[1] N. Aydin and A. Halilović, A generalization of quasi-twisted codes: Multi-twisted codes, Finite Fields Their Appl., 45 (2017) 96-106.
[2] M. Barbier, C. Chabot, and G. Quintin, On quasi-cyclic codes as a generalization of cyclic codes, Finite Fields Their Appl., 18 No. 5 (2012) 904-919.
[3] Y. Cao, Structural properties and enumeration of 1-generator generalized quasi-cyclic codes, Des. Codes Cryptogr., 60 No. 1 (2010) 67-79.
[4] P. L. Cayrel, C. Chabot, and A. Necer, Quasi-cyclic codes as codes over rings of matrices, Finite Fields Their Appl., 16 No. 2 (2010) 100-115.
[5] V. Chauhan, Multi-twisted Codes Over Finite Fields and Their Generalizations, Ph.D. thesis, Indraprastha Institute of Information Technology, 2021.
[6] E. Chen and N. Aydin, A database of linear codes over F13 with minimum distance bounds and new quasi-twisted codes from a heuristic search algorithm, J. Algebra Comb. Discrete Struct. Appl., 2 (2015).
[7] S. T. Dougherty, Algebraic coding theory over finite commutative rings, 1st ed., Springer International Publishing, Switzerland, 2017.
[8] R. Taki Eldin and H. Matsui, Quasi-cyclic codes via unfolded cyclic codes and their reversibility, IEEE Access, 7 (2019) 184500-184508.
[9] R. Taki Eldin and H. Matsui, Good reversible quasi-cyclic codes via unfolding cyclic codes, IEICE Commun. Express, 9 No. 12 (2020) 668-673.
[10] R. Taki Eldin and H. Matsui, On reversibility and self-duality for some classes of quasi-cyclic codes, IEEE Access, 8 (2020) 143285-143293.
[11] R. Taki Eldin and H. Matsui, Linking reversed and dual codes of quasi-cyclic codes, IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 105 No. 3 (2021) 381-388.
[12] J. Gao and F. W. Fu, Note on quasi-twisted codes and an application, J. Appl. Math. Comput., 47 No. 1-2 (2014) 487-506.
[13] J. von zur Gathen and J. Gerhard, Modern Computer Algebra, 3rd ed., Cambridge University Press, 2013.
[14] E. N. Gilbert, A comparison of signalling alphabets, Bell Syst. Tech. J., 31 No. 3 (1952) 504-522.
[15] M. Grassl, Searching for linear codes with large minimum distance, In Discovering Mathematics with Magma, pp. 287-313, Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.
[16] M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, Online available at http://www.codetables.de (2007).
[17] G. G. L. Guardia, On optimal constacyclic codes, Linear Algebra Appl., 496 (2016) 594-610.
[18] C. Güneri, F. Özbudak, B. Özkaya, E. Saçıkara, Z. Sepasdar, and P. Solé, Structure and performance of generalized quasi-cyclic codes, Finite Fields Their Appl., 47 (2017) 183-202.
[19] Y. Jia, On quasi-twisted codes over finite fields, Finite Fields Their Appl., 18 No. 2 (2012) 237-257.
[20] R. Kipp Martin, Large Scale Linear and Integer Optimization: A Unified Approach, Springer, New York, 2012.
[21] K. Lally and P. Fitzpatrick, Algebraic structure of quasicyclic codes, Discrete Appl. Math., 111 No. 1-2 (2001) 157-175.
[22] C. Martinez-Perez and W. Willems, Self-dual doubly even 2-quasi-cyclic transitive codes are asymptotically good, IEEE Trans. Inf. Theory, 53 No. 11 (2007) 4302-4308.
[23] J. L. Massey, Reversible codes, Inf. Control, 7 No. 3 (1964) 369-380.
[24] H. Matsui, On generator and parity-check polynomial matrices of generalized quasi-cyclic codes, Finite Fields Their Appl., 34 (2015) 280-304.
[25] S. Roman, Advanced Linear Algebra, Graduate Texts in Mathematics, Springer, New York, 2008.
[26] A. Sharma, V. Chauhan, and H. Singh, Multi-twisted codes over finite fields and their dual codes, Finite Fields Their Appl., 51 (2018) 270-297.
[27] I. Siap and N. Kulhan, The structure of generalized quasi-cyclic codes, Appl. Math. E-Notes, 5 (2005) 24-30.