On semi-NI rings

Document Type : Research Paper

Authors

Faculty of Mathematical Sciences, Department of Pure Mathematics, University of Kashan, Kashan, P. O. Box 87317-53153, I. R. Iran

Abstract

In this Paper, we first introduce the concept of semi-NI rings which is a generalization of NI rings, and then we examine the characteristics of this class of rings. We investigate relationships between semi-NI rings and some other known classes of rings. We show that the class of semi-NI rings lies strictly between the class of NI rings and the class of directly finite rings. Also, we prove that this class of rings lies strictly between the class of NI rings and the class of NCI rings. In the following, we show that semi-NI rings are characterized by many equivalent conditions.
 

Keywords


[1] D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Alg., 26 No. 7 (1998) 2265-2272.
[2] R. Antoine, Examples of Armendariz rings, Comm. Alg., 38 No. 11 (2010) 4130-4143.
[3] R. Antoine, Nilpotent elements and Armendariz rings, J. Algebra, 319 No. 8 (2008), pp. 3128-3140.
[4] P. M. Cohn, Reversible rings, Bull. London Math. Soc., 31 No. 6 (1999) 641-648.
[5] Y. Hirano, D. van Huynh and J. K. Park, On rings whose prime radical contains all nilpotent elements of index two, Arch. Math. (Basel), 66 No. 5 (1996) 360-365.
[6] C. Huh, N. K. Kim and Y. Lee, Examples of strongly π-regular rings, J. Pure Appl. Alg., 189 No. 1 (2004) 195-210.
[7] C. Huh, C. I. Lee and Y. Lee, On rings whose strongly prime ideals are completely prime, Algebra Colloq., 17 No. 2 (2010) 283-294.
[8] S. U. Hwang, Y. C. Jeon and Y. lee, Structure and topological conditions of NI rings, J. Algebra, 302 No. 1 (2006) 186-199.
[9] S. U. Hwang, Y. C. Jeon and K. S. Park, On NCI rings, Bull. Korean Math. Soc., 44 No. 2 (2007) 215-223.
[10] N. Jacobson, Structure of Rings, Vol. 37, American Mathematical Sociaty, 1964.
[11] N. K. Kim, K. H. Lee and Y. Lee, Power series rings satisfying a zero divisor property, Comm. Alg., 34 No. 6 (2006) 2205-2218.
[12] H. Kose, B. Ungor, S. Halicioglu and A. Harmanci, A generalization of reversible rings, Iran. J. Sci. Techonal. Trans. A Sci., 38 No. 1 (2014) 43-48.
[13] T. Y. Lam, A first Course in Noncommutative Rings, Second edition, Springer-verlag, New York, 2001.
[14] G. Marks, On 2-primal Ore extensions, Comm. Alg., 29 No. 5 (2001) 2113-2123.
[15] R. Mohammadi, A. Moussavi and M. Zahiri, On nil-semicommutative rings, Int. Electron. J. Algebra, 11 (2012) 20-37.
[16] M. E. Ouarrachi and N. Mahdou, On power serieswise Armendariz rings, Palestine J. Math., 7 (2018) 79-87.
[17] T. Özen, N. Agayev and A. Harmanci, On a class of semicommutative rings, Kyungpook Math. J., 51 (2011) 283-291.
[18] M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci., 73 No. 1 (1997) 14-17.
[19] H. J. Sung and S. J. Yun, On semi-IFP rings, Korean J. Math., 23 No. 1 (2015) 37-46.