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THE STRONGLY ANNIHILATING-IDEAL GRAPH OF A COMMUTATIVE
RING WITH RESPECT TO AN IDEAL

ZAHRA MAHMUDIANKORUIE AND MOHAMMAD HASAN NADERI∗

Abstract. For a commutative ring R with identity, SAG(R) be the graph whose vertices

are the nonzero annihilating ideals of R and with two distinct nonzero annihilating ideals

I and J joined by an edge when I ∩ Ann(J) ̸= (0) and J ∩ Ann(I) ̸= (0). Also, strongly

Annihilating-ideal graph with respect to an ideal (I), that it is shown by SAGI(R), is the

graph whose vertices are all ideals of R such that K ̸⊆ I and for some ideal J that J ̸⊆ I,

KJ ⊆ I, and distinct vertices K and J are adjacent if and only if J ∩ AnnI(K) ̸⊆ I and

K ∩AnnI(J) ̸⊆ I. In this paper, we study the notion of SAGI(R). Also, among other results,

we give some results about the relationships between SAGI(R) and SAG(R/I).

1. Introduction

Throughout this paper, all rings are assumes to be commutative with identity. First we state
some definitions and notions used throughout the paper. The girth of a graph G, denoted by
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gr(G), is the length of a shortest cycle in G. If G has no cycles, we define the girth of G

to be infinite. A graph is called complete if all its vertices are connected. We denote the
set of zero-divisors of R by Z(R), and we write I ⊴ R to denote I is an ideal of R. A
uniserial ring is a ring whose ideals are totally ordered by inclusion. For ideals I and J ,
AnnI(J) = {r ∈ R| rj ∈ I, for every j ∈ J} and if I = (0), then we write Ann(J) instead of
AnnI(J). Also A(R) = {J ⊴ R| Ann(J) ̸= 0} and N I(R) = {J ⊴ R| J ̸⊆ I}.

A nonzero ideal I of R is called an annihilating-ideal if there exists a nonzero ideal J of
R such that IJ = 0. In [2] Anderson and Livingston defined the zero-divisor graph of R,
Γ(R), with vertices Z(R) \ {0}, and for distinct x, y ∈ Z(R) \ {0}, the vertices x and y are
adjacent if and only if xy = 0. As an extension of the zero-divisor graph of a commutative
ring R, Redmond defined in [6], the ideal-based zero-divisor graph of a commutative ring R,
denoted by ΓI(R), where for an ideal I of R, the vertices of ΓI(R) are {x ∈ R − I

∣∣ xy ∈ I

for some y ∈ R}, and distinct vertices x and y are adjacent if and only if xy ∈ I. He found
some relationships between Γ

(
R
I

)
and ΓI(R). Later in [3], Behboodi and Rakeei introduced

the annihilating-ideal graph of R, AG(R), with the vertex set A(R)∗ = A(R) \ {0} and two
distinct vertices joined by an edge when the product of the vertices is the zero ideal. Also
Aliniaeifard and Behboodi in [1], defined the annihilating-ideal graph with respect to an ideal I
of R, AGI(R), whose vertices are AI(R) = {K ∈ NI(R)

∣∣ KJ ⊆ I for some J ∈ N I(R)} and
distinct vertices K and J are adjacent if and only if KJ ⊆ I. Also they get some relationships
between AG(R) and AGI(R) (see also [4]). Tohidi, Nikmehr and Nikandish in [8] defined the
strongly annihilating-ideal graph of R, SAG(R), with the vertex set A(R)∗ and two distinct
vertices I and J are adjacent if and only if I ∩Ann(J) ̸= (0) and J ∩Ann(I) ̸= (0).

In this paper, we extend the notion of the strongly annihilating-ideal graph of a ring R to
the strongly annihilating-ideal graph with respect to an ideal I of R, denoted SAGI(R), whose
the set of vertices is AI(R) and two distinct vertices K and J are adjacent if K∩AnnI(J) ̸⊆ I

and J ∩AnnI(K) ̸⊆ I. Thus, AGI(R) is a subgraph of SAGI(R). Also for I = (0), SAGI(R) =

SAG(R). In Section 2, we prove some basic properties of SAGI(R). In particular, it is proved
that SAGI(R) is connected with diameter at most 2 and gr

(
SAGI(R)

)
≤ 4, if it contains a

cycle. In Section 3, we prove some relationships between SAGI(R) and SAG
(
R
I

)
, especially

among other results, we get the condition that SAGI(R) and SAG
(
R
I

)
are isomorphic. At last

in Section 4, we prove some results about connectivity of SAGI(R).

2. Basic properties of SAGI(R)

Let R be a commutative ring with identity.

Lemma 2.1. Let I be an ideal of ring R and T, J ∈ ν
(
SAGI(R)

)
. Then the following

statements hold
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(1) If two vertices T and J are not adjacent, then AnnI(TJ) = AnnI(T ) or AnnI(TJ) =

AnnI(J). If
√
I = I, then the reverse is true.

(2) If two vertices T and J are adjacent in AGI(R), then these two vertices are also adjacent
in SAGI(R). Therefore, AGI(R) is a subgraph of SAGI(R).

(3) If AnnI(J)⊈AnnI(T ) and AnnI(J)⊈AnnI(T ), then two vertices T and J are connected.
In addition, if

√
I = I, then the reverse is true.

(4) If dAGI(R)(T, J) = 3, then T and J are connected in SAGI(R).
(5) Let for a positive integer n ≥ 1, R = R1 × · · · ×Rn, where for every 1 ≤ i ≤ n, Ri is a

ring, I = I1× · · · × In an ideal of R, and J = J1× · · · × Jn and K = K1× · · · ×Kn are
two vertices of SAGI(R). If Js ∩ AnnIs(Ks) ⊈ Is and Kt ∩ AnnIt(Jt) ⊈ It, for some
1 ≤ s, t ≤ n, then J is adjacent to K in SAGI(R). In particular, if Js is adjacent to
Ks in SAGIs(Rs) or Js = Ks, Js ∩ Ann(Js) ⊈ Is, for some 1 ≤ s ≤ n, then J and K

are adjacent in SAGI(R).
(6) If T and J are not connected in SAGI(R), then dAGI(R)(T, J) = 2.

Proof. (1) Let T and J are not connected. Evidently AnnI(T ) ⊆ AnnI(TJ) and AnnI(J) ⊆
AnnI(TJ). In contrary, let AnnI(TJ)⊈AnnI(T ) and AnnI(TJ)⊈AnnI(J). Then there
exist r1, r2 ∈ R such that

(I) r1TJ ⊆ I, r1T⊈I and r2TJ ⊆ I, r2J⊈I.

We consider the following two cases:
Case 1) r1 = r2. Then r1t /∈ I and r1j /∈ I, for some j ∈ J and t ∈ T . Therefore

r1j ∈ J ∩AnnI(T ) and r1t ∈ T ∩AnnI(J), so, T and J are connected, a contradiction.
Case 2) r1 ̸= r2. If r1J⊈I, then for some j ∈ J , r1j /∈ I. So by (I), r1j ∈ J∩AnnI(T ).

Also by (I), I⊉r1T ⊆ T ∩ AnnI(J). Then T and J are connected, a contradiction. So
r1J ⊆ I. Similarly, it can be proved r2T ⊆ I. Therefore

(II) r1J ⊆ I and r2T ⊆ I.

Then by (I) and (II), (r1 − r2)J⊈I and (r1 − r2)T⊈I, so (r1 − r2)TJ ⊆ I. Therefore
J ∩AnnI(T )⊈I and T ∩AnnI(J)⊈I. Hence T and J are connected, a contradiction.

Now, let
√
I = I and without lose of generality, let AnnI(TJ) = AnnI(J). If

j ∈ J ∩AnnI(J), then j2 ∈ I, so j ∈ I, thus J ∩AnnI(J) ⊆ I. Therefore:

J ∩AnnI(T ) ⊆ J ∩AnnI(TJ) = J ∩AnnI(J) ⊆ I.

Then T and J are not adjacent.
(2) It is obtained by the definition of the edges in SAGI(R).
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(3) In contrary, suppose that T and J are not connected. Without lose of generality, we
can get by (1), AnnI(TJ) ⊆ AnnI(T ). Since AnnI(J) ⊆ AnnI(TJ), then AnnI(J) ⊆
AnnI(T ), a contradiction.

Now, suppose that T and J are connected and
√
I = I. In contrary, suppose that

AnnI(J) ⊆ AnnI(T ). Then T ∩ AnnI(T ) ⊆ I. As a result, T ∩ AnnI(J) ⊆ I. This
conclusion contradicts the definition of an edge in SAGI(R).

(4) Let dAGI(R)(T, J) = 3. Then there is a path like T K L J, so
LJ ⊆ I and TL⊈I. Thus tl /∈ I, for some t ∈ T and l ∈ L. On the other hand, since
tl ∈ L and LJ ⊆ I, tl ∈ AnnI(J). Therefore tl ∈

(
T ∩AnnI(J)

)
\ I, so T ∩AnnI(J)⊈I.

In the same way, it can be proved J ∩ AnnI(T )⊈I. Then the vertices T and J are
adjacent in SAGI(R).

(5) Since Js ∩ AnnIs(Ks) ⊈ Is, there exists an element as ∈ Js \ Is such that asKs ⊆ Is

and thus (0 . . . 0, as, 0, ..., 0) ∈ J ∩AnnI(K). Similarly, Kt∩AnnIt(Jt) ⊈ It implies that
K ∩ AnnI(J) ⊈ I. Hence J and K are connected in SAGI(R). The “in particular”
statement is now clear.

(6) Suppose that T and J are not connected in SAGI(R). By (2), T and J are not connected
in AGI(R), so by [1, Theorem 3.3], dAGI(R)(T, J) = 2 or 3. If dAGI(R)(T, J) = 3, then T

and J are connected in SAGI(R) by (4), a contradiction. Therefore, dAGI(R)(T, J) = 2.

By Lemma 2.1(2), AGI(R) is a subgraph of SAGI(R), but the next example shows that
these two graphs are not identical.

Example 2.2. The ideals of Z8 are I1 = {0}, I2 = {0, 4}, I3 = {0, 2, 4, 6} and I4 = Z8. Also,
the ideals of Z2 are J1 = {0} and J2 = Z2. So, the ideals of Z8 × Z2 are as follows

I1 × J1 = {(0, 0)}

I1 × J2 = {(0, 0), (0, 1)}

I2 × J1 = {(0, 0), (4, 0)}

I2 × J2 = {(0, 0), (0, 1), (4, 0), (4, 1)}

I3 × J1 = {(0, 0), (2, 0), (4, 0), (6, 0)}

I3 × J2 = {(0, 0), (2, 0), (4, 0), (6, 0), (0, 1), (2, 1), (4, 1), (6, 1)}

I4 × J1 = {(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0), (7, 0)}
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I4 × J2 = {(0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (5, 0), (6, 0), (7, 0),

(0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1)}.

Hence, SAGI2×J1(Z8 × Z2) and AGI2×J1(Z8 × Z2) are as follows, respectively

Evidently
dAGI2×J1

(Z8×Z2)(I3 × J2, I4 × J1) = 3.

However
dSAGI2×J1

(Z8×Z2)(I3 × J2, J4 × J1) = 1.

Theorem 2.3. Let R be a ring. Then

(1) SAGI(R) is a connected graph.
(2) diam (SAGI(R)) ≤ 2.
(3) If SAGI(R) contains at least one cycle, then gr (SAGI(R)) ≤ 4.

Proof. (1) By Lemma 2.1(2), AGI(R) is a subgraph of SAGI(R). According to [1, Theorem
3.3], AGI(R) is connected, hence SAGI(R) is connected.

(2) Let T and J be two vertices of SAGI(R).
a) If T and J are adjacent, then the distance between T and J in SAGI(R) is equal

to 1.
b) If T and J are not adjacent, then the distance between T and J in AGI(R) is

equal to 2, by Lemma 2.1(6).
According to the previous lemma, AGI(R) is a subgraph of SAGI(R), hence

dSAGI(R)(T, J) = 2. Therefore, by (a) and (b), diam (SAGI(R)) ≤ 2.
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(3) In contrary, let gr
(
SAGI(R)

)
> 4. Hence, there is a path like the following sequence,

which is one of the shortest sequences in SAGI(R):

(1) I1 I2 I3 I4 I5 I6 · · · In−1 In I1.

Since I1 and I3 are not connected, by Lemma 2.1(6), dAGI(R)(I1, I3) = 2. Therefore, L1 ∈
V
(
AGI(R)

)
, where I1 L1 I3 is a path from I1 to I3 in AGI(R). If L1 = Ii0 ,

where 1 ≤ i0 ≤ n and i0 ̸= 2, n, then I1 and Ii0 are adjacent in AGI(R). Therefore, according
to Lemma 2.1(2), I1 and Ii0 are adjacent in SAGI(R). This conclusion contradicts (1). Hence,
for each 1 ≤ i ≤ n, where i ̸= 2, n, L1 ̸= Ii. Now, we prove that L1 ̸= In. If in contrary,
L1 = In, then

L1 I3 I4 · · · In−1 L1 .

It will be a cycle of the length of n− 2 in SAGI(R). This conclusion contradictions Relation
(1). Therefore, L1 ̸= In. Since I3 and I5 are not connected in SAGI(R), then according to
Lemma 2.1(6), dAGI(R)(I3, I5) = 2, hence, L2 ∈ V

(
AGI(R)

)
where

I1 L1 I3 L2 I5 .

is a path from I1 to I5 in AGI(R).
If L2 = Ii0 when 1 ≤ i0 ≤ n and i0 ̸= 4, then I3 and Ii0 are adjacent in AGI(R). Therefore,

according to Lemma 2.1(2), these two vertices are adjacent in SAGI(R). This conclusion
contradicts Relation (1). Thus, for each 1 ≤ i ≤ n when i ̸= 4, there will be L2 ̸= Ii. We
should now prove that L2 ̸= L1. Let L2 = L1, then

I1 L1 I5 I6 · · · In−1 In I1 .

This is a cycle of length n− 2 in SAGI(R). This conclusion contradicts Relation (1). Therefore,
L2 ̸= L1.

Similarly, the procedure is kept on. Now if I1 and In are adjacent in AGI(R), then

I1 L1 I3 L2 I5 L3 I7 · · · Ls In I1 .

This is a cycle of length n > 4 in AGI(R). According to [1, Theorem 3.3], gr
(
AGI(R)

)
≤ 4.

At the same time, AGI(R) is the subgraph of SAGI(R); hence, gr
(
SAGI(R)

)
≤ 4. This

conclusion contradicts Relation (1). Therefore, the contradiction is rejected, and the theorem
is proven. If I1 and In are not connected in AGI(R), hence

I1 L1 I3 L2 I5 · · · Ls In Ls+1 I1 .

This is a cycle of n+ 1 in AGI(R). According to [1, Theorem 3.3], gr
(
AGI(R)

)
≤ 4. Then

by Lemma 2.1(2), gr
(
SAGI(R)

)
≤ 4. This conclusion contradicts Relation (1), hence, the

contradiction is rejected and the proof is proved.
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Corollary 2.4. If AGI(R) contains a cycle of the length n, then this cycle also exists in
SAGI(R). If SAGI(R) includes the following n-long cycle:

I1 I2 I3 I4 I5 · · · In−1 In I1 .

Then AGI(R) includes one of the following cycles of the length either n or n+ 1:

I1 L1 I2 L2 I3 · · · Ls In I1 .

or

I1 L1 I2 L2 I3 · · · Ls In Ls+1 I1 .

where, L1, . . . , Ls+1 ∈ V
(
AGI(R)

)
.

Lemma 2.5. Let I and L be the ideals of R such that for every n ∈ N, Ln ⊆ I. Then for
every ideal J of R such that J⊈I, AnnI(L) ∩ J⊈I.

Proof. Let J be an ideal of R such that J⊈I and J ∩ AnnI(L) ⊆ I. Then JL⊈I. Now, let k

be the smallest natural number shch that JLk−1⊈I. Since JLk−1 ⊆ AnnI(L) and JLk−1 ⊆ J ,
J ∩AnnI(L)⊈I. This conclusion contradicts the assumption, and the proof is complete.

3. Relationships between SAGI(R) and SAG(RI )

Let I be an ideal of R and ϕ : R → R
I , where for every r ∈ R, ϕ(r) = r+ I. For every r ∈ R

and ideal J of R, we denote ϕ(r) by r̄, and ϕ(J) by J̄ .

Lemma 3.1. Let R be a ring and let I1, I2, I, J and K be some ideals of R such that I1, I2 ⊆ I.
Then the following statements are equivalent:

(1) (J + I1) ∩AnnI(K + I2)⊈I.
(2) (J + I1) ∩AnnI(K)⊈I.
(3) J ∩AnnI(K + I2)⊈I.
(4) J ∩AnnI(K)⊈I.
(5) J̄ ∩Ann(K̄) ̸= (0).

Proof. Since for every ideals A,B, I and I0 of R, such that I0 ⊆ I, AnnI(A+ I0) = AnnI(A),
(1) and (2) (similarly, (3) and (4)) are equivalent. Now, evidently

(A+ I0) ∩AnnI(B) ⊇ (A ∩AnnI(B)) + (I0 ∩AnnI(B)) = (A ∩AnnI(B)) + I0

so, if x ∈ ((A+ I0)∩AnnI(B)) \ I, then there exists x = a+ i0 ∈ A+ I0 \ I, for some a ∈ A

and i0 ∈ I0, such that xB ⊆ I, then a ∈ (A ∩ AnnI(B)) \ I. Thus, (A + I0) ∩ AnnI(B)⊈I if
and only if A ∩AnnI(B)⊈I. Therefore (1) and (3) (similarly, (2) and (4)) are equivalent.

Also, it is easy to see that (4) and (5) are equivalent.
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Theorem 3.2. Let I be an ideal of a ring R, and let J,K ∈ NI(R). Then the following
statements are true:

(1) If J̄ ̸= K̄, then J is adjacent to K in SAGI(R) if and only if J̄ is adjacent to K̄ in
SAG(RI ).

(2) If J̄ = K̄, then J is adjacent to K in SAGI(R) if and only if J ∩AnnI(J) ⊈ I.

Proof. It is an easy consequence of Lemma 3.1.

Corollary 3.3. Let J and K be (distinct) adjacent vertices in SAGI(R). Then all (distinct)
ideals of the form J + I1 is adjacent to all ideals of the form K+ I2 in SAGI(R), where I1 and
I2 are ideals of R and I1, I2 ⊆ I. If J ∩AnnI(J) ⊈ I, then distinct ideals of the forms J + I1,
for every ideals I1 of R and I1 ⊆ I, are adjacent in SAGI(R).

Proof. It is clear that J̄ = K̄ if and only if J + I = K+ I. Now the result follows from Lemma
3.1 and Theorem 3.2.

Corollary 3.4. Let I be an ideal of a ring R. Then SAGI(R) contain a copy of SAG(RI ).

Proof. Since there is a one-to-one correspondence between the ideals of R that contain I, and
the ideals of R

I , the result is an immediate consequence of Theorem 3.2(1).

Now, let’s check when the graphs SAGI(R) and SAG(RI ) are isomorphic. First, we introduce
some symbols.

Notation 1. Let R be a ring and I be an ideal of R. For simplicity, let V = V
(
SAGI(R)

)
and V ′ = V

(
SAG(RI )

)
. For any ideal I ⊊ K of R, set

C(K) = {T | I ⊈ T is an ideal of R, and T + I = K}.

For distinct ideals K and J of R, where I ⊊ J,K, evidently, C(K) ∩ C(J) = ∅. If for an
I ⊂ K, K ∈ V , we call the set C(K) the column of K in SAGI(R). Also, set:

M = {K |K ∈ V,C(K) ̸= ∅}.

By Theorem 3.2 and the above notation, if K ∈ V , then the following two cases can be
considered

1) If I ⊂ K, then K
I ∈ V ′.

2) If I⊈K, then K + I ∈ V , therefore K+I
I ∈ V ′.
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Thus, if K is a vertex of SAGI(R), then either K
I is a vertex of SAG(RI ) or J

I is a vertex of
SAG(RI ), for an ideal J that K ∈ C(J). Hence, all vertices of SAGI(R) can be determined in
this method and the following theorem explains how to draw the edges of SAGI(R).

Theorem 3.5. With our notations,

a) If L and K are adjacent in SAGI(R), then L is connected to all members of the column
of K.

b) If I ⊂ K ∈ V and K ∩AnnI(K)⊈I, then K is adjacent with all members of its column.
Moreover, all members of K column are connected.

c) If I ⊂ K ∈ V and K ∩ AnnI(K) ⊆ I, then K is not adjacent with any members of its
column. In addition, no two members of column K are connected to each other.

Proof. It is enough to note that for every ideals A, B and I of R, AnnI(A + I) = AnnI(A).
Also,

(A+ I) ∩AnnI(B) ⊇ (A ∩AnnI(B)) + (I ∩AnnI(B)) = (A ∩AnnI(B)) + I

then (A+ I) ∩AnnI(B)⊈I if and only if A ∩AnnI(B)⊈I.

Corollary 3.6. SAGI(R) ∼= SAG(RI ) if and only if M = ∅.

Corollary 3.7. If R is a uniserial ring, then SAGI(R) ∼= SAG(RI ).

Proposition 3.8. For a ring R, SAGI(R) is a complete graph if and only if SAG(RI ) is
complete and for every J ∈ M, J ∩AnnI(J)⊈I.

Proof. First suppose that SAGI(R) is complete and K̄ and J̄ are two vertex of SAG(RI ).
Evidently, J ̸= K, so J and K are adjacent in SAGI(R). Then K̄ and J̄ are adjacent in
SAG(RI ), by Theorem 3.2 (1).

Suppose that J ∈ M such that J ∩AnnI(J)⊆I, then there exists an T ∈ C(J). Therefore,
J and T are not adjacent by Theorem 3.5 (c), a contradiction. Then J ∩AnnI(J) ⊈ I.

Now, let SAG(RI ) be complete and for every J ∈ M, J ∩AnnI(J)⊈I. Let K and L be two
distinct vertices of SAGI(R). If J̄ ̸= K̄, then J and K are adjacent, by Theorem 3.2 (1). If
J̄ = K̄, then J and K are adjacent, by Theorem 3.2 (2). Therefore SAGI(R) is complete.

The next example shows SAGI(R) and SAG(RI ) are not isomorphic in general.
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Example 3.9. Let R = Z8 ×Z2 and I = I2 × J1. By Example 2.2, the proper ideals of R
I are

as follows

I2 × J2 = {(0, 0), (0, 1)} = I1 × J2

I3 × J1 = {(0, 0), (2, 0)}

I3 × J2 = {(0, 0), (2, 0), (0, 1), (2, 1)}

I4 × J1 = {(0, 0), (1, 0), (2, 0), (3, 0)}

Hence, SAGI(
R
I ) is as follows

 I3 × J2

 I3 × J1

 I2 × J2

 I4 × J1

Then, by Example 2.2, SAGI(R) ≇ SAG(RI ).
In addition, I1 × J2 ∈ C(I2 × J2) and (I1 × J2) ∩ AnnJ2×I1(I2 × J2) = J2 × I1, then as

mentioned in Theorem 3.5(c), I2 × J2 is not connected to I1 × J2 in SAGI(R).

4. Completeness

Theorem 4.1. Let I be a non-trivial ideal of a ring R, and R
I
∼= F1 × F2, where F1 and F2

are two fields. Then SAGI(R) is not complete.

Proof. Since F1 and F2 are considered fields, the proper (maximal) ideals of F1×F2 are F1×(0)

and (0)×F2. Therefore, according to the assumption, R
I = K

I + J
I , in which K and J are proper

(maximal) ideals of R that contain I, K ∩ J = I, K2 + I = K,J2 + I = J , J ∩ AnnI(J) ⊆ I

and K ∩AnnI(K) ⊆ I.
Since SAG(RI ) is complete, by Proposition 3.8, K,J ̸∈ M. If L is another maximal ideal of

R, where J ̸= L ̸= K, then L+ I = R, so LJ + I = J . Since I ̸⊆ LJ , J ∈ M, a contradiction.
Therefore K and J are maximal ideals of R.

If a ∈ J \ I, then <a>+I
I = J

I , so ⟨a⟩ + I = J . Since J /∈ M, then J = ⟨a⟩. Similarly, for
every b ∈ K \ I, K = ⟨b⟩. Evidently, a2 ∈ J \ I, so J = ⟨a2⟩, then a(1 − ra) = 0, for some
r ∈ R. Since a is not invertible, 1−ra ̸= 0, thus either 1−ra ∈ J or 1−ra ∈ K. Since ra ∈ J ,
1− ra ∈ K \ I and thus K = ⟨1− ra⟩. Thus, JK = 0. But, since J and K are both maximal
ideals of R, they are comaximal and thus JK = J ∩K. Therefore, I = 0, which contradicts
the assumption, thus SAGI(R) is not complete.
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Lemma 4.2. SAGI(R) is complete if and only if for every T ∈ V , Ann(T+I
I ) ∈ ESS(RI ).

Proof. Let SAGI(R) be complete. According to Lemma 3.8, SAG(R/I) is complete. Therefore,
by [8, Theorem 3.2], R satisfies in one of the following conditions:

a) R
I = F1 × F2, in which F1 and F2 are fields.

b) For every T ∈ V , Ann(T+I
I ) ∈ ESS(RI ).

According to Theorem 4.1, only the second case occurs.
Now, suppose that for every T ∈ V , Ann(T+I

I ) ∈ ESS(RI ). Then by [8, Theorem 3.2],
SAG(RI ) is a complete graph.

Now, consider J ∈ M. Since J
I ∈ V ′, then Ann(JI ) ∈ ESS(RI ). So by the definition of

ESS(RI ), Ann(
J
I )∩

J
I ̸= I. As a result, AnnI(J)∩ J ⊈ I. Therefore, According to Lemma 3.8,

SAGI(R) is complete.

Theorem 4.3. Let R be a ring and I be an ideal of R. If Z(RI ) is a zero ideal of R
I when

Z2(RI ) = I, then SAGI(R) is complete.

Proof. According to [1, Theorem 6.5], AGI(R) is complete. Hence, according to Part (2) of
Lemma 2.1, SAGI(R) is complete, too.

Theorem 4.4. Let I be an ideal of a ring R. If
√
I = I, then SAGI(R) is not complete.

Proof. Suppose by contradiction, SAGI(R) is complete. According to Lemma 4.2, for every
T ∈ V ′, Ann(TI ) ∈ ESS(RI ), so Ann(TI ) ∩

T
I ̸= 0. Then, there exists t0 ∈ T \ I, such that

t0T ⊆ I, thus t20 ∈ I. Now, Since
√
I = I, t0 ∈ I, a contradiction.
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