The ranks of the classes of the Chevalley group G2(4)

Document Type : Research Paper

Authors

1 School of Mathematical and Computer Sciences, University of Limpopo (Turfloop) P Bag X1106, Sovenga 0727, South Africa.

2 School of Mathematical and Statistical Sciences, PAA Focus Area, North-West University (Mahikeng) P. Bag X2046, Mmabatho 2735, South Africa.

Abstract

Let G be a finite simple group and X be a non-trivial conjugacy class of G. The {rank} of X in G, denoted by rank(G:X), is defined to be the minimal number of elements of X generating G. In this paper we establish the ranks of all the conjugacy classes of elements for Chevalley group G2(4) using the structure constants method. The Groups, Algorithms and Programming, GAP [14] is used frequently in our computations.

Keywords


[1] F. Ali, On the ranks of Fi22, Quaest. Math., 37 (2014) 591-600.
[2] F. Ali, On the ranks of O’N and Ly, Discret. Appl. Math., 155 (2007) 394-399.
[3] F. Ali and J. Moori, On the ranks of Janko groups J1, J2, J3 and J4, Quaest. Math., 31 (2008) 37-44.
[4] A. B. M. Basheer, The ranks of the classes of A10, Bull. Iran. Math. Soc., 43 No. 7 (2017) 2125-2135.
[5] A. B. M. Basheer and J. Moori, On the ranks of the alternating group An, B. Malays. Math. Sci. So., 42 No. 5 (2019) 1957-1973.
[6] A. B. M. Basheer and J. Moori, On the ranks of finite simple groups, Khayyam j. math., 2 No. 1 (2016) 18-24.
[7] A. B. M. Basheer, M. J. Motalane, M. G. Sehoana and T. T. Seretlo, The (p, q, r)-generations of the Chevalley group G2(4), submitted.
[8] A. B. M. Basheer, M. J. Motalane, M. G. Sehoana and T. T. Seretlo, The ranks of the classes of the Chevalley group G2(3), Palest. J. Math., to appear.
[9] M. D. E. Conder, R. A. Wilson and A. J. Woldar, The symmetric genus of sporadic groups, Proc. Amer. Math. Soc., 116 (1992) 653-663.
[10] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
[11] S. Ganief, 2-Generations of the Sporadic Simple Groups, Ph.D. Thesis, University of Natal, South Africa, 1997.
[12] S. Ganief and J. Moori, (p, q, r)-generations of the smallest Conway group Co3, J. Algebra, 188 (1997) 516-530.
[13] S. Ganief and J. Moori, 2-Generations of the smallest Fischer group F22, Nova J. Math. Game Theory Algebra, 6 (1997) 127-145.
[14] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.4.10, 2007. http://www.gapsystem.org
[15] J. I. Hall and L. H. Soicher, Presentations of some 3-transposition groups, Comm. Algebra, 23 (1995) 2517-2559.
[16] I. M. Isaacs, Character Theory of Finite Groups, Academic Press, New York, 1976.
[17] L. Di Martino, M. Pellegrini and A. Zalesski, On generators and representations of the sporadic simple groups, Comm. Algebra, 42 (2014) 880-908.
[18] J. Moori, On the ranks of the Fischer group F22, Math. Japonica, 43 (1996) 365-367.
[19] J. Moori, Subgroups of 3-transposition groups generated by four 3-transpositions, Quaest. Math., 17 (1994) 483-94.
[20] J. Moori, Generating sets for F22 and its automorphism group, J. Algebra, 159 (1993) 488-499.
[21] M. J. Motalane, (p, q, r)-Generations and Conjugacy Class Ranks of Certain Simple Groups of The Form Sp(6, 2) M23 and A11, Ph.D. Thesis, University of Limpopo, South Africa, 2021.
[22] R. Ree, A theorem on permutations, J. Combin. Theorey Ser. A., 10 (1971) 174-175.
[23] L. L. Scott, Matrices and cohomology, Ann. Math., 105 No. 3 (1977) 473-492.
[24] J. Ward, Generation of Simple Groups by Conjugate Involutions, Ph.D. Thesis, University of London, 2009.
[25] R. A. Wilson, P. Walsh, J. Tripp, I. Suleiman, S. Rogers, R. Parker, S. Norton, S. Nickerson, S. Linton, J. Bray, and R. Abbott, Atlas of finite group representations. http://brauer.maths.qmul.ac.uk/Atlas/v3/
[26] A. J. Woldar, Representing M11, M12, M22 and M23 on surfaces of least genus, Comm. Algebra, 18 (1990) 15-86.
[27] I. Zisser, The covering numbers of the sporadic simple groups, Israel J. Math, 67 (1989) 217-224.