

Research Paper

THE STRONGLY ANNIHILATING-IDEAL GRAPH OF A COMMUTATIVE RING WITH RESPECT TO AN IDEAL

ZAHRA MAHMUDIANKORUIE AND MOHAMMAD HASAN NADERI*

ABSTRACT. For a commutative ring R with identity, $SAG(R)$ be the graph whose vertices are the nonzero annihilating ideals of R and with two distinct nonzero annihilating ideals I and J joined by an edge when $I \cap \text{Ann}(J) \neq (0)$ and $J \cap \text{Ann}(I) \neq (0)$. Also, strongly Annihilating-ideal graph with respect to an ideal (I) , that it is shown by $SAG_I(R)$, is the graph whose vertices are all ideals of R such that $K \not\subseteq I$ and for some ideal J that $J \not\subseteq I$, $KJ \subseteq I$, and distinct vertices K and J are adjacent if and only if $J \cap \text{Ann}_I(K) \not\subseteq I$ and $K \cap \text{Ann}_I(J) \not\subseteq I$. In this paper, we study the notion of $SAG_I(R)$. Also, among other results, we give some results about the relationships between $SAG_I(R)$ and $SAG(R/I)$.

1. INTRODUCTION

Throughout this paper, all rings are assumed to be commutative with identity. First we state some definitions and notions used throughout the paper. The *girth* of a graph G , denoted by

DOI: 10.22034/as.2025.20379.1661

MSC(2010): Primary: 20F05; Secondary: 05C05.

Keywords: Commutative ring, Girth, Strongly annihilating-ideal graph.

Received: 26 July 2023, Accepted: 15 February 2025.

*Corresponding author

$\text{gr}(G)$, is the length of a shortest cycle in G . If G has no cycles, we define the girth of G to be infinite. A graph is called complete if all its vertices are connected. We denote the set of zero-divisors of R by $Z(R)$, and we write $I \trianglelefteq R$ to denote I is an ideal of R . A *uniserial* ring is a ring whose ideals are totally ordered by inclusion. For ideals I and J , $\text{Ann}_I(J) = \{r \in R \mid rj \in I, \text{ for every } j \in J\}$ and if $I = (0)$, then we write $\text{Ann}(J)$ instead of $\text{Ann}_I(J)$. Also $A(R) = \{J \trianglelefteq R \mid \text{Ann}(J) \neq 0\}$ and $N_I(R) = \{J \trianglelefteq R \mid J \not\subseteq I\}$.

A nonzero ideal I of R is called an *annihilating-ideal* if there exists a nonzero ideal J of R such that $IJ = 0$. In [2] Anderson and Livingston defined the zero-divisor graph of R , $\Gamma(R)$, with vertices $Z(R) \setminus \{0\}$, and for distinct $x, y \in Z(R) \setminus \{0\}$, the vertices x and y are adjacent if and only if $xy = 0$. As an extension of the zero-divisor graph of a commutative ring R , Redmond defined in [6], the ideal-based *zero-divisor graph* of a commutative ring R , denoted by $\Gamma_I(R)$, where for an ideal I of R , the vertices of $\Gamma_I(R)$ are $\{x \in R - I \mid xy \in I \text{ for some } y \in R\}$, and distinct vertices x and y are adjacent if and only if $xy \in I$. He found some relationships between $\Gamma(\frac{R}{I})$ and $\Gamma_I(R)$. Later in [3], Behboodi and Rakeei introduced the *annihilating-ideal graph* of R , $\text{AG}(R)$, with the vertex set $A(R)^* = A(R) \setminus \{0\}$ and two distinct vertices joined by an edge when the product of the vertices is the zero ideal. Also Aliniaifard and Behboodi in [1], defined the *annihilating-ideal graph with respect to an ideal I* of R , $\text{AG}_I(R)$, whose vertices are $A_I(R) = \{K \in N_I(R) \mid KJ \subseteq I \text{ for some } J \in N_I(R)\}$ and distinct vertices K and J are adjacent if and only if $KJ \subseteq I$. Also they get some relationships between $\text{AG}(R)$ and $\text{AG}_I(R)$ (see also [4]). Tohidi, Nikmehr and Nikandish in [8] defined the *strongly annihilating-ideal graph* of R , $\text{SAG}(R)$, with the vertex set $A(R)^*$ and two distinct vertices I and J are adjacent if and only if $I \cap \text{Ann}(J) \neq (0)$ and $J \cap \text{Ann}(I) \neq (0)$.

In this paper, we extend the notion of the strongly annihilating-ideal graph of a ring R to the *strongly annihilating-ideal graph with respect to an ideal I* of R , denoted $\text{SAG}_I(R)$, whose the set of vertices is $A_I(R)$ and two distinct vertices K and J are adjacent if $K \cap \text{Ann}_I(J) \not\subseteq I$ and $J \cap \text{Ann}_I(K) \not\subseteq I$. Thus, $\text{AG}_I(R)$ is a subgraph of $\text{SAG}_I(R)$. Also for $I = (0)$, $\text{SAG}_I(R) = \text{SAG}(R)$. In Section 2, we prove some basic properties of $\text{SAG}_I(R)$. In particular, it is proved that $\text{SAG}_I(R)$ is connected with diameter at most 2 and $\text{gr}(\text{SAG}_I(R)) \leq 4$, if it contains a cycle. In Section 3, we prove some relationships between $\text{SAG}_I(R)$ and $\text{SAG}(\frac{R}{I})$, especially among other results, we get the condition that $\text{SAG}_I(R)$ and $\text{SAG}(\frac{R}{I})$ are isomorphic. At last in Section 4, we prove some results about connectivity of $\text{SAG}_I(R)$.

2. BASIC PROPERTIES OF $\text{SAG}_I(R)$

Let R be a commutative ring with identity.

Lemma 2.1. *Let I be an ideal of ring R and $T, J \in \nu(\text{SAG}_I(R))$. Then the following statements hold*

- (1) If two vertices T and J are not adjacent, then $\text{Ann}_I(TJ) = \text{Ann}_I(T)$ or $\text{Ann}_I(TJ) = \text{Ann}_I(J)$. If $\sqrt{I} = I$, then the reverse is true.
- (2) If two vertices T and J are adjacent in $\text{AG}_I(R)$, then these two vertices are also adjacent in $\text{SAG}_I(R)$. Therefore, $\text{AG}_I(R)$ is a subgraph of $\text{SAG}_I(R)$.
- (3) If $\text{Ann}_I(J) \not\subseteq \text{Ann}_I(T)$ and $\text{Ann}_I(J) \not\subseteq \text{Ann}_I(T)$, then two vertices T and J are connected. In addition, if $\sqrt{I} = I$, then the reverse is true.
- (4) If $d_{\text{AG}_I(R)}(T, J) = 3$, then T and J are connected in $\text{SAG}_I(R)$.
- (5) Let for a positive integer $n \geq 1$, $R = R_1 \times \cdots \times R_n$, where for every $1 \leq i \leq n$, R_i is a ring, $I = I_1 \times \cdots \times I_n$ an ideal of R , and $J = J_1 \times \cdots \times J_n$ and $K = K_1 \times \cdots \times K_n$ are two vertices of $\text{SAG}_I(R)$. If $J_s \cap \text{Ann}_{I_s}(K_s) \not\subseteq I_s$ and $K_t \cap \text{Ann}_{I_t}(J_t) \not\subseteq I_t$, for some $1 \leq s, t \leq n$, then J is adjacent to K in $\text{SAG}_I(R)$. In particular, if J_s is adjacent to K_s in $\text{SAG}_{I_s}(R_s)$ or $J_s = K_s$, $J_s \cap \text{Ann}(J_s) \not\subseteq I_s$, for some $1 \leq s \leq n$, then J and K are adjacent in $\text{SAG}_I(R)$.
- (6) If T and J are not connected in $\text{SAG}_I(R)$, then $d_{\text{AG}_I(R)}(T, J) = 2$.

Proof. (1) Let T and J are not connected. Evidently $\text{Ann}_I(T) \subseteq \text{Ann}_I(TJ)$ and $\text{Ann}_I(J) \subseteq \text{Ann}_I(TJ)$. In contrary, let $\text{Ann}_I(TJ) \not\subseteq \text{Ann}_I(T)$ and $\text{Ann}_I(TJ) \not\subseteq \text{Ann}_I(J)$. Then there exist $r_1, r_2 \in R$ such that

$$(I) \quad r_1 TJ \subseteq I, \quad r_1 T \not\subseteq I \text{ and } r_2 TJ \subseteq I, \quad r_2 J \not\subseteq I.$$

We consider the following two cases:

Case 1) $r_1 = r_2$. Then $r_1 t \notin I$ and $r_1 j \notin I$, for some $j \in J$ and $t \in T$. Therefore $r_1 j \in J \cap \text{Ann}_I(T)$ and $r_1 t \in T \cap \text{Ann}_I(J)$, so, T and J are connected, a contradiction.

Case 2) $r_1 \neq r_2$. If $r_1 J \not\subseteq I$, then for some $j \in J$, $r_1 j \notin I$. So by (I), $r_1 j \in J \cap \text{Ann}_I(T)$. Also by (I), $I \not\supseteq r_1 T \subseteq T \cap \text{Ann}_I(J)$. Then T and J are connected, a contradiction. So $r_1 J \subseteq I$. Similarly, it can be proved $r_2 T \subseteq I$. Therefore

$$(II) \quad r_1 J \subseteq I \text{ and } r_2 T \subseteq I.$$

Then by (I) and (II), $(r_1 - r_2) J \not\subseteq I$ and $(r_1 - r_2) T \not\subseteq I$, so $(r_1 - r_2) TJ \subseteq I$. Therefore $J \cap \text{Ann}_I(T) \not\subseteq I$ and $T \cap \text{Ann}_I(J) \not\subseteq I$. Hence T and J are connected, a contradiction.

Now, let $\sqrt{I} = I$ and without lose of generality, let $\text{Ann}_I(TJ) = \text{Ann}_I(J)$. If $j \in J \cap \text{Ann}_I(J)$, then $j^2 \in I$, so $j \in I$, thus $J \cap \text{Ann}_I(J) \subseteq I$. Therefore:

$$J \cap \text{Ann}_I(T) \subseteq J \cap \text{Ann}_I(TJ) = J \cap \text{Ann}_I(J) \subseteq I.$$

Then T and J are not adjacent.

- (2) It is obtained by the definition of the edges in $\text{SAG}_I(R)$.

(3) In contrary, suppose that T and J are not connected. Without lose of generality, we can get by (1), $\text{Ann}_I(TJ) \subseteq \text{Ann}_I(T)$. Since $\text{Ann}_I(J) \subseteq \text{Ann}_I(TJ)$, then $\text{Ann}_I(J) \subseteq \text{Ann}_I(T)$, a contradiction.

Now, suppose that T and J are connected and $\sqrt{I} = I$. In contrary, suppose that $\text{Ann}_I(J) \subseteq \text{Ann}_I(T)$. Then $T \cap \text{Ann}_I(T) \subseteq I$. As a result, $T \cap \text{Ann}_I(J) \subseteq I$. This conclusion contradicts the definition of an edge in $\text{SAG}_I(R)$.

(4) Let $d_{\text{AG}_I(R)}(T, J) = 3$. Then there is a path like $T — K — L — J$, so $LJ \subseteq I$ and $TL \not\subseteq I$. Thus $tl \notin I$, for some $t \in T$ and $l \in L$. On the other hand, since $tl \in L$ and $LJ \subseteq I$, $tl \in \text{Ann}_I(J)$. Therefore $tl \in (T \cap \text{Ann}_I(J)) \setminus I$, so $T \cap \text{Ann}_I(J) \not\subseteq I$.

In the same way, it can be proved $J \cap \text{Ann}_I(T) \not\subseteq I$. Then the vertices T and J are adjacent in $\text{SAG}_I(R)$.

(5) Since $J_s \cap \text{Ann}_{I_s}(K_s) \not\subseteq I_s$, there exists an element $a_s \in J_s \setminus I_s$ such that $a_s K_s \subseteq I_s$ and thus $(0 \dots 0, a_s, 0, \dots, 0) \in J \cap \text{Ann}_I(K)$. Similarly, $K_t \cap \text{Ann}_{I_t}(J_t) \not\subseteq I_t$ implies that $K \cap \text{Ann}_I(J) \not\subseteq I$. Hence J and K are connected in $\text{SAG}_I(R)$. The “in particular” statement is now clear.

(6) Suppose that T and J are not connected in $\text{SAG}_I(R)$. By (2), T and J are not connected in $\text{AG}_I(R)$, so by [1, Theorem 3.3], $d_{\text{AG}_I(R)}(T, J) = 2$ or 3. If $d_{\text{AG}_I(R)}(T, J) = 3$, then T and J are connected in $\text{SAG}_I(R)$ by (4), a contradiction. Therefore, $d_{\text{AG}_I(R)}(T, J) = 2$.

□

By Lemma 2.1(2), $\text{AG}_I(R)$ is a subgraph of $\text{SAG}_I(R)$, but the next example shows that these two graphs are not identical.

Example 2.2. The ideals of \mathbb{Z}_8 are $I_1 = \{0\}$, $I_2 = \{0, 4\}$, $I_3 = \{0, 2, 4, 6\}$ and $I_4 = \mathbb{Z}_8$. Also, the ideals of \mathbb{Z}_2 are $J_1 = \{0\}$ and $J_2 = \mathbb{Z}_2$. So, the ideals of $\mathbb{Z}_8 \times \mathbb{Z}_2$ are as follows

$$I_1 \times J_1 = \{(0, 0)\}$$

$$I_1 \times J_2 = \{(0, 0), (0, 1)\}$$

$$I_2 \times J_1 = \{(0, 0), (4, 0)\}$$

$$I_2 \times J_2 = \{(0, 0), (0, 1), (4, 0), (4, 1)\}$$

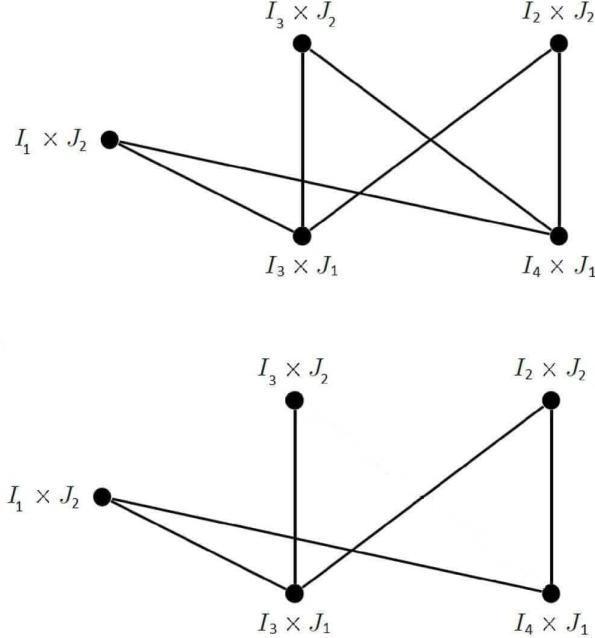
$$I_3 \times J_1 = \{(0, 0), (2, 0), (4, 0), (6, 0)\}$$

$$I_3 \times J_2 = \{(0, 0), (2, 0), (4, 0), (6, 0), (0, 1), (2, 1), (4, 1), (6, 1)\}$$

$$I_4 \times J_1 = \{(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0), (7, 0)\}$$

$$I_4 \times J_2 = \{(0,0), (1,0), (2,0), (3,0), (4,0), (5,0), (6,0), (7,0), (0,1), (1,1), (2,1), (3,1), (4,1), (5,1), (6,1), (7,1)\}.$$

Hence, $\text{SAG}_{I_2 \times J_1}(\mathbb{Z}_8 \times \mathbb{Z}_2)$ and $\text{AG}_{I_2 \times J_1}(\mathbb{Z}_8 \times \mathbb{Z}_2)$ are as follows, respectively



Evidently

$$d_{\text{AG}_{I_2 \times J_1}(\mathbb{Z}_8 \times \mathbb{Z}_2)}(I_3 \times J_2, I_4 \times J_1) = 3.$$

However

$$d_{\text{SAG}_{I_2 \times J_1}(\mathbb{Z}_8 \times \mathbb{Z}_2)}(I_3 \times J_2, I_4 \times J_1) = 1.$$

Theorem 2.3. *Let R be a ring. Then*

- (1) $\text{SAG}_I(R)$ is a connected graph.
- (2) $\text{diam}(\text{SAG}_I(R)) \leq 2$.
- (3) If $\text{SAG}_I(R)$ contains at least one cycle, then $\text{gr}(\text{SAG}_I(R)) \leq 4$.

Proof. (1) By Lemma 2.1(2), $\text{AG}_I(R)$ is a subgraph of $\text{SAG}_I(R)$. According to [1, Theorem 3.3], $\text{AG}_I(R)$ is connected, hence $\text{SAG}_I(R)$ is connected.

- (2) Let T and J be two vertices of $\text{SAG}_I(R)$.

- a) If T and J are adjacent, then the distance between T and J in $\text{SAG}_I(R)$ is equal to 1.
- b) If T and J are not adjacent, then the distance between T and J in $\text{AG}_I(R)$ is equal to 2, by Lemma 2.1(6).

According to the previous lemma, $\text{AG}_I(R)$ is a subgraph of $\text{SAG}_I(R)$, hence $d_{\text{SAG}_I(R)}(T, J) = 2$. Therefore, by (a) and (b), $\text{diam}(\text{SAG}_I(R)) \leq 2$.

(3) In contrary, let $\text{gr}(\text{SAG}_I(R)) > 4$. Hence, there is a path like the following sequence, which is one of the shortest sequences in $\text{SAG}_I(R)$:

$$(1) \quad I_1 — I_2 — I_3 — I_4 — I_5 — I_6 — \cdots — I_{n-1} — I_n — I_1.$$

Since I_1 and I_3 are not connected, by Lemma 2.1(6), $d_{\text{AG}_I(R)}(I_1, I_3) = 2$. Therefore, $L_1 \in V(\text{AG}_I(R))$, where $I_1 — L_1 — I_3$ is a path from I_1 to I_3 in $\text{AG}_I(R)$. If $L_1 = I_{i_0}$, where $1 \leq i_0 \leq n$ and $i_0 \neq 2, n$, then I_1 and I_{i_0} are adjacent in $\text{AG}_I(R)$. Therefore, according to Lemma 2.1(2), I_1 and I_{i_0} are adjacent in $\text{SAG}_I(R)$. This conclusion contradicts (1). Hence, for each $1 \leq i \leq n$, where $i \neq 2, n$, $L_1 \neq I_i$. Now, we prove that $L_1 \neq I_n$. If in contrary, $L_1 = I_n$, then

$$L_1 — I_3 — I_4 — \cdots — I_{n-1} — L_1.$$

It will be a cycle of the length of $n - 2$ in $\text{SAG}_I(R)$. This conclusion contradicts Relation (1). Therefore, $L_1 \neq I_n$. Since I_3 and I_5 are not connected in $\text{SAG}_I(R)$, then according to Lemma 2.1(6), $d_{\text{AG}_I(R)}(I_3, I_5) = 2$, hence, $L_2 \in V(\text{AG}_I(R))$ where

$$I_1 — L_1 — I_3 — L_2 — I_5.$$

is a path from I_1 to I_5 in $\text{AG}_I(R)$.

If $L_2 = I_{i_0}$ when $1 \leq i_0 \leq n$ and $i_0 \neq 4$, then I_3 and I_{i_0} are adjacent in $\text{AG}_I(R)$. Therefore, according to Lemma 2.1(2), these two vertices are adjacent in $\text{SAG}_I(R)$. This conclusion contradicts Relation (1). Thus, for each $1 \leq i \leq n$ when $i \neq 4$, there will be $L_2 \neq I_i$. We should now prove that $L_2 \neq L_1$. Let $L_2 = L_1$, then

$$I_1 — L_1 — I_5 — I_6 — \cdots — I_{n-1} — I_n — I_1.$$

This is a cycle of length $n - 2$ in $\text{SAG}_I(R)$. This conclusion contradicts Relation (1). Therefore, $L_2 \neq L_1$.

Similarly, the procedure is kept on. Now if I_1 and I_n are adjacent in $\text{AG}_I(R)$, then

$$I_1 — L_1 — I_3 — L_2 — I_5 — L_3 — I_7 — \cdots — L_s — I_n — I_1.$$

This is a cycle of length $n > 4$ in $\text{AG}_I(R)$. According to [1, Theorem 3.3], $\text{gr}(\text{AG}_I(R)) \leq 4$. At the same time, $\text{AG}_I(R)$ is the subgraph of $\text{SAG}_I(R)$; hence, $\text{gr}(\text{SAG}_I(R)) \leq 4$. This conclusion contradicts Relation (1). Therefore, the contradiction is rejected, and the theorem is proven. If I_1 and I_n are not connected in $\text{AG}_I(R)$, hence

$$I_1 — L_1 — I_3 — L_2 — I_5 — \cdots — L_s — I_n — L_{s+1} — I_1.$$

This is a cycle of $n + 1$ in $\text{AG}_I(R)$. According to [1, Theorem 3.3], $\text{gr}(\text{AG}_I(R)) \leq 4$. Then by Lemma 2.1(2), $\text{gr}(\text{SAG}_I(R)) \leq 4$. This conclusion contradicts Relation (1), hence, the contradiction is rejected and the proof is proved. \square

Corollary 2.4. *If $\text{AG}_I(R)$ contains a cycle of the length n , then this cycle also exists in $\text{SAG}_I(R)$. If $\text{SAG}_I(R)$ includes the following n -long cycle:*

$$I_1 — I_2 — I_3 — I_4 — I_5 — \cdots — I_{n-1} — I_n — I_1 .$$

Then $\text{AG}_I(R)$ includes one of the following cycles of the length either n or $n+1$:

$$I_1 — L_1 — I_2 — L_2 — I_3 — \cdots — L_s — I_n — I_1 .$$

or

$$I_1 — L_1 — I_2 — L_2 — I_3 — \cdots — L_s — I_n — L_{s+1} — I_1 .$$

where, $L_1, \dots, L_{s+1} \in V(\text{AG}_I(R))$.

Lemma 2.5. *Let I and L be the ideals of R such that for every $n \in \mathbb{N}$, $L^n \subseteq I$. Then for every ideal J of R such that $J \not\subseteq I$, $\text{Ann}_I(L) \cap J \not\subseteq I$.*

Proof. Let J be an ideal of R such that $J \not\subseteq I$ and $J \cap \text{Ann}_I(L) \subseteq I$. Then $JL \not\subseteq I$. Now, let k be the smallest natural number such that $JL^{k-1} \not\subseteq I$. Since $JL^{k-1} \subseteq \text{Ann}_I(L)$ and $JL^{k-1} \subseteq J$, $J \cap \text{Ann}_I(L) \not\subseteq I$. This conclusion contradicts the assumption, and the proof is complete. \square

3. RELATIONSHIPS BETWEEN $\text{SAG}_I(R)$ AND $\text{SAG}(\frac{R}{I})$

Let I be an ideal of R and $\phi : R \rightarrow \frac{R}{I}$, where for every $r \in R$, $\phi(r) = r + I$. For every $r \in R$ and ideal J of R , we denote $\phi(r)$ by \bar{r} , and $\phi(J)$ by \bar{J} .

Lemma 3.1. *Let R be a ring and let I_1, I_2, I, J and K be some ideals of R such that $I_1, I_2 \subseteq I$.*

Then the following statements are equivalent:

- (1) $(J + I_1) \cap \text{Ann}_I(K + I_2) \not\subseteq I$.
- (2) $(J + I_1) \cap \text{Ann}_I(K) \not\subseteq I$.
- (3) $J \cap \text{Ann}_I(K + I_2) \not\subseteq I$.
- (4) $J \cap \text{Ann}_I(K) \not\subseteq I$.
- (5) $\bar{J} \cap \text{Ann}(\bar{K}) \neq (0)$.

Proof. Since for every ideals A, B, I and I_0 of R , such that $I_0 \subseteq I$, $\text{Ann}_I(A + I_0) = \text{Ann}_I(A)$, (1) and (2) (similarly, (3) and (4)) are equivalent. Now, evidently

$$(A + I_0) \cap \text{Ann}_I(B) \supseteq (A \cap \text{Ann}_I(B)) + (I_0 \cap \text{Ann}_I(B)) = (A \cap \text{Ann}_I(B)) + I_0$$

so, if $x \in ((A + I_0) \cap \text{Ann}_I(B)) \setminus I$, then there exists $x = a + i_0 \in A + I_0 \setminus I$, for some $a \in A$ and $i_0 \in I_0$, such that $xB \subseteq I$, then $a \in (A \cap \text{Ann}_I(B)) \setminus I$. Thus, $(A + I_0) \cap \text{Ann}_I(B) \not\subseteq I$ if and only if $A \cap \text{Ann}_I(B) \not\subseteq I$. Therefore (1) and (3) (similarly, (2) and (4)) are equivalent.

Also, it is easy to see that (4) and (5) are equivalent. \square

Theorem 3.2. *Let I be an ideal of a ring R , and let $J, K \in N_I(R)$. Then the following statements are true:*

- (1) *If $\bar{J} \neq \bar{K}$, then J is adjacent to K in $SAG_I(R)$ if and only if \bar{J} is adjacent to \bar{K} in $SAG(\frac{R}{I})$.*
- (2) *If $\bar{J} = \bar{K}$, then J is adjacent to K in $SAG_I(R)$ if and only if $J \cap \text{Ann}_I(J) \not\subseteq I$.*

Proof. It is an easy consequence of Lemma 3.1. \square

Corollary 3.3. *Let J and K be (distinct) adjacent vertices in $SAG_I(R)$. Then all (distinct) ideals of the form $J + I_1$ is adjacent to all ideals of the form $K + I_2$ in $SAG_I(R)$, where I_1 and I_2 are ideals of R and $I_1, I_2 \subseteq I$. If $J \cap \text{Ann}_I(J) \not\subseteq I$, then distinct ideals of the forms $J + I_1$, for every ideals I_1 of R and $I_1 \subseteq I$, are adjacent in $SAG_I(R)$.*

Proof. It is clear that $\bar{J} = \bar{K}$ if and only if $J + I = K + I$. Now the result follows from Lemma 3.1 and Theorem 3.2. \square

Corollary 3.4. *Let I be an ideal of a ring R . Then $SAG_I(R)$ contain a copy of $SAG(\frac{R}{I})$.*

Proof. Since there is a one-to-one correspondence between the ideals of R that contain I , and the ideals of $\frac{R}{I}$, the result is an immediate consequence of Theorem 3.2(1). \square

Now, let's check when the graphs $SAG_I(R)$ and $SAG(\frac{R}{I})$ are isomorphic. First, we introduce some symbols.

Notation 1. *Let R be a ring and I be an ideal of R . For simplicity, let $V = V(SAG_I(R))$ and $V' = V(SAG(\frac{R}{I}))$. For any ideal $I \subsetneq K$ of R , set*

$$C(K) = \{T \mid I \not\subseteq T \text{ is an ideal of } R, \text{ and } T + I = K\}.$$

For distinct ideals K and J of R , where $I \subsetneq J, K$, evidently, $C(K) \cap C(J) = \emptyset$. If for an $I \subset K$, $K \in V$, we call the set $C(K)$ the column of K in $SAG_I(R)$. Also, set:

$$\mathcal{M} = \{K \mid K \in V, C(K) \neq \emptyset\}.$$

By Theorem 3.2 and the above notation, if $K \in V$, then the following two cases can be considered

- 1) If $I \subset K$, then $\frac{K}{I} \in V'$.
- 2) If $I \not\subseteq K$, then $K + I \in V$, therefore $\frac{K+I}{I} \in V'$.

Thus, if K is a vertex of $\text{SAG}_I(R)$, then either $\frac{K}{I}$ is a vertex of $\text{SAG}(\frac{R}{I})$ or $\frac{J}{I}$ is a vertex of $\text{SAG}(\frac{R}{I})$, for an ideal J that $K \in C(J)$. Hence, all vertices of $\text{SAG}_I(R)$ can be determined in this method and the following theorem explains how to draw the edges of $\text{SAG}_I(R)$.

Theorem 3.5. *With our notations,*

- a) *If L and K are adjacent in $\text{SAG}_I(R)$, then L is connected to all members of the column of K .*
- b) *If $I \subset K \in V$ and $K \cap \text{Ann}_I(K) \not\subseteq I$, then K is adjacent with all members of its column. Moreover, all members of K column are connected.*
- c) *If $I \subset K \in V$ and $K \cap \text{Ann}_I(K) \subseteq I$, then K is not adjacent with any members of its column. In addition, no two members of column K are connected to each other.*

Proof. It is enough to note that for every ideals A , B and I of R , $\text{Ann}_I(A + I) = \text{Ann}_I(A)$. Also,

$$(A + I) \cap \text{Ann}_I(B) \supseteq (A \cap \text{Ann}_I(B)) + (I \cap \text{Ann}_I(B)) = (A \cap \text{Ann}_I(B)) + I$$

then $(A + I) \cap \text{Ann}_I(B) \not\subseteq I$ if and only if $A \cap \text{Ann}_I(B) \not\subseteq I$. \square

Corollary 3.6. $\text{SAG}_I(R) \cong \text{SAG}(\frac{R}{I})$ if and only if $\mathcal{M} = \emptyset$.

Corollary 3.7. *If R is a uniserial ring, then $\text{SAG}_I(R) \cong \text{SAG}(\frac{R}{I})$.*

Proposition 3.8. *For a ring R , $\text{SAG}_I(R)$ is a complete graph if and only if $\text{SAG}(\frac{R}{I})$ is complete and for every $J \in \mathcal{M}$, $J \cap \text{Ann}_I(J) \not\subseteq I$.*

Proof. First suppose that $\text{SAG}_I(R)$ is complete and \bar{K} and \bar{J} are two vertex of $\text{SAG}(\frac{R}{I})$. Evidently, $J \neq K$, so J and K are adjacent in $\text{SAG}_I(R)$. Then \bar{K} and \bar{J} are adjacent in $\text{SAG}(\frac{R}{I})$, by Theorem 3.2 (1).

Suppose that $J \in \mathcal{M}$ such that $J \cap \text{Ann}_I(J) \subseteq I$, then there exists an $T \in C(J)$. Therefore, J and T are not adjacent by Theorem 3.5 (c), a contradiction. Then $J \cap \text{Ann}_I(J) \not\subseteq I$.

Now, let $\text{SAG}(\frac{R}{I})$ be complete and for every $J \in \mathcal{M}$, $J \cap \text{Ann}_I(J) \not\subseteq I$. Let K and L be two distinct vertices of $\text{SAG}_I(R)$. If $\bar{J} \neq \bar{K}$, then J and K are adjacent, by Theorem 3.2 (1). If $\bar{J} = \bar{K}$, then J and K are adjacent, by Theorem 3.2 (2). Therefore $\text{SAG}_I(R)$ is complete. \square

The next example shows $\text{SAG}_I(R)$ and $\text{SAG}(\frac{R}{I})$ are not isomorphic in general.

Example 3.9. Let $R = \mathbb{Z}_8 \times \mathbb{Z}_2$ and $I = I_2 \times J_1$. By Example 2.2, the proper ideals of $\frac{R}{I}$ are as follows

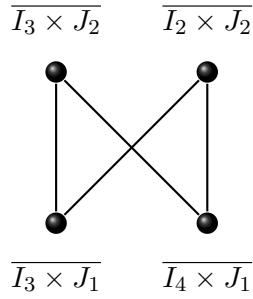
$$\overline{I_2 \times J_2} = \{(\overline{0,0}), (\overline{0,1})\} = \overline{I_1 \times J_2}$$

$$\overline{I_3 \times J_1} = \{(\overline{0,0}), (\overline{2,0})\}$$

$$\overline{I_3 \times J_2} = \{(\overline{0,0}), (\overline{2,0}), (\overline{0,1}), (\overline{2,1})\}$$

$$\overline{I_4 \times J_1} = \{(\overline{0,0}), (\overline{1,0}), (\overline{2,0}), (\overline{3,0})\}$$

Hence, $\text{SAG}_I(\frac{R}{I})$ is as follows



Then, by Example 2.2, $\text{SAG}_I(R) \not\cong \text{SAG}(\frac{R}{I})$.

In addition, $I_1 \times J_2 \in C(I_2 \times J_2)$ and $(I_1 \times J_2) \cap \text{Ann}_{J_2 \times I_1}(I_2 \times J_2) = J_2 \times I_1$, then as mentioned in Theorem 3.5(c), $I_2 \times J_2$ is not connected to $I_1 \times J_2$ in $\text{SAG}_I(R)$.

4. COMPLETENESS

Theorem 4.1. Let I be a non-trivial ideal of a ring R , and $\frac{R}{I} \cong F_1 \times F_2$, where F_1 and F_2 are two fields. Then $\text{SAG}_I(R)$ is not complete.

Proof. Since F_1 and F_2 are considered fields, the proper (maximal) ideals of $F_1 \times F_2$ are $F_1 \times (0)$ and $(0) \times F_2$. Therefore, according to the assumption, $\frac{R}{I} = \frac{K}{I} \times \frac{J}{I}$, in which K and J are proper (maximal) ideals of R that contain I , $K \cap J = I$, $K^2 + I = K$, $J^2 + I = J$, $J \cap \text{Ann}_I(J) \subseteq I$ and $K \cap \text{Ann}_I(K) \subseteq I$.

Since $\text{SAG}(\frac{R}{I})$ is complete, by Proposition 3.8, $K, J \notin \mathcal{M}$. If L is another maximal ideal of R , where $J \neq L \neq K$, then $L + I = R$, so $LJ + I = J$. Since $I \not\subseteq LJ$, $J \in \mathcal{M}$, a contradiction. Therefore K and J are maximal ideals of R .

If $a \in J \setminus I$, then $\frac{\leq a \geq + I}{I} = \frac{J}{I}$, so $\langle a \rangle + I = J$. Since $J \notin \mathcal{M}$, then $J = \langle a \rangle$. Similarly, for every $b \in K \setminus I$, $K = \langle b \rangle$. Evidently, $a^2 \in J \setminus I$, so $J = \langle a^2 \rangle$, then $a(1 - ra) = 0$, for some $r \in R$. Since a is not invertible, $1 - ra \neq 0$, thus either $1 - ra \in J$ or $1 - ra \in K$. Since $ra \in J$, $1 - ra \in K \setminus I$ and thus $K = \langle 1 - ra \rangle$. Thus, $JK = 0$. But, since J and K are both maximal ideals of R , they are comaximal and thus $JK = J \cap K$. Therefore, $I = 0$, which contradicts the assumption, thus $\text{SAG}_I(R)$ is not complete. \square

Lemma 4.2. *SAG_I(R) is complete if and only if for every $T \in V$, $\text{Ann}(\frac{T+I}{I}) \in \text{ESS}(\frac{R}{I})$.*

Proof. Let SAG_I(R) be complete. According to Lemma 3.8, SAG(R/I) is complete. Therefore, by [8, Theorem 3.2], R satisfies in one of the following conditions:

- a) $\frac{R}{I} = F_1 \times F_2$, in which F_1 and F_2 are fields.
- b) For every $T \in V$, $\text{Ann}(\frac{T+I}{I}) \in \text{ESS}(\frac{R}{I})$.

According to Theorem 4.1, only the second case occurs.

Now, suppose that for every $T \in V$, $\text{Ann}(\frac{T+I}{I}) \in \text{ESS}(\frac{R}{I})$. Then by [8, Theorem 3.2], SAG_I(R) is a complete graph.

Now, consider $J \in \mathcal{M}$. Since $\frac{J}{I} \in V'$, then $\text{Ann}(\frac{J}{I}) \in \text{ESS}(\frac{R}{I})$. So by the definition of $\text{ESS}(\frac{R}{I})$, $\text{Ann}(\frac{J}{I}) \cap \frac{J}{I} \neq I$. As a result, $\text{Ann}_I(J) \cap J \not\subseteq I$. Therefore, According to Lemma 3.8, SAG_I(R) is complete. \square

Theorem 4.3. *Let R be a ring and I be an ideal of R. If $Z(\frac{R}{I})$ is a zero ideal of $\frac{R}{I}$ when $Z^2(\frac{R}{I}) = I$, then SAG_I(R) is complete.*

Proof. According to [1, Theorem 6.5], AG_I(R) is complete. Hence, according to Part (2) of Lemma 2.1, SAG_I(R) is complete, too. \square

Theorem 4.4. *Let I be an ideal of a ring R. If $\sqrt{I} = I$, then SAG_I(R) is not complete.*

Proof. Suppose by contradiction, SAG_I(R) is complete. According to Lemma 4.2, for every $T \in V'$, $\text{Ann}(\frac{T}{I}) \in \text{ESS}(\frac{R}{I})$, so $\text{Ann}(\frac{T}{I}) \cap \frac{T}{I} \neq 0$. Then, there exists $t_0 \in T \setminus I$, such that $t_0 T \subseteq I$, thus $t_0^2 \in I$. Now, Since $\sqrt{I} = I$, $t_0 \in I$, a contradiction. \square

REFERENCES

- [1] F. Aliniaeifard, M. Behboodi, E. Mehdi Nezhad and A. M. Rahimi, *The annihilating-ideal graph of a commutative ring with respect to an ideal*, Comm. Alg., **42** No. 5 (2014) 2269-2284.
- [2] D. F. Anderson and P. S. Livingston, *The zero-divisor graph of a commutative ring*, J. Algebra, **217** (1999) 434-447.
- [3] M. Behboodi and Z. Rakeei, *The annihilating-ideal graph of commutative rings I*, J. Alg. Appl., **10** No. 4 (2011) 727-739.
- [4] Z. Mahmudiankorue and M. H. Naderi, *Some Remarks on the Annihilating-Ideal Graph of a Commutative with Respect to an Ideal*, Math. Interdisc. Res., **9** No. 1 (2024) 111-129.
- [5] B. R. McDonald, *Finite Rings with Identity*, Pure and Applied Mathematics 28, Marcel Dekker Inc., New York, 1974.
- [6] S. P. Redmond, *An ideal-based zero-divisor graph of a commutative ring*, Comm. Alg., **31** (2003) 4425-4443.

- [7] R. Y. Sharp, *Steps in Commutative Algebra*, London Mathematical Society Student Texts 51, Cambridge University Press, Cambridge, 2000.
- [8] N. K. Tohidi, M. J. Nikmehr and R. Nikandish, *On the strongly annihilating-ideal graph of a commutative ring*, Discrete Math. Algorithms Appl., **9** No. 2 (2017) 1750028.

Zahra Mahmudiankorue

Department of Mathematics, Faculty of Science,
University of Qom, Qom, Iran.

mahmudianz@gmail.com

Mohammad Hasan Naderi

Department of Mathematics, Faculty of Science,
University of Qom, Qom, Iran.

mh.naderi@qom.ac.ir