2-local derivations on the perfect Lie algebras Lm

Document Type : Research Paper

Authors

1 Ch. Abdirov 1, Department of Mathematics, Karakalpak State University, Nukus 230113, Uzbekistan, and V.I. Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences, University Street, 9, Olmazor district, Tashkent, 100174, Uzbekistan

2 School of Mathematics, Jilin University, Changchun, 130012, China, and V.I. Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences, University Street, 9, Olmazor district, Tashkent, 100174, Uzbekistan.

3 V.I.Romanovskiy Institute of Mathematics, Uzbekistan Academy of Sciences, Univesity Street, 9, Olmazor district, Tashkent, 100174, Uzbekistan, and Department of Algebra and Mathematical Engineering, Urgench State University, H. Alimdjan Street, 14, Urgench 220100, Uzbekistan

Abstract

The notions of a 2-local derivation for Lie algebras are defined similarly to the associative case. It is clear that every derivation of a Lie algebra L is a 2-local derivation. For a given Lie algebra L, the main problem concerning these notions is to prove that every 2-local derivation automatically becomes a derivation or to give examples of Lie algebras which admit 2-local derivations which are not derivations. The present paper is devoted to study 2-local derivations on the perfect Lie algebra Lm. We prove that every 2-local derivation on this algebra is a derivation.

Keywords


[1] M. Abdaoui, 2-Local superderivations on the deformative super W-algebras Wsλ(2, 2), Commun. Algebra 50 No. 9 (2022) 3883-3898.
[2] Sh. A. Ayupov and F. N. Arzikulov, 2-Local derivations on semi-finite von Neumann algebras, Glasg. Math. J., 56 (2014) 9-12.
[3] Sh. A. Ayupov and K. K. Kudaybergenov, 2-Local derivations and automorphisms on B(H), J. Math. Anal. Appl., 395 (2012) 15-18.
[4] Sh. A.Ayupov and K. K. Kudaybergenov, 2-local derivations on von Neumann algebras, Positivity, 19 No. 3 (2015) 445-455.
[5] Sh. A. Ayupov and B. B. Yusupov, 2-Local derivations on Virasoro algebras, Bull. Natl. Univ. Uzbekistan: Math. Nat. Sci., 2 No. 4 (2019) 2017-2030.
[6] Sh. A. Ayupov and B. B. Yusupov, 2-local derivations of infinite-dimensional Lie algebras, J. Algebra Appl., 19 No. 5 (2020) 2050100.
[7] Sh. A. Ayupov, K. K. Kudaybergenov and B. A. Omirov, Local and 2-local derivations and automorphisms on simple Leibniz algebras, Bull. Malays. Math. Sci. Soc., 43 (2020) 2199-2234.
[8] Sh. Ayupov, K. Kudaybergenov and I. Rakhimov, 2-Local derivations on finite-dimensional Lie algebras, Linear Algebra Appl., 474 (2015) 1-11.
[9] Sh. Ayupov, A. Khudoyberdiyev and B. Yusupov, Local and 2-local derivations of solvable Leibniz algebras, Internat. J. Algebra Comput., 30 No. 6 (2020) 1185-1197.
[10] Sh. A. Ayupov, K. K. Kudaybergenov and B. B. Yusupov,Local and 2-local derivations of p-filiform Leibniz algebras, J. Math. Sci., 245 No. 3 (2020) 359-367.
[11] Sh. A. Ayupov, K. K. Kudaybergenov and B. B. Yusupov, 2-Local derivations on generalized Witt algebras, Linear Multilinear Algebra, 69 No. 16 (2021) 3130-3140.
[12] Sh. A. Ayupov, K. K. Kudaybergenov and B. B. Yusupov, Local and 2-Local Derivations of Locally Simple Lie Algebras, J. Math. Sci., 278 No. 4 (2024) 613-622.
[13] Sh. A. Ayupov, K. K. Kudaybergenov, B. O. Nurjanov and A. K. Alauadinov, Local and 2-local derivations on noncommutative Arens algebras, Math. Slovaca, 64 (2014) 423-432.
[14] Q.-F. Chen and Y. He, 2-local derivations on the planar Galilean conformal algebra, Int. J. Math., 34 No. 05 (2023) 2350023.
[15] B. Ferreira, I. Kaygorodov and K. Kudaybergenov, Local and 2-local derivations of simple n-ary algebras, Ric. Mat., 73 (2024) 341-350.
[16] N. Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10. Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. ix+331 pp.
[17] Q. Jiang and X. Tang, 2-Local derivations on the Schrodinger-Virasoro algebra, Linear Multilinear Algebra, 72 No. 8 (2023) 1328-1345.
[18] S. O. Kim and J. S. Kim, Local automorphisms and derivations on Mn, Proc. Amer. Math. Soc., 132 (2004) 1389-1392.
[19] P. Šemrl, Local automorphisms and derivations on B(H), Proc. Amer. Math. Soc., 125 (1997) 2677-2680.
[20] X. Tang, 2-Local derivations on the W-algebra W(2, 2), J. Algebra Appl., 20 No. 12 (2021) 2150237.
[21] X. Tang, M. Xiao and P. Wang, Local properties of Virasoro-like algebra, J. Geom. Phys., 186 (2023) 104772.
[22] Y. Yao and K. Zhao, Local properties of Jacobson-Witt algebras, J. Algebra, 586 (2021) 1110-1121.