (N : K). So there exists
a ∈ pr−1 such that aK ̸⊆ N . Since a ∈ pn and pnM ⊆ N , we get aK ⊆ N , a contradiction.
Therefore r ≤ n.
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Lemma 2.5. Let N be a proper submodule of M and a = Ann(M/N). Then Ass(R/a) ⊆
Ass(M/N). Also, Ass(R/a) = Ass(M/N) if every prime ideal in Ass(M/N) is isolated.

Proof. Taking K = M in Lemma 2.3, we get Ass(R/a) ⊆ Ass(M/N). Suppose every prime
ideal in Ass(M/N) is isolated. Since Ann(R/a) = Ann(M/N), Supp(R/a) = Supp(M/N),
and they have the same set of minimal elements. Therefore, we have

Ass(M/N) = minAss(M/N) = min Supp(M/N) =

min Supp(R/a) = minAss(R/a) ⊆ Ass(R/a).

Hence Ass(R/a) = Ass(M/N).

In the above lemma, the condition that all the prime ideals in Ass(M/N) must be isolated
cannot be omitted. For, if M is the Z-module Z⊕Z and N = 2Z⊕0, then Ass(M/N) = {2Z, 0}.
But since a = Ann(M/N) = 0, Ass(R/a) = {0}.

So PM (N) need not be equal to PR(a).

Theorem 2.6. Let N be a proper submodule of M and a = Ann(M/N). Then PM (N) is a
multiple of PR(a) as a product of prime ideals.

Proof. If PM (N) = pn for some prime ideal p in R, then taking K = M in Lemma 2.4 we get
PR(a) = pr, where r ≤ n. Hence PM (N) is a multiple of PR(a).

Now let PM (N) = p1
n1 · · · pknk , where pi’s are distinct primes. Then we have an RPE

filtration

(1) N
p1
⊂ N1 ⊂ · · ·

p1
⊂ Nn1

p2
⊂ Nn1+1 ⊂ · · ·

pi⊂ Nn1+···+ni

pi+1

⊂ · · ·
pk⊂ Nn1+···+nk

= M,

such that pi ̸⊆ pj for 1 ≤ i < j ≤ k. Let a
q1
⊂ a1 ⊂ · · ·

qm
⊂ am = R be an RPE filtration of R

over a. Then {q1, . . . , qm} = Ass(R/a) ⊆ Ass(M/N) [Lemma 2.5]. So PR(a) = p1
r1 · · · pkrk ,

where ri ≥ 0. Then by Remark 1.4, we can have an RPE filtration

(2) a
p1
⊂ a1 ⊂ · · ·

p1
⊂ ar1

p2
⊂ ar1+1 ⊂ · · ·

pi⊂ ar1+···+ri

pi+1

⊂ · · ·
pk⊂ ar1+···+rk = R.

Suppose ri > ni for some i and let i be the least such integer. Let N ′
i = Nn1+···+ni and

a′i = ar1+···+ri−1+ni . Then N ′
i = (N : p1

n1 · · · pini) and a′i = (a : p1
r1 · · · pi−1

ri−1pi
ni) by

Lemma 1.2. Let a ∈ a′i. Then

ap1
n1 · · · pini ⊆ ap1

r1 · · · pi−1
ri−1pi

ni ⊆ a = (N : M).

That is, aM ⊆ (N : p1
n1 · · · pini) = N ′

i . Therefore, a ∈ (N ′
i : M), and this implies a′i ⊆ (N ′

i :

M).
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We have a′i = ar1+···+ri−1+ni ⊂ ar1+···+ri from the filtration (2) since ni < ri. So we have
pi ∈ Ass(R/a′i), and therefore for some b ∈ R, pi = (a′i : b). Clearly (a′i : b) ⊆ ((N ′

i : M) : b). If
b ∈ (N ′

i : M), this implies p1
n1 · · · pinibM ⊆ N . That is, p1n1 · · · pinib ⊆ a. Then

(p1
n1−r1p2

n2−r2 · · · pi−1
(ni−1)−(ri−1)) b ⊆ (a : p1

r1 · · · pi−1
ri−1pi

ni) = a′i.

By assumption, nj ≥ rj for j = 1, . . . , i − 1. If nj = rj for j = 1, . . . , i − 1, then this implies
b ∈ a′i, i.e., (a′i : b) = R, a contradiction. If nj > rj for some j ∈ {1, . . . , i− 1}, then

p1
n1−r1p2

n2−r2 · · · pi−1
(ni−1)−(ri−1) ⊆ (a′i : b) = pi,

implies pj ⊆ pi for some j < i, a contradiction. So b /∈ (N ′
i : M). Then pi ⊆ ((N ′

i : M) : b) ⊆ q

for some q ∈ Ass( R
(N ′

i :M)
). From Lemma 2.3 and (1) we get Ass( R

(N ′
i :M)

) ⊆ Ass(M/N ′
i) =

{pi+1, . . . , pk}. This implies pi ⊆ pl for some l ∈ {i + 1, . . . , k}, which is not true. Therefore
ri ≤ ni for all i. Hence PM (N) is a multiple of PR(a).

Theorem 2.7. Let N be a proper submodule of M and a = Ann(M/N). If every prime ideal
in Ass(M/N) is isolated, then PR(a) = PM (N).

Proof. Let PM (N) = p1
n1 · · · pknk , where pi’s are distinct primes. Then by Lemma 2.5 and

Theorem 2.6 we have PR(a) = p1
r1 · · · pkrk , where 1 ≤ ri ≤ ni for 1 ≤ i ≤ k. So by Remark

1.4 we have RPE filtrations

N
p1
⊂ N1 ⊂ · · ·

p1
⊂ Nn1

p2
⊂ Nn1+1 ⊂ · · ·

pi⊂ Nn1+···+ni

pi+1

⊂ · · ·
pk⊂ Nn1+···+nk

= M ;

a
p1
⊂ a1 ⊂ · · ·

p1
⊂ ar1

p2
⊂ ar1+1 ⊂ · · ·

pi⊂ ar1+···+ri

pi+1

⊂ · · ·
pk⊂ ar1+···+rk = R.

Note that Ass(R/ar1) = {p2, . . . , pk} [Lemma 1.1].
Suppose ri < ni for some i. Since pi ̸⊆ pj whenever i ̸= j, without loss of generality, we

assume that i = 1 by applying Remark 1.4.
By Lemma 1.2, Nr1 = (N : p1

r1) and ar1 = (a : p1
r1). So for a ∈ R, we have

a ∈ ar1 ⇔ p1
r1a ⊆ a = (N : M)

⇔ p1
r1aM ⊆ N

⇔ aM ⊆ (N : p1
r1) = Nr1

⇔ a ∈ (Nr1 : M).
Therefore ar1 = (Nr1 : M). Since every prime ideal in Ass(M/Nr1) is isolated, by Lemma

2.5,
Ass(M/Nr1) = Ass(R/(Nr1 : M)) = Ass(R/ar1) = {p2, . . . , pk}.

Since
Nr1

p1
⊂ Nr1+1 ⊂ · · ·

p1
⊂ Nn1

p2
⊂ · · ·

pk⊂ Nn1+···+nk
= M,
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is an RPE filtration, p1 ∈ Ass(M/Nr1), a contradiction. Therefore ri = ni for all i. Hence
PR(a) = PM (N).
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