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ABSTRACT. For a commutative ring R with identity, SAG(R) be the graph whose vertices
are the nonzero annihilating ideals of R and with two distinct nonzero annihilating ideals
I and J joined by an edge when I N Ann(J) # (0) and J N Ann(I) # (0). Also, strongly
Annihilating-ideal graph with respect to an ideal (I), that it is shown by SAG;(R), is the
graph whose vertices are all ideals of R such that K ¢ I and for some ideal J that J € I,
KJ C I, and distinct vertices K and J are adjacent if and only if J N Ann;(K) ¢ I and
KNAnn;(J) € I. In this paper, we study the notion of SAG;(R). Also, among other results,
we give some results about the relationships between SAG;(R) and SAG(R/I).

1. INTRODUCTION

Throughout this paper, all rings are assumes to be commutative with identity. First we state

some definitions and notions used throughout the paper. The girth of a graph G, denoted by
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gr(@G), is the length of a shortest cycle in G. If G has no cycles, we define the girth of G
to be infinite. A graph is called complete if all its vertices are connected. We denote the
set of zero-divisors of R by Z(R), and we write I < R to denote I is an ideal of R. A
uniserial ring is a ring whose ideals are totally ordered by inclusion. For ideals I and .J,
Ann;(J)={r € R| rj € I, for every j € J} and if I = (0), then we write Ann(J) instead of
Anng(J). Also A(R)={J QR| Ann(J) #0} and N;(R)={J < R|J LI}

A nonzero ideal I of R is called an annihilating-ideal if there exists a nonzero ideal J of
R such that IJ = 0. In [2] Anderson and Livingston defined the zero-divisor graph of R,
I'(R), with vertices Z(R) \ {0}, and for distinct z,y € Z(R) \ {0}, the vertices x and y are
adjacent if and only if xy = 0. As an extension of the zero-divisor graph of a commutative
ring R, Redmond defined in [f], the ideal-based zero-divisor graph of a commutative ring R,
denoted by I'7(R), where for an ideal I of R, the vertices of I'f(R) are {x € R — I! xy €1
for some y € R}, and distinct vertices x and y are adjacent if and only if zy € I. He found
some relationships between I'(#) and I';(R). Later in [3], Behboodi and Rakeei introduced
the annihilating-ideal graph of R, AG(R), with the vertex set A(R)* = A(R) \ {0} and two
distinct vertices joined by an edge when the product of the vertices is the zero ideal. Also
Aliniaeifard and Behboodi in [[1], defined the annihilating-ideal graph with respect to an ideal I
of R, AG;(R), whose vertices are Aj(R) = {K € Ny(R)| KJ C I for some J € N;(R)} and
distinct vertices K and J are adjacent if and only if KJ C I. Also they get some relationships
between AG(R) and AG(R) (see also [4]). Tohidi, Nikmehr and Nikandish in [§] defined the
strongly annihilating-ideal graph of R, SAG(R), with the vertex set A(R)* and two distinct
vertices I and J are adjacent if and only if 7 N Ann(J) # (0) and J N Ann(I) # (0).

In this paper, we extend the notion of the strongly annihilating-ideal graph of a ring R to
the strongly annihilating-ideal graph with respect to an ideal I of R, denoted SAG(R), whose
the set of vertices is Aj(R) and two distinct vertices K and J are adjacent if KNAnn;(J) € I
and JNAnn;(K) € I. Thus, AG;(R) is a subgraph of SAG;(R). Also for I = (0), SAG;(R) =
SAG(R). In Section E, we prove some basic properties of SAG;(R). In particular, it is proved
that SAG;(R) is connected with diameter at most 2 and gr (SAG;(R)) < 4, if it contains a
cycle. In Section E, we prove some relationships between SAG;(R) and SAG (%), especially
among other results, we get the condition that SAG;(R) and SAG (%) are isomorphic. At last

in Section @, we prove some results about connectivity of SAG;(R).

2. BASIC PROPERTIES OF SAG/(R)

Let R be a commutative ring with identity.

Lemma 2.1. Let I be an ideal of ring R and T,J € v(SAG(R)). Then the following

statements hold
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If two vertices T and J are not adjacent, then Anny(T'J) = Anny(T) or Ann;(TJ) =
Anng(J). If VI = I, then the reverse is true.

If two vertices T and J are adjacent in AGr(R), then these two vertices are also adjacent
in SAG[(R). Therefore, AGr(R) is a subgraph of SAG(R).

If Anng(J)Z Anng(T) and Anng(J)Z Anng(T'), then two vertices T and J are connected.
In addition, if /I = I, then the reverse is true.

If dag,(r)(T,J) = 3, then T and J are connected in SAG(R).

Let for a positive integer n > 1, R = Ry X -+ X Ry, where for every 1 <i<n, R; is a
ring, I =11 x---x1I, anideal of R, and J = Jy X --- X J, and K = K1 x--- X K,, are
two vertices of SAG(R). If J, N Anny (Ks) € Is and Ky N Anny, (J;) € I;, for some
1 < s,t <n, then J is adjacent to K in SAG(R). In particular, if Js is adjacent to
K, in SAGy,(Rs) or Js = K, JsN Ann(Js) € I, for some 1 <s <n, then J and K
are adjacent in SAGr(R).

If T and J are not connected in SAG(R), then dag,r)(T,J) = 2.

(1) Let T and J are not connected. Evidently Ann;(7") C Ann;(7'J) and Ann;(J) C
Ann;(TJ). In contrary, let Ann;(7J)Z Ann;(T) and Ann;(TJ)¢ Anng(J). Then there
exist r1,72 € R such that

mTJ CI, mTZI and roTJ C I, roJZ1.

We consider the following two cases:
Case 1) r; = ro. Then mt ¢ I and rj ¢ I, for some j € J and t € T. Therefore
r17 € JNAnn;(T) and it € TN Anny(J), so, T and J are connected, a contradiction.
Case 2) 71 # ro. If rJZI, then for some j € J, 715 ¢ I. So by (m), rij € JNAnns(T).
Also by (ﬂ), I2rT C TN Anng(J). Then T and J are connected, a contradiction. So
r1J C I. Similarly, it can be proved 2T C I. Therefore

r1J C I and T C 1.

Then by (m) and (@), (r1 —ro)JZI and (11 — r9)TEI, so (r1 — r2)TJ C I. Therefore
JNAnn;(T)ZI and T N Anny(J)ZI. Hence T and J are connected, a contradiction.

Now, let v/I = I and without lose of generality, let Ann;(7.J) = Ann;(J). If
j € JJNAnng(J), then j2 € I, so j € I, thus J N Ann;(J) C I. Therefore:

JNAm(T) C JNAnn;(TJ) = J N Anng(J) C I.

Then T and J are not adjacent.
It is obtained by the definition of the edges in SAG(R).
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In contrary, suppose that T" and J are not connected. Without lose of generality, we
can get by (1), Ann;(7'J) C Ann;(T). Since Anny(J) € Ann;(7'J), then Ann;(J) C
Ann;(T'), a contradiction.

Now, suppose that T" and J are connected and v/I = I. In contrary, suppose that
Ann;(J) € Anng(7T). Then T'N Anny(7) C I. As a result, T'N Anny(J) C I. This
conclusion contradicts the definition of an edge in SAG(R).

Let dag,(r)(T,J) = 3. Then there is a path like T K L J, so
LJ C T and TLEI. Thus tl ¢ I, for some ¢ € T and [ € L. On the other hand, since
tle Land LJ C I, tl € Ann;(J). Therefore t! € (T'NAnn;(J))\ 1, so TNAnn;(J)ZI.

In the same way, it can be proved J N Ann;(T)ZI. Then the vertices T and J are
adjacent in SAG(R).

Since J; N Anny, (K,) € I, there exists an element a; € J; \ I such that a,K, C I,
and thus (0...0,as,0,...,0) € JNAnn;(K). Similarly, K;NAnny,(J;) ¢ I; implies that
K N Anng(J) ¢ I. Hence J and K are connected in SAG7(R). The “in particular”
statement is now clear.

Suppose that T"and J are not connected in SAG;(R). By (2), T and J are not connected
in AG;(R), so by [[ll, Theorem 3.3], daq,(r)(T,J) = 2 or 3. If dpg,(r)(T,J) = 3, then T
and J are connected in SAG(R) by (4), a contradiction. Therefore, dag,(r) (T, J) = 2.

By Lemma @(2), AGy(R) is a subgraph of SAG;(R), but the next example shows that

these two graphs are not identical.

Example 2.2. The ideals of Zg are I} = {0}, I = {0,4}, I3 = {0,2,4,6} and I, = Zs. Also,
the ideals of Zg are J; = {0} and Jo = Zy. So, the ideals of Zg x Zy are as follows

I x J; ={(0,0)}

I x Jo ={(0,0),(0,1)}

I, x J1 ={(0,0),(4,0)}

I x Jo ={(0,0),(0,1),(4,0),(4,1)}

I3 x J; ={(0,0),(2,0), (4,0),(6,0)}

I3 x Jo = {(0,0),(2,0), (4,0),(6,0),(0,1),(2,1),(4,1),(6,1)}

Iy x Jp = {(070)7 (170)7 (2a0>7 (370)7 (470)7 (570)7 (670)7 (77())}
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I4 X J2 = {(07 0)7 (]—7 0)) (25 0)7 (37 0)7 (47 0)5 (57 0)7 (67 0)7 (7’ 0)7

(0,1),(1,1),(2,1),(3,1),(4,1),(5,1),(6,1),(7,1)}.

Hence, SAGy,xj, (Zs x Z2) and AGy, x5, (Zg X Zs2) are as follows, respectively

13 x J, o J5
L X J,
.[3 X ~]1 I4 X ']1
I, xJ, I % Js
L xJ,
I3 x Jy Ly 3% Jq
Evidently
dAGlngl(Zz@XZz)(I?’ X JQ,I4 X Jl) =3.
However

ASAGr, s, (Zsx72) (13 X Jo, Jy x J1) = 1.

Theorem 2.3. Let R be a ring. Then
(1) SAG(R) is a connected graph.
(2) diam (SAG(R)) < 2.
(3) If SAG(R) contains at least one cycle, then gr (SAG(R)) < 4.

Proof. (1) By Lemma @(2), AG/(R) is a subgraph of SAG(R). According to [[Il, Theorem
3.3], AG/(R) is connected, hence SAG(R) is connected.
(2) Let T and J be two vertices of SAG(R).
a) If T and J are adjacent, then the distance between T and J in SAG;(R) is equal
to 1.
b) If T" and J are not adjacent, then the distance between 7' and J in AG;(R) is
equal to 2, by Lemma @(6)
According to the previous lemma, AGj(R) is a subgraph of SAG;(R), hence
dsac,(r) (T, J) = 2. Therefore, by (a) and (b), diam (SAG;(R)) < 2.
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(3) In contrary, let gr (SAG;(R)) > 4. Hence, there is a path like the following sequence,
which is one of the shortest sequences in SAG(R):

1) L I I I I Is o I, — 1I,.

Since I; and I3 are not connected, by Lemma @(6), dac,(r)(I1,I3) = 2. Therefore, Li €
V(AG(R)), where I Ly I3 is a path from I; to I3 in AG[(R). If L, = I,
where 1 < ip < n and iy # 2,n, then I; and I;, are adjacent in AG;(R). Therefore, according
to Lemma @(2), I and I;;, are adjacent in SAG(R). This conclusion contradicts @) Hence,
for each 1 < i < n, where i # 2, n, L1 # I,. Now, we prove that Ly # I,. If in contrary,
Ly =1,, then

Iy I I . It Ly .

It will be a cycle of the length of n — 2 in SAG(R). This conclusion contradictions Relation
@) Therefore, Ly # I,. Since I3 and I5 are not connected in SAG(R), then according to
Lemma @ )s dac;(r)(I3, I5) = 2, hence, Ly € V(AG;(R)) where

L Iy I Lo I .

is a path from I; to I5 in AG(R).

If Ly = I, when 1 <ip < n and ig # 4, then I3 and [;, are adjacent in AG;(R). Therefore,
according to Lemma @(2), these two vertices are adjacent in SAG;(R). This conclusion
contradicts Relation @) Thus, for each 1 < i < n when i # 4, there will be Ly # I;. We
should now prove that Ly # L. Let Lo = L1, then

I Ly I I Iy —1I, — 1 .

This is a cycle of length n — 2 in SAG(R). This conclusion contradicts Relation @) Therefore,

Lo+ L.
Similarly, the procedure is kept on. Now if I; and I,, are adjacent in AG;(R), then

I L, I3 Lo Is Ls Iy . L, I, I .

This is a cycle of length n > 4 in AG;(R). According to [l, Theorem 3.3], gr (AG/(R)) < 4.
At the same time, AG/(R) is the subgraph of SAG;(R); hence, gr (SAG;(R)) < 4. This
conclusion contradicts Relation @) Therefore, the contradiction is rejected, and the theorem

is proven. If I; and I,, are not connected in AG;(R), hence

I Ly I3 Lo I L, In Loy I .

This is a cycle of n + 1 in AG;(R). According to [I|, Theorem 3.3], gr (AG;(R)) < 4. Then
by Lemma @ , gr (SAG/(R)) < 4. This conclusion contradicts Relation (m), hence, the

contradiction is rejected and the proof is proved.
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Corollary 2.4. If AG;(R) contains a cycle of the length n, then this cycle also exists in
SAG(R). If SAG[(R) includes the following n-long cycle:

I Iy I3 Iy I5 Ly —1, — 1.

Then AGr(R) includes one of the following cycles of the length either n or n + 1:

I Ly Iy Lo I3 L, I, I .

or

I Ly 1> Lo I3 L, I, Lot I .

where, Ly,...,Lsi1 € V(AG[(R)).

Lemma 2.5. Let I and L be the ideals of R such that for every n € N, L™ C I. Then for
every ideal J of R such that JZI, Anny(L) N JEZI.

Proof. Let J be an ideal of R such that JZI and J N Ann;(L) C I. Then JLZI. Now, let k
be the smallest natural number shch that Jkalgl. Since JLF-! C Ann;(L) and JLF1 C J,

J N Ann;(L)ZI. This conclusion contradicts the assumption, and the proof is complete.

3. RELATIONSHIPS BETWEEN SAG;(R) AND SAG(%)

Let I be an ideal of R and ¢ : R — % where for every r € R, ¢(r) =r+ 1. For every r € R
and ideal J of R, we denote ¢(r) by 7, and ¢(J) by J.

Lemma 3.1. Let R be a ring and let I, 13,1, J and K be some ideals of R such that Iy, 1o C I.
Then the following statements are equivalent:
(1) (J+ L) NAnng (K + I,)¢1.
(2) (J+ )N Ann;(K)ZI.
(3) JNAnn;(K + I)ZI.
(4) JNAnn;(K)¢I.
(5) J N Ann(K) # (0).

Proof. Since for every ideals A, B, I and Iy of R, such that Iy C I, Annj(A + Ip) = Ann;(A),
(1) and (2) (similarly, (3) and (4)) are equivalent. Now, evidently

(A4 Ip) NAnn;(B) O (AN Ann;(B)) + (Ip N Ann;(B)) = (AN Anny(B)) + Iy

so, if x € ((A+ Ip) NAnny(B)) \ I, then there exists t = a+ig € A+ I\ I, for some a € A
and i € Iy, such that B C I, then a € (AN Anny(B)) \ I. Thus, (A + Iy) N Ann;(B)ZI if
and only if AN Anny(B)ZI. Therefore (1) and (3) (similarly, (2) and (4)) are equivalent.

Also, it is easy to see that (4) and (5) are equivalent.
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Theorem 3.2. Let I be an ideal of a ring R, and let J,K € Ni(R). Then the following
statements are true:

(1) If J # K, then J is adjacent to K in SAG(R) if and only if J is adjacent to K in
SAG(#).
(2) If J = K, then J is adjacent to K in SAG[(R) if and only if J N Ann;(J) € 1.

Proof. 1t is an easy consequence of Lemma @ 0

Corollary 3.3. Let J and K be (distinct) adjacent vertices in SAGr(R). Then all (distinct)
ideals of the form J+ Iy is adjacent to all ideals of the form K + Iy in SAG(R), where I and
Iy are ideals of R and I, I, C I. If JNAnng(J) € I, then distinct ideals of the forms J + I,
for every ideals Iy of R and Iy C I, are adjacent in SAG(R).

Proof. Tt is clear that J = K if and only if J+ I = K + I. Now the result follows from Lemma

@ and Theorem @ 0

Corollary 3.4. Let I be an ideal of a ring R. Then SAG(R) contain a copy of SAG(%).

Proof. Since there is a one-to-one correspondence between the ideals of R that contain I, and

the ideals of £, the result is an immediate consequence of Theorem @(1) 0

Now, let’s check when the graphs SAG;(R) and SAG(%) are isomorphic. First, we introduce

some symbols.

Notation 1. Let R be a ring and I be an ideal of R. For simplicity, let V = V(SAG](R))
and V' = V(SAG(%)). For any ideal I C K of R, set

CK)={T | I £ T is an ideal of R, and T + I = K }.

For distinct ideals K and J of R, where I C J K, evidently, C(K)NC(J) = 0. If for an
I C K, K eV, we call the set C(K) the column of K in SAG(R). Also, set:

M=K |K € V,C(K) £ 0}.

By Theorem @ and the above notation, if K € V, then the following two cases can be
considered
1) If I C K, then & e Vv’
2) If IZK, then K + I € V, therefore £ € V.
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Thus, if K is a vertex of SAG(R), then either % is a vertex of SAG(?) or % is a vertex of
SAG(#), for an ideal J that K € C(J). Hence, all vertices of SAG(R) can be determined in
this method and the following theorem explains how to draw the edges of SAG;(R).

Theorem 3.5. With our notations,

a) If L and K are adjacent in SAG(R), then L is connected to all members of the column
of K.

b) IfI C K € V and KNAnn;(K)ZI, then K is adjacent with all members of its column.
Moreover, all members of K column are connected.

c) IfICK eV and KNAnn;(K) C I, then K is not adjacent with any members of its

column. In addition, no two members of column K are connected to each other.

Proof. 1t is enough to note that for every ideals A, B and I of R, Ann;(A + I) = Ann;(A).
Also,

(A+1I)NAnn;(B) 2D (AN Ann;(B))+ (INAnn;(B)) = (AN Ann;(B)) + I

then (A+ I) N Ann;(B)¢ZI if and only if AN Ann;(B)¢ZI. g

Corollary 3.6. SAG[(R) = SAG(%) if and only if M = 0.
Corollary 3.7. If R is a uniserial ring, then SAG(R) & SAG(?).

Proposition 3.8. For a ring R, SAG[(R) is a complete graph if and only if SAG(%) s
complete and for every J € M, J N Anny(J)ZI.

Proof. First suppose that SAG;(R) is complete and K and J are two vertex of SAG(%).
Evidently, J # K, so J and K are adjacent in SAG;(R). Then K and J are adjacent in
SAG(£), by Theorem B.9 (1).

Suppose that J € M such that J N Ann;(J)CI, then there exists an T' € C(J). Therefore,
J and T are not adjacent by Theorem @ (c), a contradiction. Then J N Ann;(J) € I.

Now, let SAG(%) be complete and for every J € M, J N Anny(J)ZI. Let K and L be two
distinct vertices of SAG(R). If J # K, then J and K are adjacent, by Theorem @ (1). If
J = K, then J and K are adjacent, by Theorem @ (2). Therefore SAG;(R) is complete. [

The next example shows SAG(R) and SAG(%) are not isomorphic in general.
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Example 3.9. Let R = Zg X Zo and I = I x J;. By Example @, the proper ideals of ? are

as follows

Iy x Jy = {(0,0), (O, 1)} =11 X Jy

Is x Jy = {(0a0)7(270)}

I3 x Jy = {(an)a (270)7 (07 1)a (23 1)}

Iy x Jp = {(an)v (170)7 (2>O>a (370)}

Hence, SAG (%) is as follows

IgXJQ IQXJQ

o )
IgXJl I4><J1

Then, by Example @, SAG(R) 2 SAG(H).
In addition, Il X J2 (S C(IQ X JQ) and (Il X JQ) N AnnJ2X11(Ig X Jg) = Jg X Il, then as
mentioned in Theorem @(c), Iy x Jy is not connected to I; x Jo in SAG(R).

4. COMPLETENESS

Theorem 4.1. Let I be a non-trivial ideal of a ring R, and % = Fy x Fy, where Fy and F5

are two fields. Then SAG(R) is not complete.

Proof. Since F} and F; are considered fields, the proper (maximal) ideals of F} x Fy are F} x (0)
and (0) x Fy. Therefore, according to the assumption, % = %%—%, in which K and J are proper
(maximal) ideals of R that contain I, KNJ =1, K>+ 1=K, J?+1=.J, JNAnn;(J) C I
and K N Ann;(K) C I.

Since SAG(%) is complete, by Proposition @, K,J ¢ M. If L is another maximal ideal of
R, where J # L # K, then L+ 1 =R,so LJ+1=J. Since [ £ LJ, J € M, a contradiction.
Therefore K and J are maximal ideals of R.

Ifa € J\I, then =22+ = J 50 (a) + I = J. Since J ¢ M, then J = (a). Similarly, for
every b € K\ I, K = (b). Evidently, a> € J\ I, so J = (a?), then a(1 — ra) = 0, for some
r € R. Since a is not invertible, 1 —ra # 0, thus either 1 —ra € J or 1 —ra € K. Since ra € J,
1—rae K\ I and thus K = (1 —ra). Thus, JK = 0. But, since J and K are both maximal
ideals of R, they are comaximal and thus JK = J N K. Therefore, I = 0, which contradicts

the assumption, thus SAG(R) is not complete.



Alg. Struc. Appl. Vol. 12 No. 4 (2025) 353-364. 363

Lemma 4.2. SAG;(R) is complete if and only if for every T € V, Ann( Iy e ESS(?)

Proof. Let SAG(R) be complete. According to Lemma @, SAG(R/I) is complete. Therefore,

by [8, Theorem 3.2], R satisfies in one of the following conditions:

a) 7 B — B x F, in which Fy and Fy are fields.
b) For every T € V, Ann(£H) € ESS(%).

According to Theorem @ only the second case occurs.

Now, suppose that for every 7 € V, Ann(£H) € ESS(%). Then by [8, Theorem 3.2],
SAG(T) is a complete graph.

Now, consider J € M. Since 7 € V', then Ann(7) € ESS(¥). So by the definition of
ESS(#), Ann(Z)N < # I. As aresult, Ann;(J)NJ ¢ I. Therefore, According to Lemma @,
SAG(R) is complete. 0

Theorem 4.3. Let R be a ring and I be an ideal of R. If Z(?) is a zero ideal of ? when
Z%(%) = I, then SAG(R) is complete.

Proof. According to [l, Theorem 6.5], AG;(R) is complete. Hence, according to Part (2) of
Lemma @, SAG;(R) is complete, too.

Theorem 4.4. Let I be an ideal of a ring R. If I = I, then SAG[(R) is not complete.

Proof. Suppose by contradiction, SAG(R) is complete. According to Lemma @ for every
T € V', Ann(%) € ESS(#), so Ann(£) N L 3 0. Then, there exists ty € 7'\ I, such that
toT C I, thus t% € I. Now, Since VI =1, ty € I, a contradiction. 0
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