Algebraic AS TA Catron Structures

Algebraic Structures and Their Applications

Algebraic Structures and Their Applications Vol. X No. X (20XX) pp XX-XX.

Research Paper

SOME CLASSIFICATIONS OF MONOIDS BY STRONGLY IDEMPOTENT CANCELLATIVE (PWP)

HOSSEIN MOHAMMADZADEH SAANY*, PARISA REZAEI AND LEILA NOURI

ABSTRACT. In this paper, we introduce Condition (PWP_{sic}) of acts over monoids and compare this condition with the properties left PP and left PSF in monoid S. At first we give a classification of monoids by this condition of right acts. Also, we give a classification of monoids for which some other properties of their right acts imply Condition (PWP_{sic}) and vice versa. Then a classification of monoids will be given for which all right Rees factor acts of S satisfying some other flatness properties have Condition (PWP_{sic}) .

The specific question of when every right S-act satisfying Condition (PWP_{sic}) has certain flatness properties or every (GPW-flat) GP-flat right S-act satisfies Condition (PWP_{sic}) , have so far not been considered. In this paper, we will address these problems.

DOI: 10.22034/as.2025.21408.1707

MSC(2010): Primary: 20M30, Secondary: 20M50.

Keywords: Condition (PWP_{sic}), Rees factor act, Regular. Received: 27 March 2024, Accepted: 01 February 2025.

*Corresponding author

1. Introduction and preliminaries

Throughout this paper S will denote a monoid. We refer the reader to [8, 11] for basic results, definitions and terminology relating to semigroups and acts over monoids and to [12, 13], for definitions and results on flatness which are used here.

A monoid S is called right (left) reversible if for every $s, s' \in S$, there exist $u, v \in S$ such that us = vs'(su = s'v). A right ideal K of a monoid S is called left stabilizing if for every $k \in K$, there exists $l \in K$ such that lk = k.

An element s of a monoid S is called $right\ e$ -cancellable, for an idempotent $e \in S$, if s = es and $ker\rho_s \leq ker\rho_e$, i.e. ts = t's, $t, t' \in S$, implies te = t'e. A monoid S is called $left\ PP$ if every element $s \in S$ is right e-cancellable, for some idempotent $e \in S$. It is easy to see that S is left PP if and only if for every $s \in S$ there exists $e \in E(S)$, such that $ker\rho_s = ker\rho_e$. This is equivalent to the projectivity of every principal left ideal of S. Similarly a right PP monoid is defined. An element $s \in S$ is called $right\ semi$ -cancellative if ts = t's, $t, t' \in S$, implies there exists $r \in S$ such that s = rs and tr = t'r. A monoid S is called $left\ PSF$ if all principal left ideals of S is strongly flat. It is easy to see that S is left PSF if and only if every element $s \in S$ is right semi-cancellable.

An element $s \in S$ is called regular, if sxs = s, for some $x \in S$. S is called a regular monoid if all its elements are regular. An element s of a monoid S is called left almost regular if there exist elements $r, r_1, ..., r_m, s_1, ..., s_m \in S$ and right cancellable elements $c_1, c_2, ..., c_m \in S$ such that

$$s_1c_1 = sr_1,$$

$$s_2c_2 = s_1r_2,$$

$$\vdots$$

$$s_mc_m = s_{m-1}r_m,$$

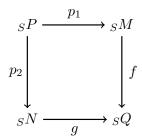
$$s = s_mrs.$$

If all elements of S are left almost regular, then S is called *left almost regular*. We can see that every left almost regular monoid is left PP ([11, Proposition 4.1.3]).

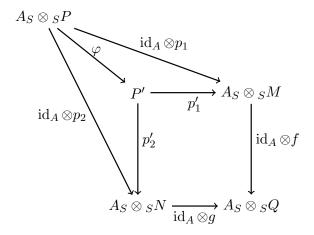
A right S-act is a non-empty set A, usually denoted A_S , on which S acts unitarian from the right, that is, (as)t = a(st) and a1 = a, for every $a \in A, s, t \in S$, where 1 is the identity of S. Left S-acts are defined similarly. We say A_S satisfies Condition (P) if as = a's', for $a, a' \in A_S, s, s' \in S$, implies the existence of $a'' \in A_S$ and $u, v \in S$ such that a = a''u, a' = a''v and as = vs'.

A right S-act A_S satisfies Condition (E) if as = as', for $a \in A_S$, $s, s' \in S$, implies the existence of $a' \in A_S$ and $u \in S$ such that a = a'u and us = us'.

In [12], the notation P(M, N, f, g, Q) was introduced to denote the pullback diagram



of homomorphisms $f: SM \to SQ$ and $g: SN \to SQ$ in the category of left S-acts. Tensoring such a diagram by A_S produces the outer square in the diagram



(in the category of sets) that may or may not be a pullback diagram, depending on whether or not the mapping φ is bijective. Here,

$$P' = \{(a \otimes m, a' \otimes n) \in (A_S \otimes_S M) \times (A_S \otimes_S N) | a \otimes f(m) = a' \otimes g(n)\}$$

with p'_1 and p'_2 the restrictions of the projections is the pullback of mappings $id_A \otimes f$ and $id_A \otimes g$ in the category of sets, and the mapping φ , obtained via the universal property of pullbacks, is given by

$$\varphi(a\otimes(m,n))=(a\otimes m,a\otimes n),$$

for all $a \in A_S$ and $(m, n) \in {}_SP$.

We recall from [1, 12, 13] that:

The S-act A_S is weakly pullback flat, if the corresponding φ is bijective for every pullback diagram P(S, S, f, g, S).

The S-act A_S is weakly kernel flat if the corresponding φ is bijective for every pullback diagram P(I, I, f, f, S), where I is a left ideal of S.

The S-act A_S is principally weakly kernel flat if the corresponding φ is bijective for every pullback diagram P(Ss, Ss, f, f, S), where $s \in S$.

The S-act A_S is translation kernel flat if the corresponding φ is bijective for every pullback diagram P(S, S, f, f, S).

The S-act A_S is weakly homoflat, if for all elements $s, t \in S$, all homomorphisms $f: S(Ss \cup St) \to SS$, all $a, a' \in A_S$, if af(s) = a'f(t), then there exist $a'' \in A_S$, $u, v \in S$, $s', t' \in \{s, t\}$ such that $a \otimes s = a'' \otimes us'$ and $a' \otimes t = a'' \otimes vt'$ in $A_S \otimes S(Ss \cup St)$ and f(us') = f(vt').

The S-act A_S is principally weakly homoflat, if for all $a, a' \in A_S$, $s \in S$,

$$as = a's \Rightarrow (\exists a'' \in A_S)(\exists u, v \in S)(a = a''u, a' = a''v, us = vs).$$

Recall from [7] that A_S is called ETF if every $e \in E(S)$ acts injectivity on A_S , that is, if ae = a'e, $a, a' \in A_S$, then a = a'. It is easy to see that A_S is ETF if and only if for every $a \in A_S$, $e \in E(S)$, ae = a. Also an act A_S is called *strongly torsion free* or STF if every $s \in S$ acts injectively on A_S , that is, if as = a's, $a, a' \in A_S$, then a = a'.

We use the following abbreviations,

- weak pullback flatness := WPF,
- weak kernel flatness := WKF,
- principal weak kernel flatness := PWKF,
- translation kernel flatness := TKF,
- weak homoflatness := (WP),
- principal weak homoflatness := (PWP).

2. General properties

In this section we introduce Condition (PWP_{sic}) and give some properties of it.

Definition 2.1. An element $s \in S$ is called *right idempotent-cancellative* if ts = t's, $t, t' \in S$, implies there exists $e \in E(S)$, such that s = es and te = t'e.

Definition 2.2. A right S-act A_S is called strongly idempotent-cancellative-(PWP) or satisfies Condition (PWP_{sic}) if as = a's, for all $a, a' \in A_S$ and $s \in S$, implies ae = a'e and es = s, for some $e \in E(S)$.

It is easy to see that if S is left PP, then S_S satisfies Condition (PWP_{sic}) . Also if S_S satisfies Condition (PWP_{sic}) , then S is left PSF. The following examples show that the converse of these relations is not true, but the converse holds for any regular monoid S.

Example 2.3. Suppose $S_1 = (\mathbb{N} \setminus \{1\}, max)$ and $S_2 = \langle a \rangle$ be an infinite monogenic semigroup. Let $T = S_1 \cup S_2$ with the multiplication

$$x * y = \begin{cases} max\{x, y\}, & \text{if } x, y \in S_1, \\ xy, & \text{if } x, y \in S_2, \\ y = y * x, & \text{if } x \in S_1, y \in S_2, \end{cases}$$

and let $S = T^1$. It is easy to see that S is a monoid which satisfies Condition (PWP_{sic}) , but for $y \in S_2$ there exist no idempotent $e \in E(S)$ such that $ker\rho_y = ker\rho_e$, and so S is not left PP.

Example 2.4. Let (I, \leq) be a totally ordered set which has no maximum element. Consider the commutative monoid

$$S = \{x_i^m | i \in I, m \in \mathbb{N}\} \cup \{1\},\$$

such that

$$x_i^m x_j^n = \begin{cases} x_j^n, & \text{if } i < j, \\ x_i^{m+n}, & \text{if } i = j. \end{cases}$$

Clearly S is left PSF but it doesn't satisfy Condition (PWP_{sic}) . Indeed, for $i < j < k, x_i^m x_k^t = x_j^n x_k^t$, but there exist no idempotent $e \in E(S)$ such that $x_i^m e = x_j^n e$.

Now we establish some general properties.

Proposition 2.5. The following statements hold:

- (1) Θ_S satisfies Condition (PWP_{sic}).
- (2) Let A_S be an act satisfying Condition (PWP_{sic}). Then every subact of A_S satisfies Condition (PWP_{sic}).
- (3) S_S satisfies Condition (PWP_{sic}) if and only if every element of S is right idempotentcancellative, equivalently

$$(\forall x, y, s \in S)(xs = ys \Rightarrow (\exists e \in E(S))(xe = ye \land es = s)).$$

- (4) Let $A = \bigcup_{i \in I} A_i$, where every A_i , $i \in I$, is a subact of A. Then A satisfies Condition (PWP_{sic}) if and only if A_i satisfies Condition (PWP_{sic}) , for every $i \in I$.
- (5) Let $\{A_i \mid i \in I\}$, is a chain of subacts of A. Then $A = \bigcup_{i \in I} A_i$, satisfies Condition (PWP_{sic}) if and only if A_i satisfies Condition (PWP_{sic}) , for every $i \in I$.
- (6) A right S-act A_S is STF if and only if A_S is ETF and satisfies Condition (PWP_{sic}).

Proof. The proof of parts (1), (2), (3), (4) and (5) are straightforward.

(6). Suppose that A_S be STF. Then A_S is ETF, by definition. Now let as = a's, for $a, a' \in A_S$, $s \in S$. By assumption, a = a'. Thus 1s = s, a1 = a'1, and so A_S satisfies

Condition (PWP_{sic}) . Conversely let as = a's, for $a, a' \in A_S$, $s \in S$. By assumption, there exists $e \in E(S)$ such that es = s and ae = a'e. Since A_S is ETF, we have a = a', and so A_S is STF. \square

As defined in [11], a subset $U \neq \emptyset$ of a right S-act A_S is said to be a generating set of A_S if every element $a \in A_S$ can be presented as a = us, for some $u \in U$ and $s \in S$. In other words, U is a set of generating elements for A_S if $< U > := \bigcup_{u \in U} uS = A_S$ where $uS = \{us \ s \in S\}$. We say that a right S-act A_S is finitely generated if $A_S = < U >$, for some U, $|U| < \infty$. We call A_S a cyclic S-act if $A_S = < u >$, where $u \in A_S$.

Here we give a criterion for a cyclic right S-act to satisfy Condition (PWP_{sic}) .

Proposition 2.6. Let ρ be a right congruence on monoid S. Then the right act S/ρ satisfies Condition (PWP_{sic}) if and only if, for all $x, y, s \in S$, $(xs)\rho(ys)$ implies $(xe)\rho(ye)$ and es = s, for some $e \in E(S)$.

Proof. Necessity. Let $(xs)\rho(ys)$, for $x, y, s \in S$. Then $[x]_{\rho}s = [y]_{\rho}s$. By assumption, there exists $e \in E(S)$ such that $[x]_{\rho}e = [y]_{\rho}e$, es = s and so $(xe)\rho(ye)$.

Sufficiency. Let $[x]_{\rho}s = [y]_{\rho}s$, for $x, y, s \in S$. Then $(xs)\rho(ys)$. By assumption, there exists $e \in E(S)$ such that es = s, $(xe)\rho(ye)$, and so $[x]_{\rho}e = [y]_{\rho}e$. Thus S/ρ satisfies Condition $(PWP_{sic})_{\cdot \square}$

Proposition 2.7. Let $w \in S$ and $\rho = \rho(w, 1)$. Then the right act S/ρ satisfies Condition (PWP_{sic}) if and only if for all $x, y, s \in S$ and non-negative integers m, n,

$$(w^m xs = w^n ys \Rightarrow (\exists p, q \in \mathbb{N}_0)(\exists e \in E(S))(w^p xe = w^q ye \land es = s)).$$

Proof. Necessity. Let $w^m xs = w^n ys$, for $x, y, s \in S$, $m, n \in \mathbb{N}_0$. It follows by [11, Corollary 3.8.7], $(xs)\rho(ys)$, and so by Proposition 2.6, there exists an idempotent $e \in E(S)$ such that es = s and $(xe)\rho(ye)$. Then, by [11, Corollary 3.8.7], there exist $p, q \in \mathbb{N}_0$, with $w^p xe = w^q ye$, as required.

Sufficiency. Let $(xs)\rho(ys)$, $x, y, s \in S$. By [11, Corollary 3.8.7], there exist $m, n \in \mathbb{N}_0$, such that $w^m xs = w^n ys$. Hence, by assumption, there exist $e \in E(S)$, $p, q \in \mathbb{N}_0$, with $w^p xe = w^q ye$ and es = s. Then $(xe)\rho(ye)$, by [11, Corollary 3.8.7], and so S/ρ satisfies Condition (PWP_{sic}) , by Proposition 2.6. \square

In the previous proposition if w=1, then $S/\rho=S/\rho(w,1)=S/\rho(1,1)=S/\Delta_S\cong S_S$. Thus S_S satisfies Condition (PWP_{sic}) if and only if for $x,y,s\in S$, xs=ys implies the existence $e\in E(S)$ such that xe=ye and es=s. Hence the assertion (3) of Proposition 2.5 is a corollary of the previous proposition.

Proposition 2.8. The following statements hold:

- (1) Every act satisfying Condition (PWP_{sic}) is principally weakly flat.
- (2) If S is a left PP monoid then every principally weakly flat act satisfies Condition (PWP_{sic}) .

Proof. (1). Suppose that A_S satisfies Condition (PWP_{sic}) . Let $a \otimes s = a' \otimes s$ in $A \otimes_S S$, for $a, a' \in A_S$, $s \in S$. Then, by [11, Proposition 2.5.13], as = a's, and so by assumption, there exists $e \in E(S)$ such that es = s and ae = a'e. Thus

$$a \otimes s = a \otimes es = ae \otimes s = a'e \otimes s = a' \otimes es = a' \otimes s$$
.

in $A \otimes_S Ss$. Hence A_S is principally weakly flat.

(2). It follows from [11, Theorem 3.10.16].

3. Classification by condition (PWP_{sic}) of right acts

In this section we give a classification of monoids when acts with other properties satisfy Condition (PWP_{sic}) and vice versa. We also give some classifications of monoids when all their acts satisfy Condition (PWP_{sic}) .

Note that, in act categories we call a monomorphism $f: A_S \to B_S$ an embedding of A_S into B_S . If there exists such a monomorphism we say that A_S can be embedded into B_S or B_S contains (an isomorphic copy of) A_S or B_S is an extension of A_S . If $A_S \subseteq B_S$ is a subact, then the restriction $(id_{B_S})|_{A_S}$ is called the inclusion or natural embedding of A_S into B_S .

Proposition 3.1. The following statements are equivalent:

- (1) all right S-acts satisfy Condition (PWP_{sic});
- (2) all finitely generated right S-acts satisfy Condition (PWP_{sic});
- (3) all right S-acts generated by at most two elements satisfy Condition (PWP_{sic});
- (4) all right S-acts generated by exactly two elements satisfy Condition (PWP_{sic});
- (5) all cyclic right S-acts satisfy Condition (PWP_{sic});
- (6) all monocyclic right S-acts satisfy Condition (PWP_{sic});
- (7) all monocyclic right S-acts of the form $S/\rho(s, s^2)$, $s \in S$ satisfy Condition (PWP_{sic});
- (8) for all $x, y, s \in S$ there exists $e \in E(S)$ such that es = s, $(xe)\rho(xs, ys)(ye)$;
- (9) for all $x, y, s \in S$, there exists $r \in S$ such that $rs = s, (xr)\rho(xs, ys)(yr)$;

- (10) all right Rees factor acts of S satisfy Condition (PWP_{sic});
- (11) all right Rees factor acts of S of the form S/sS, $s \in S$ satisfy Condition (PWP_{sic});
- (12) all divisible right S-acts satisfy Condition (PWP_{sic});
- (13) all principally weakly injective right S-acts satisfy Condition (PWP_{sic});
- (14) all finitely generated weakly injective right S-acts satisfy Condition (PWP_{sic});
- (15) all weakly injective right S-acts satisfy Condition (PWP_{sic});
- (16) all injective right S-acts satisfy Condition (PWP_{sic});
- (17) all cofree right S-acts satisfy Condition (PWP_{sic});
- (18) S is regular.

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$, $(3) \Rightarrow (5) \Rightarrow (6) \Rightarrow (7)$, $(5) \Rightarrow (10) \Rightarrow (11)$ and $(8) \Rightarrow (9)$ are obvious.

Since Cofree \Rightarrow Injective \Rightarrow weakly injective \Rightarrow finitely generated weakly injective \Rightarrow principally weakly injective \Rightarrow divisible, implications $(1) \Rightarrow (12) \Rightarrow (13) \Rightarrow (14) \Rightarrow (15) \Rightarrow (16) \Rightarrow (17)$ are obtained immediately.

 $(4) \Rightarrow (18)$. Let $s \in S$. If sS = S then there exists $x \in S$ such that sx = 1, and so sxs = s. Thus s is regular. Now suppose that $sS \neq S$. Set

$$A_S = S \stackrel{sS}{\coprod} S = \{(l, x) | l \in S \setminus sS\} \stackrel{\cdot}{\cup} sS \stackrel{\cdot}{\cup} \{(t, y) | t \in S \setminus sS\}.$$

Obviously $A_S = (1, x)S \cup (1, y)S = <(1, x), (1, y) >$. Since A_S is generated by two elements, then, by assumption, A_S satisfies Condition (PWP_{sic}) . Thus the equality s = (1, x)s = (1, y)s implies the existence of $e \in E(S)$ such that es = s and (1, x)e = (1, y)e. The second equality implies $e \in sS$, and so there exists $x \in S$ such that e = sx. Hence s = es = sxs, that is s is a regular element. Thus S is regular.

- $(7) \Rightarrow (18)$. By Proposition 2.8, part (1), all monocyclic right S-acts of the form $S/\rho(s,s^2), s \in S$, are principally weakly flat. Therefore by [11, Theorem 4.6.6], S is a regular monoid.
- $(11) \Rightarrow (18)$. By Proposition 2.8, part (1), all right Rees factor acts of S of the form S/sS, $s \in S$, are principally weakly flat. It follows by [11, Theorem 4.6.6] that S is a regular monoid.
- $(9) \Rightarrow (18)$. We show that all cyclic right S-acts are principally weakly flat. Let ρ be a right congruence on S and $[x]_{\rho}s = [y]_{\rho}s$, for $x, y, s \in S$. Then $(xs)\rho(ys)$, and so $\rho(xs, ys) \subseteq \rho$. Now, by assumption, there exists $r \in S$ such that rs = s and $(xr)\rho(xs, ys)(yr)$, and so $(xr)\rho(yr)$. Thus

$$[x]_{\rho} \otimes s = [x]_{\rho} \otimes rs = [x]_{\rho} r \otimes s = [xr]_{\rho} \otimes s = [yr]_{\rho} \otimes s$$
$$= [y]_{\rho} r \otimes s = [y]_{\rho} \otimes rs = [y]_{\rho} \otimes s.$$

in $S/\rho \otimes Ss$. Hence all cyclic right S-acts are principally weakly flat and so by [11, Theorem 4.6.6], S is regular.

- $(17) \Rightarrow (18)$. Since every act can be embedded into a cofree act, by assumption, every S-act is a subact of act which satisfying Condition (PWP_{sic}) . By Proposition 2.5, part (2), all right S-acts satisfy Condition (PWP_{sic}) . It follows, by Proposition 2.8, that all right S-acts are principally weakly flat. Thus by [11, Theorem 4.6.6], S is a regular monoid.
- $(18) \Rightarrow (1)$. By [11, Theorem 4.6.6], all right S-acts are principally weakly flat. Since every regular monoid is left PP, by Proposition 2.8, part (2), all right S-acts satisfy Condition (PWP_{sic}) .
- $(6) \Rightarrow (8)$. Let $x, y, s \in S$. By assumption $S/\rho(xs, ys)$ satisfies Condition (PWP_{sic}) . Since $(xs)\rho(xs, ys)(ys)$, by Proposition 2.6, (8) is satisfied.

Note that, by Proposition 3.1, if S is not regular, then there exists at least one cofree right S-act which does not satisfy Condition (PWP_{sic}) .

Recall, from [12, 2, 3] that a right S-act A_S satisfies Condition (E') if as = as' and sz = s'z, for $a \in A_S$, $s, s', z \in S$, imply that there exist $a' \in A_S$ and $u \in S$ such that a = a'u and us = us'. A right S-act A_S satisfies Condition (EP) if as = at, for $a \in A_S$, $s, t \in S$, implies that there exist $a' \in A_S$ and $u, v \in S$ such that a = a'u = a'v and us = vt. A right S-act A_S satisfies Condition (E'P) if as = at and sz = tz, for $a \in A_S$, $s, t, z \in S$, imply that there exist $a' \in A_S$ and $u, v \in S$ such that a = a'u = a'v and us = vt. It is obvious that $(E) \Rightarrow (EP) \Rightarrow (E'P)$ and $(E) \Rightarrow (E'P)$.

Proposition 3.2. The following statements are equivalent:

- (1) all right S-acts satisfy Condition (PWP_{sic});
- (2) all right S-acts satisfying Condition (E), satisfy Condition (PWP_{sic});
- (3) all right S-acts satisfying Condition (E'), satisfy Condition (PWP_{sic}) ;
- (4) all right S-acts satisfying Condition (E'P), satisfy Condition (PWP_{sic}) ;
- (5) all right S-acts satisfying Condition (EP), satisfy Condition (PWP_{sic});
- (6) S is regular.

Proof. Since $(E) \Rightarrow (E') \Rightarrow (E'P)$ and $(E) \Rightarrow (EP) \Rightarrow (E'P)$, implications $(1) \Rightarrow (4) \Rightarrow (3) \Rightarrow (2)$ and $(4) \Rightarrow (5) \Rightarrow (2)$ are obvious.

 $(2) \Rightarrow (6)$. Let $s \in S$. If sS = S, then there exists $x \in S$ such that sx = 1. Hence sxs = s, and so s is regular. Now suppose that $sS \neq S$. Set

$$A_S = S \stackrel{sS}{\coprod} S = \{(l, x) | l \in S \setminus sS\} \stackrel{\cdot}{\cup} sS \stackrel{\cdot}{\cup} \{(t, y) | t \in S \setminus sS\}.$$

Obviously

$$B_S = \{(l, x) | l \in S \setminus sS\} \ \dot{\cup} \ sS \cong S_S \cong \{(t, y) | t \in S \setminus sS\} \ \dot{\cup} \ sS = C_S.$$

Moreover B_S and C_S are subacts of A_S , where generated by (1,x) and (1,y), respectively. A_S is generated by (1,x) and (1,y), because $A_S = B_S \cup C_S$. By the above isomorphisms, B_S and C_S satisfy Condition (E), and so A_S satisfies Condition (E). By assumption, A_S satisfies Condition (PWP_{sic}) . Hence the equality (1,x)s = (1,y)s implies there exists $e \in E(S)$ such that (1,x)e = (1,y)e and es = s. From the equality (1,x)e = (1,y)e we get $e \in sS$. Thus there exists $x \in S$ such that e = sx. Therefore s = es = sxs, and so s is regular. Thus S is regular.

 $(6) \Rightarrow (1)$. It is true, by Proposition 3.1. \Box

Note that the above proof implies that the previous theorem is true for finitely generated right S-acts and right S-acts generated by at most (exactly) two elements. Thus if S is not regular, then there exists at least one right S-act generated by at most (exactly) two elements satisfying Condition (E), but does not satisfy Condition (PWP_{sic}) .

Recall, from [14, 6, 5, 4] that a right S-act A satisfies Condition (PF''), if for every $a, a' \in A$ and $s, s', t, t', z, w \in S$, as = a's', at = a't', and sz = tw = t'w = s'z imply a = a''u, a' = a''v, for some $a'' \in A$, $u, v \in S$ with us = vs' and ut = vt'. A right S-act A satisfies Condition (P'), if for every $a, a' \in A$ and $t, t', z \in S$, at = a't' and tz = t'z imply a = a''u, a' = a''v, for some $a'' \in A$, $u, v \in S$ with ut = vt'. A right S-act A satisfies Condition (P_E) , if for every $a, a' \in A$ and $s, s' \in S$, as = a's' implies ae = a''ue, a'f = a''vf, $av \in S$, $av \in$

Proposition 3.3. Suppose that (U) be a property of S-acts which implies principally weak flatness and S_S satisfies the property (U). Then the following statements are equivalent:

- (1) all right S-acts satisfying property (U), satisfy Condition (PWP_{sic});
- (2) all finitely generated right S-acts satisfying property (U), satisfy Condition (PWP_{sic}) ;
- (3) all cyclic right S-acts satisfying property (U), satisfy Condition (PWP_{sic});
- (4) S_S satisfies Condition (PWP_{sic}).

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3)$ are obvious.

- (3) \Rightarrow (4). Since S_S is a cyclic act satisfying property (U), by assumption S_S satisfies Condition (PWP_{sic}) .
- $(4) \Rightarrow (1)$. Suppose that A_S be a right S-act satisfying property (U). Let as = a's, for $a, a' \in A_S$ and $s \in S$. Since S_S satisfies Condition (PWP_{sic}) , S is left PSF. Also, by assumption, A_S is principally weakly flat, and so, by [17, Lemma 1.3], there exists $u \in S$ such

that au = a'u and us = s. Since S_S satisfies Condition (PWP_{sic}) , we get $e \in E(S)$ such that ue = e and es = s. Thus ae = aue = a'ue = a'e, and so A_S satisfies Condition (PWP_{sic}) .

Note that property (U) in the above proposition can be any property as free, projective generator, projective, strongly flat, equalizer flat, WPF, (PF''), WKF, PWKF, TKF, (WP), (P), (P'), (PWP), flat, weakly flat, (P_E) , (PWP_E) , principally weakly flat.

Proposition 3.4. The following statements are equivalent:

- (1) all right S-acts satisfy Condition (PWP_{sic});
- (2) all generator right S-acts satisfy Condition (PWP_{sic});
- (3) all finitely generated generator right S-acts satisfy Condition (PWP_{sic});
- (4) all generator right S-acts generated by at most three elements satisfy Condition (PWP_{sic}) ;
- (5) $S \times A_S$ satisfies Condition (PWP_{sic}) for every right S-act A_S ;
- (6) $S \times A_S$ satisfies Condition (PWP_{sic}) for every finitely generated right S-act A_S ;
- (7) $S \times A_S$ satisfies Condition (PWP_{sic}) for every right S-act A_S generated by at most two elements;
- (8) $S \times A_S$ satisfies Condition (PWP_{sic}) for every generator right S-act A_S ;
- (9) $S \times A_S$ satisfies Condition (PWP_{sic}) for every finitely generated generator right S-act A_S ;
- (10) $S \times A_S$ satisfies Condition (PWP_{sic}) for every generator right S-act A_S generated by at most three elements;
- (11) a right S-act A_S satisfies Condition (PWP_{sic}) if $Hom(A_S, S_S) \neq \emptyset$;
- (12) a finitely generated right S-act A_S satisfies Condition (PWP_{sic}) if $Hom(A_S, S_S) \neq \emptyset$;
- (13) a right S-act A_S generated by at most three elements satisfies Condition (PWP_{sic}) if $Hom(A_S, S_S) \neq \emptyset$;
- (14) S is regular.

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$, $(5) \Rightarrow (6) \Rightarrow (7)$, $(1) \Rightarrow (8) \Rightarrow (9) \Rightarrow (10)$ and $(1) \Rightarrow (11) \Rightarrow (12) \Rightarrow (13)$ are obvious.

- $(1) \Leftrightarrow (14)$. It follows from proposition 3.1.
- $(7) \Rightarrow (1)$. Suppose that A_S be a right S-act and as = a's for $a, a' \in A_S$ and $s \in S$. Let $B_S = aS \cup a'S$. It is obvious that B_S is generated by at most two elements. By assumption, $S \times B_S$ satisfies Condition (PWP_{sic}) . Now (1,a)s = (1,a')s implies the existence of $e \in E(S)$ such that (1,a)e = (1,a')e and es = s. Hence ae = a'e and es = s, and so A_S satisfies Condition (PWP_{sic}) .

- $(2) \Rightarrow (5)$. Let A_S be a right S-act. Consider the map $\pi : S \times A_S \to S_S$ where $\pi(s, a) = s$, for $s \in S, a \in A_S$. Obviously π is an epimorphism. It follows from [11, Theorem 2.3.16] that $S \times A_S$ is a generator in **Act-S**. Thus, by assumption, $S \times A_S$ satisfies Condition (PWP_{sic}) .
- $(13) \Rightarrow (4)$. Suppose that A_S be a generator right S-act generated by at most three elements. Since A_S is a generator, there exists an epimorphism $\pi: A_S \to S_S$, by [11, Theorem 2.3.16]. Thus $Hom(A_S, S_S) \neq \emptyset$, and so by assumption, A_S satisfies Condition (PWP_{sic}) .
- $(4) \Rightarrow (2)$. Suppose that A_S be a generator right S-act and as = a's, for $a, a' \in A_S$ and $s \in S$. Since A_S is a generator, there exists an epimorphism $\pi : A_S \to S_S$, by [11, Theorem 2.3.16]. Let $\pi(a'') = 1$. Set $B_S = aS \cup a'S \cup a''S$. It is obvious that $\pi|_{B_S}$ is an epimorphism from B_S onto S_S , and so S_S is a generator. Since S_S is generated by at most three elements, by assumption, S_S satisfies Condition (PWP_{sic}) , and so S_S are S_S implies the existence of S_S such that S_S such that S_S satisfies Condition S_S satisfies Condition S_S .
- $(10) \Rightarrow (2)$. Applying the proof of $(4) \Rightarrow (2)$, $S \times B_S$ satisfies Condition (PWP_{sic}) . Since as = a's in A_S , (1, a)s = (1, a')s, in $S \times B_S$. Thus there exists $e \in E(S)$, such that es = s and (1, a)e = (1, a')e, and so ae = a'e. Hence A_S satisfies Condition (PWP_{sic}) . \Box

Proposition 3.5. The following statements are equivalent:

- (1) all torsion free right S-acts satisfy Condition (PWP_{sic});
- (2) all torsion free finitely generated right S-acts satisfy Condition (PWP_{sic});
- (3) all torsion free cyclic right S-acts satisfy Condition (PWP_{sic});
- (4) all torsion free right Rees factor acts of S satisfy Condition (PWP_{sic});
- (5) S is left almost regular.

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ are obvious.

- $(4) \Rightarrow (5)$. By Proposition 2.8, part (1), all torsion free right Rees factor acts of S are principally weakly flat. It follows from [11, Theorem 4.6.5] that S is left almost regular.
- $(5) \Rightarrow (1)$. By [11, Theorem 4.6.5], all torsion free right S-acts are principally weakly flat. On the other hand by dual of [11, Proposition 4.1.3] every left almost regular monoid is a left PP monoid. Now by Proposition 2.8, part (2), all torsion free right S-acts satisfy Condition (PWP_{sic}) .

Recall from [18] that the right S-act A_S is called \Re -torsion free if for any $a, b \in A_S$ and for any right cancellable element $c \in S$, ac = bc and $a\Re b$ imply that a = b.

Proposition 3.6. The following statements are equivalent:

- (1) all \Re -torsion free right S-acts satisfy Condition (PWP_{sic});
- (2) all \Re -torsion free finitely generated right S-acts satisfy Condition (PWP_{sic});

- (3) all \Re -torsion free right S-acts generated by at most two elements satisfy Condition (PWP_{sic}) ;
- (4) all \Re -torsion free right S-acts generated by exactly two elements satisfy Condition (PWP_{sic}) ;
- (5) S is regular.

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ are obvious.

 $(4) \Rightarrow (5)$. Let $s \in S$. If sS = S, then there exists $x \in S$ such that sx = 1, and so sxs = s. Thus s is a regular element. Now assume that $sS \neq S$. Set

$$A_S = S \stackrel{sS}{\coprod} S = \{(l, x) | l \in S \setminus sS\} \stackrel{\cdot}{\cup} sS \stackrel{\cdot}{\cup} \{(t, y) | t \in S \setminus sS\}.$$

Using the same proof to that of Proposition 3.2 (2 \Rightarrow 6), A_S satisfies Condition (E) and is generated with two elements (1, x) and (1, y). By [18, Proposition 1.2], A_S is \Re -torsion free, and so by assumption, A_S satisfies Condition (PWP_{sic}). Again the same proof to that of Proposition 3.2 (2 \Rightarrow 6), implies that s is a regular element. Thus S is regular.

 $(5) \Rightarrow (1)$. Note that every \mathfrak{R} -torsion free right S-act is principally weakly flat, by [18, Proposition 4.5]. Moreover every regular monoid is left PP. Hence by Proposition 2.8, part (2), principal weak flatness equivalent to Condition (PWP_{sic}) . Thus all \mathfrak{R} -torsion free right S-acts satisfy Condition (PWP_{sic}) .

Definition 3.7. The principal left ideal Ss, $s \in S$, is called finitely definable if there exist $(u_1, v_1), ..., (u_n, v_n) \in S \times S$ such that:

- $(i) u_i s = v_i s \ (1 \le i \le n),$
- (ii) if xs = ys, $x, y \in S$, then there exist $s_1, s_2, ..., s_n \in S$ such that

$$x = s_1 u_1,$$

$$s_1 v_1 = s_2 u_2,$$

$$\vdots$$

$$s_n v_n = y.$$

If S is a monoid, the cartesian product S^I is a right and left S-act with the action componentwise, where I is a nonempty set. For more information the reader is referred to [17].

Proposition 3.8. [17, Proposition 2.2] The following statements are equivalent:

- (1) S_S^I is principally weakly flat, for each nonempty set I;
- (2) for any $a \in S$, the mapping $f_a : S_S^I \otimes Sa \to (Sa)^I$ given by $f_a((s_i)_I \otimes sa) = (s_i sa)_I$ is injective, for each nonempty set I;
- (3) all principal left ideals of S are finitely definable;

(4) $S_S^{S \times S}$ is principally weakly flat.

We recall from [10], if A_S is an S-act and its second dual exists, then the mapping φ_A : $A_S \to Hom(Hom(A_S, S_S), {}_SS) = (A_S)^{**}$ defined by $\varphi_A(a)(f) = f(a)$, for every $a \in A$ and $f \in Hom(A_S, S_S)$, is Homomorphism. An act A_S is called *torsionless* if φ_A is injective. Also an act A_S , $|A_S| > 1$, is torsionless if and only if for every $x, y \in A_S$, $x \neq y$, there exists $f \in hom(A_S, S_S)$ such that $f(x) \neq f(y)$.

Proposition 3.9. The following statements are equivalent:

- (1) all torsionless right S-acts satisfy Condition (PWP_{sic});
- (2) all torsionless right S-acts are principally weakly flat and S_S satisfies Condition (PWP_{sic}) ;
- (3) all torsionless right S-acts are principally weakly flat and S is left PSF;
- (4) S_S^I satisfies Condition (PWP_{sic}), for any nonempty set I;
- (5) $S_S^{S \times S}$ satisfies Condition (PWP_{sic});
- (6) S_S satisfies Condition (PWP_{sic}) and S_S^I is principally weakly flat, for any nonempty set I;
- (7) S is left PP.
- *Proof.* (1) \Rightarrow (2). By assumption and Proposition 2.8, all torsionless right S-acts are principally weakly flat. Moreover, by [10, Lemma 2.3], S_S is a torsionless act and so, by assumption, S_S satisfies Condition (PWP_{sic}).
 - $(2) \Rightarrow (3)$. It is obvious by definition.
- $(3) \Rightarrow (7)$. It follows, from [10, Lemma 2.5], that for each nonempty set I, S^I is torsionless. Then it is principally weakly flat, by assumption. Now, by [17, Proposition 1.5], S is left PP.
- $(1) \Rightarrow (4)$. It follows, from [10, Lemma 2.5], that for each nonempty set I, S^I is torsionless, and so by assumption, S_S^I satisfies Condition (PWP_{sic}) .
 - $(4) \Rightarrow (5)$. It is obvious.
- $(5)\Rightarrow (6)$. By Proposition 2.8, $S_S^{S\times S}$ is principally weakly flat. It follows, from Proposition 3.8, that S_S^I is principally weakly flat, for every nonempty set I. Now we prove S_S satisfies Condition (PWP_{sic}) . Let xs=ys, for $x,y,s\in S$. Set $|S\times S|=I$. Suppose that for $i_0\in I$, $x_{i_0}=x,y_{i_0}=y$ and for $i\in I\setminus\{i_0\}$, $x_i=y_i=1$. Then we have $(x_i)_Is=(y_i)_Is$. Since $S_S^{S\times S}$ satisfies Condition (PWP_{sic}) , there exists $e\in E(S)$ such that $(x_i)_Ie=(y_i)_Ie$ and es=s. Now $x_ie=y_ie$, for every $i\in I$, and so $xe=x_{i_0}e=y_{i_0}e=ye$. Therefore S_S satisfies Condition (PWP_{sic}) .
- $(6) \Rightarrow (7)$. Since S_S satisfies Condition (PWP_{sic}) , S is left PSF, and so, by [17, Proposition 1.5], S is left PP.

 $(7) \Rightarrow (1)$. Assume that A_S be a torsionless right S-act. By [10, Proposition 2.6], there exists the nonempty set I such that A_S can be embedded into S_S^I . Thus there exists subact B_S of S_S^I such that $A_S \cong B_S$. Since S is a left PP monoid, by [17, Proposition 1.5], S_S^I is principally weakly flat. It follows, from Proposition 2.8, that S_S^I satisfies Condition (PWP_{sic}) . On the other hand every subact of an act satisfying Condition (PWP_{sic}) , satisfies Condition (PWP_{sic}) . Thus B_S , and so A_S satisfy Condition (PWP_{sic}) .

Proposition 3.10. The following statements are equivalent:

- (1) all faithful right S-acts satisfy Condition (PWP_{sic});
- (2) all faithful finitely generated right S-acts satisfy Condition (PWP_{sic});
- (3) all faithful right S-acts generated by at most two elements satisfy Condition (PWP_{sic});
- (4) all faithful right S-acts generated by exactly two elements satisfy Condition (PWP_{sic});
- (5) S is regular.

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ are obvious.

- $(4) \Rightarrow (5)$. Let $s \in S$. If sS = S then there exists $x \in S$ such that sx = 1, and so sxs = s. Thus s is regular. Now assume that $sS \neq S$. Set $A_S = S \stackrel{sS}{\coprod} S$. Since A_S is faithful, by assumption, A_S satisfies Condition (PWP_{sic}) . By the proof of Proposition $3.2(2 \Rightarrow 6)$, s is regular, and so S is regular.
- (5) \Rightarrow (1). By Proposition 3.1, all right S-acts satisfy Condition (PWP_{sic}). Thus all faithful right S-acts satisfy Condition (PWP_{sic}). \Box

Lemma 3.11. [9, Lemma 3.7] The following statements are equivalent:

- (1) there exists at least one strongly faithful right S-act;
- (2) there exists at least one cyclic strongly faithful right S-act;
- (3) there exists at least one monocyclic strongly faithful right S-act;
- (4) there exists at least one finitely generated strongly faithful right S-act;
- (5) for all $s \in S$, sS is a strongly faithful right S-act;
- (6) there exists $s \in S$, such that sS is a strongly faithful right S-act;
- (7) S_S is a strongly faithful right S-act;
- (8) for all $s \in S$, the elements of sS are left cancellable;
- (9) there exists $s \in S$ such that all elements of sS are left cancellable;
- (10) S is left cancellable.

Proposition 3.12. The following statements are equivalent:

- (1) all strongly faithful right S-acts satisfy Condition (PWP_{sic});
- (2) all strongly faithful finitely generated right S-acts satisfy Condition (PWP_{sic});

- (3) all strongly faithful right S-acts generated by at most two elements satisfy Condition (PWP_{sic}) ;
- (4) all strongly faithful right S-acts generated by exactly two elements satisfy Condition (PWP_{sic}) ;
- (5) S is not left cancellable or S is a group.

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ are obvious.

 $(4) \Rightarrow (5)$. Suppose that S be a left cancellable monoid. We claim that S is a group. It is sufficient to show that S is regular. Let $s \in S$. If sS = S then s is regular. Otherwise set

$$A_S = S \stackrel{sS}{\coprod} S = \{(l, x) | l \in S \setminus sS\} \dot{\cup} sS \dot{\cup} \{(t, y) | t \in S \setminus sS\}.$$

Now we have

$$B_S = \{(l, x) | l \in S \setminus sS\} \ \dot{\cup} \ sS \cong S_S \cong \{(t, y) | t \in S \setminus sS\} \ \dot{\cup} \ sS = C_S.$$

Obviously $A_S = \langle (1,x), (1,y) \rangle = B_S \cup C_S$. Since S is left cancellable, by Lemma 3.11, S_S is strongly faithful. By using the above isomorphisms, B_S and C_S as subacts of A_S are strongly faithful. Hence A_S is strongly faithful. Since A_S is generated by exactly two elements, by assumption A_S satisfies Condition (PWP_{sic}) . It follows, from the proof of Proposition $3.2(2 \Rightarrow 6)$, that s is regular. Thus S is regular. For every $s \in S$, from regularity S, there exists $x \in S$ such that sxs = s, and so xs = 1, since S is left cancellable. This means that every element of S is left invertible. Thus S is a group.

 $(5) \Rightarrow (1)$. If S is not left cancellable, then, by Lemma 3.11, there exist no strongly faithful right S-act. Otherwise if S is a left cancellable monoid then, by assumption, S is a group. Thus S is regular, and so by Proposition 3.1, the statement (1) is obtained. \Box

Lemma 3.13. [9, Lemma 3.9] Suppose that ρ be a right congruence on a monoid S. Then S/ρ is a strongly faithful right S-act if and only if $\rho = \Delta_S$ and S is left cancellable.

Proposition 3.14. The following statements are equivalent:

- (1) all strongly faithful cyclic right S-acts satisfy Condition (PWP_{sic});
- (2) S is not left cancellable or S_S satisfies Condition (PWP_{sic});

Proof. (1) \Rightarrow (2). Suppose S be a left cancellable monoid. Then, by Lemma 3.11, S_S as a cyclic right S-act is strongly faithful, and so by assumption, S_S satisfies Condition (PWP_{sic}) .

 $(2) \Rightarrow (1)$. If S is not left cancellable, by Lemma 3.11, there exist no a strongly faithful right S-act. Thus (1) is obtained. If S is left cancellable, by Lemma 3.11, there exists at least one strongly faithful cyclic right S-act. Thus we can assume S/ρ is a strongly faithful cyclic right

S-act. By Lemma 3.13, $\rho = \Delta_S$, and so $S/\rho \cong S_S$, which by assumption, satisfies Condition (PWP_{sic}) . \square

Proposition 3.15. The following statements are equivalent:

- (1) there exists at least one strongly faithful cyclic right S-act which satisfies Condition (PWP_{sic}) ;
- (2) S is left cancellable and every strongly faithful cyclic right S-act satisfies Condition (PWP_{sic}) ;
- (3) S is left cancellable and S_S satisfies Condition (PWP_{sic}).
- *Proof.* (1) \Rightarrow (2). It follows, from assumption and Lemma 3.11, that S is left cancellable. Suppose that S/ρ be a strongly faithful cyclic right S-act. By Lemma 3.13, $\rho = \Delta_S$, and so $S/\rho \cong S_S$ satisfies Condition (PWP_{sic}) .
 - $(2) \Rightarrow (3)$. This is true, by Lemma 3.14.
- $(3) \Rightarrow (1)$. Since S is a left cancellable monoid, by Lemma 3.11, there exists at least one strongly faithful cyclic right S-act as S/ρ . Then $\rho = \Delta_S$, by Lemma 3.13, and so $S/\rho \cong S_S$, which by assumption, satisfies Condition (PWP_{sic}) . \square

Proposition 3.16. The following statements are equivalent:

- (1) all right S-acts satisfying Condition (PWP_{sic}) are (strongly) faithful;
- (2) all finitely generated right S-acts satisfying Condition (PWP_{sic}) are (strongly) faithful;
- (3) all cyclic right S-acts satisfying Condition (PWP_{sic}) are (strongly) faithful;
- (4) all right Rees factor acts of S satisfying Condition (PWP_{sic}) are (strongly) faithful;
- (5) $S = \{1\}.$

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ are obvious.

- $(4) \Rightarrow (5)$. It follows, by Proposition 2.5, part (1), that $S/S_S \cong \Theta_S$ satisfies Condition (PWP_{sic}) . Thus, by assumption, Θ_S is (strongly) faithful. Let $s,t \in S$. Then $\varpi s = \varpi t$ implies s = t, and so $S = \{1\}$.
 - $(5) \Rightarrow (1)$. If $S = \{1\}$ then all right S-acts are strongly faithful, and so (1) is obtained. \Box

Proposition 3.17. The following statements are equivalent:

- (1) all right S-acts satisfying Condition (PWP_{sic}) are (projective) generator;
- (2) all finitely generated right S-acts satisfying Condition (PWP_{sic}) are (projective) generator;
- (3) all cyclic right S-acts satisfying Condition (PWP_{sic}) are (projective) generator;

- (4) all right Rees factor acts of S satisfying Condition (PWP_{sic}) are (projective) generator;
- (5) $S = \{1\}.$

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ are obvious.

- $(4) \Rightarrow (5)$. It follows, by Proposition 2.5, part (1), that $S/S_S \cong \Theta_S$ satisfies Condition (PWP_{sic}) . By assumption, Θ_S is (projective) generator. By [11, Theorem 2.3.16], there exists an epimorphism $\pi: \Theta_S \to S_S$. Thus $S = \{1\}$.
- (5) \Rightarrow (1). If $S = \{1\}$ then all right S-acts are (projective) generator, and so (1) is obtained. \Box

Proposition 3.18. The following statements are equivalent:

- (1) all right S-acts satisfying Condition (PWP_{sic}) are free;
- (2) all finitely generated right S-acts satisfying Condition (PWP_{sic}) are free;
- (3) all cyclic right S-acts satisfying Condition (PWP_{sic}) are free;
- (4) all right Rees factor acts of S satisfying Condition (PWP_{sic}) are free;
- (5) $S = \{1\}.$

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ are obvious.

- $(4) \Rightarrow (5)$. By assumption, all right Rees factor acts of S satisfying Condition (PWP_{sic}) are generator. It follows, from Proposition 3.17, that $S = \{1\}$.
 - $(5) \Rightarrow (1)$. If $S = \{1\}$ then all right S-acts are free, and so (1) is obtained. \Box
 - 4. Classification by condition (PWP_{sic}) of right Rees factor acts

In this section we give a classification of monoids by Condition (PWP_{sic}) of right Rees factor acts.

Proposition 4.1. Let K_S be a right ideal of S. The right Rees factor S-act S/K_S satisfies Condition (PWP_{sic}) if and only if K_S fulfills in the following conditions

(I) for all $x, y, s \in S$,

$$[(xs = ys \in S \setminus K_S) \Rightarrow (\exists e \in E(S))(es = s \land xe = ye)].$$

(II) for all $x, y, s \in S$,

$$[(xs, ys \in K_S) \Rightarrow (\exists e \in E(S))(es = s \land (xe = ye \lor xe, ye \in K_S))].$$

Proof. Necessity. Let $xs = ys \in S \setminus K_S$, for $x, y, s \in S$. Then $(xs)\rho_K(ys)$, which implies the existence of $e \in E(S)$ such that es = s and $(xe)\rho_K(ye)$, by Proposition 2.6. Thus xe = ye or $xe, ye \in K_S$. If $xe, ye \in K_S$ then $ys = xs = xes \in K_S$ which is a contradiction. Hence xe = ye

and es = s, and so (I) is obtained. Now let $xs, ys \in K_S$, for $x, y, s \in S$. Thus $(xs)\rho_K(ys)$, and so Condition (PWP_{sic}) implies the existence $e \in E(S)$ such that es = s and $(xe)\rho_K(ye)$. Hence xe = ye or $xe, ye \in K_S$, as required.

Sufficiency. Note that if $K_S = S$ then $S/K_S \cong \Theta_S$ which satisfies Condition (PWP_{sic}) , by Proposition 2.5. Assume that K_S is a proper right ideal of S and $(xs)\rho_K(ys)$, for $x, y, s \in S$. Then $xs, ys \in K_S$ or xs = ys. If $xs, ys \in K_S$, then by condition (II), there exists $e \in E(S)$ such that es = s and $(xe)\rho_K(ye)$, as required. If xs = ys then there are two cases as follows:

Case 1: $xs = ys \in K_S$. This is similar to the situation where $xs, ys \in K_S$.

Case 2: $xs = ys \in S \setminus K_S$. By condition (I), there exists $e \in E(S)$ such that es = s and xe = ye. Hence es = s and $(xe)\rho_K(ye)$. Therefore, by Proposition 2.6, S/K_S satisfies Condition (PWP_{sic}) , as required. \square

Remark. Note that it is easy to show that if the right ideal K_S satisfies condition (II) of Proposition 4.1, then K_S is left stabilizing.

Proposition 4.2. Let K_S be a right ideal of S. All right Rees factor acts of S satisfying Condition (PWP_{sic}) are (weakly) flat if and only if S is right reversible.

Proof. Necessity. Since $S/S_S \cong \Theta_S$ satisfies Condition (PWP_{sic}) , by assumption Θ_S is (weakly) flat, and so by [11, Exercise 3.12.2], S is right reversible.

Sufficiency. Suppose that S be a right reversible monoid. Let K_S be a right ideal of S such that S/K_S satisfies Condition (PWP_{sic}) . If $K_S = S$, it follows from [11, Theorem 3.12.17], $S/K_S = S/S_S \cong \Theta_S$ is (weakly) flat. Otherwise, by Proposition 4.1, K_S satisfies conditions (I) and (II). It follows from above remark that K_S is left stabilizing. Now, by [11, Theorem 3.12.17], S/K_S is (weakly) flat. \square

Proposition 4.3. The following statements are equivalent:

- (1) all right Rees factor acts of S satisfying Condition (P) satisfy Condition (PWP_{sic});
- (2) all WPF right Rees factor acts of S satisfy Condition (PWP_{sic});
- (3) all strongly flat right Rees factor acts of S satisfy Condition (PWP_{sic});
- (4) all projective right Rees factor acts of S satisfy Condition (PWP_{sic});
- (5) all projective generator right Rees factor acts of S satisfy Condition (PWP_{sic});
- (6) all free right Rees factor acts of S satisfy Condition (PWP_{sic});
- (7) S_S satisfies Condition (PWP_{sic}) or S does not contain a left zero.

Proof. Since free \Rightarrow projective generator \Rightarrow projective \Rightarrow $SF \Rightarrow WPF \Rightarrow (P)$, implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5) \Rightarrow (6)$ are obtained immediately.

- $(6) \Rightarrow (7)$. Suppose that S contains a left zero as z. Then $K_S = zS = \{z\}$ is a right ideal of S. Since $|K_S| = 1$, by [11, Proposition 1.5.22], $S/K_S \cong S_S$ is free, and so by assumption, $S/K_S \cong S_S$ satisfies Condition (PWP_{sic}) .
- $(7) \Rightarrow (1)$. Let K_S be a right ideal of S such that S/K_S satisfies Condition (P). If $K_S = S$ then $S/K_S \cong \Theta_S$ satisfies Condition (PWP_{sic}) , by Proposition 2.5. If $K_S \neq S$ then, by [11, Proposition 3.13.9], $|K_S| = 1$ and so, $K_S = zS = \{z\}$. Thus z is a left zero of S, and so by assumption, $S_S \cong S/K_S$ satisfies Condition (PWP_{sic}) , as desired. \square

We recall from [15, 16] that A_S is called GP-flat, if for every $s \in S$, and $a, a' \in A_S$, $a \otimes s = a' \otimes s$ in $A_S \otimes_S S$ implies the existence of a natural number n such that $a \otimes s^n = a \otimes s^n$ in $A_S \otimes_S S s^n$. The S-act A_S is called GPW-flat, if for every $s \in S$, there exists $n = n_{(s,A_S)} \in \mathbb{N}$, such that the functor $A_S \otimes_S -$ preserves the embedding of the principal left ideal $S(S s^n)$ into S S. It is obvious that every principally weakly flat act is S S-flat and every S S-flat act is torsion free, but the converse of these relations is not true.

Now we pose the following open questions for consideration:

- 1. What is the specification of S, for which every right S-act satisfying Condition (PWP_{sic}) has a certain flatness properties between free and principally weakly flat?
- 2. When all (GPW-flat) GP-flat right S-acts satisfy Condition (PWP_{sic})?

References

- S. Bulman-Fleming, M. Kilp and V. Laan, Pullbacks and flatness properties of acts II, Comm. Algebra, 29 No. 2 (2001) 851-878.
- [2] A. Golchin and H. Mohammadzadeh, On condition (EP), Int. Math. Forum, 2 No. 19 (2007) 911-918.
- [3] A. Golchin and H. Mohammadzadeh, On condition (E'P), J. Sci. Islam. Repub. Iran, 17 No. 4 (2006) 343-349.
- [4] A. Golchin and H. Mohammadzadeh, On condition (PWP_E) , Southeast Asian Bull. Math., **33** (2009) 245-256.
- [5] A. Golchin and H. Mohammadzadeh, On homological classification of monoids by condition (P_E) of right acts, Ital. J. Pure Appl. Math., 25 (2009) 175-186.
- [6] A. Golchin and H. Mohammadzadeh, On condition (P'), Semigr. Forum, 86 (2013) 413-430.
- [7] A. Golchin, A. Zare and H. Mohammadzadeh, E-torsion free acts over monoids, Thai J. Math., 19 No. 4 (2015) 93-114.
- [8] J. M. Howie, Fundamentals of Semigroup Theory, London Mathematical Society Monographs, Oxford University Press, London, 1995.
- [9] P. Khamechi, H. Mohammadzadeh Saany and L. Nouri, Classification of monoids by Condition (PWP_{ssc}) of right acts, Categ. Gen. Algebr. Struct. Appl., 12 No. 1 (2020) 175-197.
- [10] M. Kilp and U. Knauer, On torsionless and dense acts, Semigr. Forum, 63 No. 3 (2001) 396-414.

- [11] M. Kilp, U. Knauer and A. Mikhalev, Monoids, Acts and Categories, Walter de Gruyter, Berlin, 2000.
- [12] V. Laan, Pullbacks and Flatness Properties of Acts, Ph.D. Thesis, Tartu, Estonia, 1999.
- [13] V. Laan, Pullbacks and flatness properties of acts I, Comm. Algebra, 29 No. 2 (2001) 829-850.
- [14] X. Liang and Y. Luo, On a generalization of weak pullback flatness, Comm. Algebra, 44 (2016) 3796-3817.
- [15] H. Qiao and C. Wei, On a generalization of principal weak flatness property, Semigroup Forum, 85 (2012) 147-159.
- [16] H. Rashidi, A. Golchin and H. Mohammadzadeh Saany, On GPW-flat acts, Categ. Gen. Algebr. Struct. Appl., 12 No. 1 (2020) 25-42.
- [17] M. Sedaghatjoo, R. Khosravi and M. Ershad, Principally weakly and weakly coherent monoids, Comm. Algebra, 37 No. 12 (2009) 4281-4295.
- [18] A. Zare, A. Golchin and H. Mohammadzadeh, \(\mathcal{R}\)-torsion free acts over monoids, J. sci. Islam. Repub. Iran, 24 No. 3 (2013) 275-285.

Hossein Mohammadzadeh saany

Department of Mathematics,

University of Sistan and Baluchestan,

Zahedan, Iran.

hmsdm@math.usb.ac.ir

Parisa Rezaei

Department of Mathematics,

University of Sistan and Baluchestan,

Zahedan, Iran.

 $p_rezaei@math.usb.ac.ir$

Leila Nouri

Department of Mathematics,

University of Sistan and Baluchestan,

Zahedan, Iran.

Leila_Nouri@math.usb.ac.ir