Algebraic AS TA Catron Structures

Algebraic Structures and Their Applications

Algebraic Structures and Their Applications Vol. 12 No. 3 (2025) pp 181-192.

Research Paper

ON α -ALMOST ARTINIAN TYPE MODULES

MARYAM DAVOUDIAN* AND NAHID NASERI

ABSTRACT. In this article we introduce and study the concepts of α -almost Artinian type and α - Krull type modules. Using these concepts we extend some of the basic results of α -almost Artinian and α -Krull modules to α -almost Artinian type and α -Krull type modules. We observe that if M is an α -Krull type module then the uncountably generated Krull dimension of M is either α or $\alpha + 1$.

1. Introduction

The concept of Noetherian dimension of a module M, (the dual of Krull dimension of M, in the sense of Rentschler and Gabriel, see [19, 28]) introduced in Lemonnier [29], and Karamzadeh [22], is almost as old as Krull dimension of M, and their existence are equivalent. Later, Chambless [4] studied dual Krull dimension and called it N-dimension. Roberts [30] calls this dual dimension again Krull dimension. The latter dimension is also called dual Krull

DOI: 10.22034/as.2024.21355.1706

MSC(2010): Primary: 05C50.

 $\label{eq:control} \text{Keywords: } \alpha\text{-almost Noetherian module, } \alpha\text{-Krull module, } \alpha\text{-Krull type module, Uncountably generated Krull dimension,}$

Uncountably generated Noetherian dimension.

Received: 08 March 2024, Accepted: 30 December 2024.

*Corresponding author

@ 2025 Yazd University.

dimension in some other articles, see for example, [1, 2]. The former dimension has received some attention; see [1, 2, 23, 25, 26, 18]. In this article, all rings are associative with $1 \neq 0$, and all modules are unital right modules. If M is an R-module, then n-dim M and k-dim M will denote the Noetherian dimension and the Krull dimension of M, respectively.

Davoudian, Karamzadeh and Shirali in [16] introduce and study the concepts of α -short modules and α -almost Noetherian modules. We recall that an R-module M is called an α short module, if for each submodule N of M, either n-dim $N \leq \alpha$ or n-dim $\frac{M}{N} \leq \alpha$ and α is the least ordinal number with this property. We also recall that an R-module M is called α -almost Noetherian, if for each proper submodule N of M, n-dim $N < \alpha$ and α is the least ordinal number with this property, see [16]. Later Davoudian, Halali and Shirali undertook a systematic study of the concepts of α -almost Artinian and α -Krull modules, which are the dual of the concepts of α -almost Noetherian and α -short modules, respectively, see [14]. We introduce and extensively investigate uncountably generated Krull dimension and uncountably generated Noetherian dimension of an R-module M, see [11]. The uncountably generated Noetherian dimension (resp., uncountably generated Krull dimension), which is denoted by ucn-dim M (resp., uck-dim M) is defined to be the codeviation (resp., deviation) of the poset of all uncountably generated submodules of M. We recall that an R-module M is called α critical type, where α is an ordinal, if uck-dim $M = \alpha$ and uck-dim $\frac{M}{N} < \alpha$ for any uncountably generated submodule N of M. M is said to be critical type if it is α -critical type for some α . We also extensively investigate the concepts of α -almost Noetherian type and α -short type modules, see [12]. Recall that an R-module M is called α -almost Noetherian type if for each uncountably generated submodule N of M, ucn-dim $N < \alpha$ and α is the least ordinal with this property. We also recall that an R-module M is called α -short type if for each uncountably generated submodule N of M, either ucn-dim $N < \alpha$ or ucn-dim $\frac{M}{N} < \alpha$ and α is the least ordinal number with this property. It is convenient, when we are dealing with the latter dimensions, to begin our list of ordinales with -1. In this article we introduce and study the concepts of α -almost Artinian type and α -Krull type modules. These concepts are the dual of the concepts of α -almost Noetherian type and α -short type modules, respectively; and at the same time are the extension of the concepts of α -almost Artinian and α -Krull modules, respectively. Let us give a brief outline of this paper. Section one is the introduction. In section 2, we introduce and study the concept of α -almost Artinian type and α -Krull type modules. Hein [21] introduced almost Artinian modules and studied some of the properties of these modules. Later Davoudian, Halali and Shirali undertook a systematic study of the concept of α -almost Artinian modules. We recall that an R-module M is called α -almost Artinian, if for each non-zero submodule N of M, k-dim $\frac{M}{N} < \alpha$ and α is the least ordinal number with this property, see [16]. We shall call an R-module M to be α -almost Artinian

type if for each uncountably generated submodule N of M, uck-dim $\frac{M}{N} < \alpha$ and α is the least ordinal number with this property. Using this concept we extend some of the basic results of α -almost Artinian modules to α -almost Artinian type modules. In particular, we observe that each α -almost Artinian type module M has uncountably generated Krull dimension and uck-dim $M \leq \alpha$. We also introduce and study the concept of α -Krull type modules, which is the dual of α - short type modules, see [7]. We recall that an R-module M is called an α -Krull module, if for each submodule N of M, either k-dim $N \leq \alpha$ or k-dim $M \leq \alpha$ and α is the least ordinal number with this property. We shall call an R-module M to be α -Krull type if for each uncountably generated submodule N of M, either uck-dim $N \leq \alpha$ or uck-dim $M \leq \alpha$ and α is the least ordinal number with this property. In the last section we also investigate some properties of α -almost Artinian type and α -Krull type modules. Finally, we should emphasize here that the results in sections 2 and 3 are new and are the dual of the corresponding results in [12] and at the same time are the extensions of the results in [14]. For all concepts and basic properties of rings and modules which are not defined in this paper, we refer the reader to [3, 8, 5, 6, 13, 15, 9, 10, 19, 11].

2. α -Almost Artinian type and α -Krull type modules

In this section we introduce and study α -almost Artinian type and α -Krull type modules. We extend some of the basic results of α -almost Artinian modules to α -almost Artinian type modules.

Let us recall that the deviation of an arbitrary partially ordered set $E = (E, \leq)$, (shortly poset), denoted by dev(E) is defined as follows: dev(E) = -1 if and only if E is a trivial poset, i.e., E has no two distinct comparable elements. If E is nontrivial but satisfies the descending chain condition on its elements, then dev(E) = 0. For a general ordinal α , we define $dev(E) = \alpha$, provided

- (i) $dev(E) \neq \beta < \alpha$;
- (ii) for any descending chain $x_1 \ge x_2 \ge ... \ge x_n \ge ...$ of elements of E there is some $n_0 \in N$ such that for all $n \ge n_0$ the deviation of the poset

$$\frac{x_n}{x_{n+1}} := \{ x \in E | x_{n+1} \le x \le x_n \},\$$

already defined and satisfies

$$dev(\frac{x_n}{x_{n+1}}) < \alpha.$$

If no ordinal α exists such that $dev(E) = \alpha$, we say E does not have deviation. For any R-module M we shall denote by UC(M) the poset of all uncountably generated submodules

of M. The quasi-Krull dimension of the right R-module M, denoted by uck-dim M, is defined to be the deviation of the poset $(UC(M), \subseteq)$, see [11, Definition 2.1].

We continue with our definition of α -almost Artinian type modules.

Definition 2.1. An R-module M is called α -almost Artinian type, if for each uncountably generated submodule N of M, uck-dim $\frac{M}{N} < \alpha$ and α is the least ordinal number with this property.

We should remind the reader that the above concept is in fact the dual of α -almost Noetherian type modules, see [12, Definition 2.1].

Remark 2.2. If M is an α -almost Artinian type module, then each submodule and each factor module of M is β -almost Artinian type for some $\beta \leq \alpha$.

We recall that an R-module M is called α -critical type, if uck-dim $M=\alpha$ and for each uncountably generated submodule N of M we have uck-dim $\frac{M}{N}<\alpha$. M is called critical type if it is α -critical type for some ordinal number α , see [11, Definition 2.1]. The next three trivial, but useful facts, which are the dual of the corresponding facts in [12, Lemmas 1, 2, 3] are needed.

Lemma 2.3. If M is an α -almost Artinian type module, then M has uncountably generated Krull dimension and uck-dim $M \leq \alpha$. In particular, uck-dim $M = \alpha$ if and only if M is α -critical type.

Proof. For each proper uncountably generated submodule N of M, we have uck-dim $\frac{M}{N} < \alpha$. In view of [11, Lemma 4], we get uck-dim $M \le \alpha$. The final part is now evident. \square

Lemma 2.4. If M is a module with uck-dim $M = \alpha$, then either M is α -critical type, in which case it is α -almost Artinian type, or it is $\alpha + 1$ -almost Artinian type.

Proof. Let M be an α -critical type module, then for each uncountably generated submodule N of M, we have uck-dim $\frac{M}{N} < \alpha$. Hence M is β -almost Artinian type, for some ordinal number $\beta \leq \alpha$. If $\beta < \alpha$, then by Lemma 2.3 we have uck-dim $M \leq \beta$ which is a contradiction. If M is not critical type, then there exists a uncountably generated submodule N of M such that uck-dim $\frac{M}{N} = \alpha$. This implies that M is γ -almost Artinian type for some $\gamma \geq \alpha + 1$. But for each uncountably generated submodule N of M, we have uck-dim $\frac{M}{N} \leq \alpha < \alpha + 1$, see [11, Theorem 1]. Therefore M is $\alpha + 1$ -almost Artinian type. \square

Lemma 2.5. If M is an α -almost Artinian type module, then either M is α -critical type or $\alpha = uck$ -dim M+1. In particular, if M is an α -almost Artinian type module, where α is a limit ordinal, then M is α -critical type.

Proof. We infer that M has uncountably generated Krull dimension and uck-dim $M \leq \alpha$, by lemma 2.3. If uck-dim $M = \alpha$, then in view of Lemma 2.3, M is α -critical type. Now let uck-dim $M < \alpha$, then by Lemma 2.4, we get $\alpha = uck$ -dim M + 1 and we are done. The final part is now evident. \square

The following results are now immediate.

Corollary 2.6. Let M be a $\beta + 1$ -almost Artinian type module, then either uck-dim $M = \beta$ or uck-dim $M = \beta + 1$.

Proposition 2.7. An R-module M has uncountably generated Krull dimension if and only if M is α -almost Artinian type for some ordinal α .

We continue with the following definition, which is in fact the dual of α -short type modules, see [12, Definition 3], and in the subsequent results we try to present counterparts of the appropriate results in [12].

Definition 2.8. An R-Module M is called α -Krull type, if for each uncountably generated submodule N of M, either uck-dim $N \leq \alpha$ or uck-dim $\frac{M}{N} \leq \alpha$, and α is the least ordinal number with this property.

Now, we cite the following example.

Example 2.9. If $M_1 = M_2 = Z_{p^{\infty}}$, then M_1 and M_2 are -1-Krull type (resp. 0-almost Artinian type) Z-modules such that $M_1 \oplus M_2$ is 0-Krull type (resp. 1-almost Artinian type). Now let $M_1 = M_2 = Z$. In this case the Z-module Z is -1-Krull type (resp. -1-almost Artinian type), the Z-module $Z \oplus Z$ is also -1-Krull type (resp. -1-almost quasi Artinian). We should also note that $Z_{p^{\infty}} \oplus Z$ is a 0-Krull type Z-module which is 1-almost quasi Artinian.

Remark 2.10. If M is an R-module with uck-dim $M = \alpha$, then M is β -Krull type for some $\beta \leq \alpha$.

In view of [11, Lemma 2.3 and Theorem 2.4], we have the following result.

Remark 2.11. If M is an α -Krull type module, then each submodule and each factor module of M is β -Krull type for some $\beta \leq \alpha$.

We need the following result.

Lemma 2.12. If M is an R-module and for each uncountably generated submodule N of M, either N or $\frac{M}{N}$ has uncountably generated Krull dimension, then so does M.

Proof. Let $M_1 \supseteq M_2 \supseteq ...$ be any descending chain of uncountably generated submodules of M. If there exists some i such that M_i has uncountably generated Krull dimension, then each $\frac{M_k}{M_{k+1}}$ has Krull type dimension for each $k \ge i$, see [11, Lemma 2.3]. Otherwise $\frac{M}{M_i}$ has Krull type dimension for each i. Thus in either case there exists some integer k such that each $\frac{M_i}{M_{i+1}}$ has uncountably generated Krull dimension for each $i \ge k$, see [11, Lemma 2.3]. Consequently M has uncountably generated Krull dimension. \square

The previous result and Remark 2.10, immediately yield the next result.

Corollary 2.13. Let M be an α -Krull type module. Then M has uncountably generated Krull dimension and uck-dim $M \geq \alpha$.

Proposition 2.14. An R-module M has uncountably generated Krull dimension if and only if M is α -Krull type for some ordinal α .

Proposition 2.15. If M is an α -Krull type R-module, then either uck-dim $M=\alpha$ or uck-dim $M=\alpha+1$.

Proof. Clearly in view of Remark 2.10 and Corollary 2.13, we have uck-dim $M \geq \alpha$. If uck-dim $M \neq \alpha$, then uck-dim $M \geq \alpha + 1$. Now let $M_1 \supseteq M_2 \supseteq ...$ be any descending chain of uncountably generated submodules of M. If there exists some k such that uck-dim $M_k \leq \alpha$, then uck-dim $\frac{M_i}{M_{i+1}} \leq uck$ -dim $M_i \leq uck$ -dim $M_k \leq \alpha$ for each $i \geq k$, [11, Lemma 2.3]. Otherwise uck-dim $\frac{M}{M_i} \leq \alpha$ (note, M is α -Krull type) for each i, hence uck-dim $\frac{M_i}{M_{i+1}} \leq \alpha$ for each i. Thus in any case there exists an integer k such that for each $i \geq k$, uck-dim $\frac{M_i}{M_{i+1}} \leq \alpha$. This shows that uck-dim $M \leq \alpha + 1$, i.e., uck-dim $M = \alpha + 1$. \square

Remark 2.16. An R-module M is -1-Krull type if and only if it is Noetherian or 1-atomic, (note, an R-module M is called α -atomic, if n-dim $M = \alpha$ and n-dim $N < \alpha$ for each proper submodules N of M).

Proposition 2.17. Let M be an R-module, with uck-dim $M = \alpha$, where α is a limit ordinal. Then M is α -Krull type.

Proof. We know that M is β -Krull type for some $\beta \leq \alpha$. If $\beta < \alpha$, then by Proposition 2.15, uck-dim $M \leq \beta + 1 < \alpha$, which is a contradiction. Thus M is α -Krull type. \square

Proposition 2.18. Let M be an R-module and uck-dim $M = \alpha = \beta + 1$. Then M is either α -Krull type or it is β -Krull type.

Proof. We know that M is γ -Krull type for some $\gamma \leq \alpha$. If $\gamma < \beta$ then by Proposition 2.15, we have uck-dim $M \leq \gamma + 1 < \beta + 1$, which is impossible. Hence we are done. \square

For the critical type modules we have the following proposition.

Proposition 2.19. Let M be an $\beta + 1$ -critical type R-module, where $\alpha = \beta + 1$. Then M is a β -Krull type module.

Proof. Let N be a uncountably generated submodule of M, then uck-dim $\frac{M}{N} < \alpha$. Thus uck-dim $\frac{M}{N} \leq \beta$. This shows that for some $\beta' \leq \beta$, M is β' -Krull type. If $\beta' < \beta$, then $\beta' + 1 \leq \beta < \alpha$. But uck-dim $M \leq \beta' + 1 \leq \beta < \alpha$, by Proposition 2.15, which is a contradiction. Thus $\beta' = \beta$ and we are done. \square

The following remark, which is a trivial consequence of the previous fact, shows that the converse of Proposition 2.17, is not true in general.

Remark 2.20. Let M be an $\alpha + 1$ -critical type R-module, where α is a limit ordinal. Then M is an α -Krull type module.

In view of Proposition 2.15 and Lemma 2.4, the following remark is now evident.

Remark 2.21. If M is a β -Krull type R-module, then it is an α -almost Artinian type module such that $\beta \leq \alpha \leq \beta + 2$, see Proposition 2.15 and Lemma 2.4. We note that every 1-critical type module is 0-Krull type which is also 1-almost Artinian type and every α -critical type module, where α is a limit ordinal, is an α -Krull type module which is also α -almost Artinian type, see Lemma 2.5 and Proposition 2.17.

Proposition 2.22. Let M be an R-module such that uck-dim $M=\alpha+1$. Then M is either an α -Krull type R-module or there exists a uncountably generated submodule N of M such that uck-dim $\frac{M}{N}=$ uck-dim $N=\alpha+1$.

Proof. We know that M is α -Krull type or an $\alpha+1$ -Krull type R-module, by Proposition 2.18. Let us assume that M is not an α -Krull type R-module, hence there exists a uncountably generated submodule N of M such that uck-dim $N \geq \alpha+1$ and uck-dim $\frac{M}{N} \geq \alpha+1$. This shows that uck-dim $N=\alpha+1$ and uck-dim $\frac{M}{N}=\alpha+1$ and we are through. \square

Proposition 2.23. Let M be an α -Krull type R-module. Then either M is β -almost Artinian type for some ordinal $\beta \leq \alpha + 1$ or there exists a uncountably generated submodule N of M with uck-dim $N \leq \alpha$.

Proof. Suppose that M is not β -almost Artinian type for any $\beta \leq \alpha + 1$. This means that there must exist a uncountably generated submodule N of M such that uck-dim $\frac{M}{N} \not\leq \alpha$. Inasmuch as M is α -Krull type, we infer that uck-dim $N \leq \alpha$ and we are done. \square

3. Properties of α -Krull type modules and α -almost Artinian type modules

In this section some properties of α -Krull type and α -almost Artinian type modules over an arbitrary ring R are investigated.

First, in view of Proposition 2.15, we have the following two results.

Proposition 3.1. Let R be a ring and M be an α -Krull type module, which is not a critical type module, then M contains a uncountably generated submodule L such that uck-dim $L \leq \alpha$.

Proof. Since M is not critical type, we infer that there exists a proper uncountably generated submodule $L \subset M$, such that uck-dim $\frac{M}{L} = uck$ -dim M. We know that uck-dim $M = \alpha$ or uck-dim $M = \alpha + 1$, by Proposition 2.15. If uck-dim $M = \alpha$ it is clear that uck-dim $L \leq \alpha$. Hence we may suppose that uck-dim $\frac{M}{L} = uck$ -dim $M = \alpha + 1$. Consequently, uck-dim $L \leq \alpha$ and we are done. \square

Theorem 3.2. Let M be an R-module and α be an ordinal number. Let for any uncountably generated submodule N of M, $\frac{M}{N}$ be γ -Krull type for some ordinal number $\gamma \leq \alpha$. Then uck-dim $M \leq \alpha + 2$. In particular M is μ -Krull type for some ordinal number $\mu \leq \alpha + 1$.

Proof. Let $N \subset M$ be a uncountably generated submodule of M. Since $\frac{M}{N}$ is γ -Krull type for some ordinal number $\gamma \leq \alpha$, we infer that uck-dim $\frac{M}{N} \leq \gamma + 1 \leq \alpha + 1$, by Proposition 2.15. This immediately implies that uck-dim $M \leq \alpha + 2$, see [11, Lemma 2.7]. Now the last part of theorem is immediate. \square

The next result is the dual of Theorem 3.2.

Theorem 3.3. Let α be an ordinal number and M be an R-module such that every proper uncountably generated submodule of M is γ -Krull type for some ordinal number $\gamma \leq \alpha$. Then uck-dim $M \leq \alpha + 1$. In particular M is μ -Krull type for some $\mu \leq \alpha + 1$.

Proof. Let $N \subset M$ be any proper uncountably generated submodule of M, such that N is γ -Krull type for some ordinal number γ with $\gamma \leq \alpha$. We infer that uck-dim $N \leq \gamma + 1 \leq \alpha + 1$, by Proposition 2.15. But we know that uck-dim $M = \sup\{uck$ -dim $N: N \subset M, N \in \mathrm{UC}(M)\}$, see [11, Lemma 2.6]. This shows that uck-dim $M \leq \alpha + 1$. Now the last part of theorem is immediate. \square

The next immediate result is the counterparts of Theorems 3.2, 3.3, for α -almost Artinian type modules.

Proposition 3.4. Let M be an R-module and α be an ordinal number. If each proper uncountably generated submodule N of M (resp. for each proper uncountably generated submodule N of M, $\frac{M}{N}$) is γ - almost Artinian type with $\gamma \leq \alpha$, then M is a μ -almost Artinian type module with $\mu \leq \alpha + 1$, uck-dim $M \leq \alpha$ (resp. with $\mu \leq \alpha + 1$, uck-dim $M \leq \alpha + 1$).

Clearly every α -almost Artinian type (resp. α -Krull type) module has uncountably generated Krull dimension (i.e., it has uncountably generated Noetherian dimension too, for by a nice result due to Lemonnier, every module has uncountably generated Noetherian dimension if and only if it has uncountably generated Krull dimension, see the comment which follows [11, Theorem 3.11]). Consequently, we have the following immediate result.

Proposition 3.5. The following statements are equivalent for a ring R.

- (a) Every R-module with uncountably generated Krull dimension is Noetherian.
- (b) Every α -Krull type R-module is Noetherian for all α .
- (c) Every α -almost Artinian type R-module is Noetherian for all α .

Moreover, if R is a right perfect ring (i.e., every R-module is a Loewy module) then every α -Krull type (resp. α -almost Artinian type) R-module is both Artinian and Noetherian, see [26, Proposition 2.1].

Before concluding this section with our last observation, let us cite the next result which is in [26, Theorem 2.9], see also [20, Theorem 3.2].

Theorem 3.6. For a commutative ring R the following statements are equivalent.

- (a) Every R-module with finite Noetherian dimension is Noetherian.
- (b) Every Artinian R-module is Noetherian.
- (c) Every R-module with Noetherian dimension is both Artinian and Noetherian.

Now in view of the above theorem, [16, Proposition 2.21], [14, Proposition 4.18], [7, Proposition 2.24], [12, Proposition 10], and also [27, Corollary 2.15], we observe the following result.

Proposition 3.7. The following statements are equivalent for a commutative ring R.

- (a) Every Artinian R-module is Noetherian.
- (b) Every quotient finite dimensional m-Krull module is both Artinian and Noetherian for all integers $m \ge -1$.
- (c) Every quotient finite dimensional α -Krull module is both Artinian and Noetherian for all ordinals α .

(d) Every quotient finite dimensional m-Krull type module is both Artinian and Noetherian for all integers $m \ge -1$.

- (e) Every quotient finite dimensional α -Krull type module is both Artinian and Noetherian for all ordinals α .
- (f) Every quotient finite dimensional m-almost Artinian R-module is both Artinian and Noetherian for all non-negative integers m.
- (g) Every quotient finite dimensional α -almost Artinian R-module is both Artinian and Noetherian for all ordinals α .
- (h) Every quotient finite dimensional m-almost Artinian type R-module is both Artinian and Noetherian for all non-negative integers m.
- (i) Every quotient finite dimensional α -almost Artinian type R-module is both Artinian and Noetherian for all ordinals α .
- (j) Every quotient finite dimensional m-quasi short module is both Artinian and Noetherian for all integers $m \ge -1$.
- (k) Every quotient finite dimensional α -quasi short module is both Artinian and Noetherian for all ordinals α .
- (1) Every quotient finite dimensional m-almost Noetherian type R-module is both Artinian and Noetherian for all non-negative integers m.
- (m) Every quotient finite dimensional α -almost Noetherian type R-module is both Artinian and Noetherian for all ordinals α .
- (n) Every quotient finite dimensional m-short module is both Artinian and Noetherian for all integers $m \ge -1$.
- (o) Every quotient finite dimensional α -short module is both Artinian and Noetherian for all ordinals α .
- (p) Every quotient finite dimensional m-almost Noetherian R-module is both Artinian and Noetherian for all non-negative integers m.
- (q) Every quotient finite dimensional α -almost Noetherian R-module is both Artinian and Noetherian for all ordinals α .
- (r) No homomorphic image of R can be isomorphic to a dense subring of a complete local domain of uncountably generated Krull dimension 1.

4. Acknowledgments

The author would like to thank the referee for carefully reading the paper, detailed report and giving very helpful comments.

References

[1] T. Albu and P. F. Smith, Dual Krull dimension and duality, Rocky Mountain J.Math., 29 (1999) 1153-1164.

- [2] T. Albu and P. Vamos, Global Krull dimension and global dual Krull dimension of valuation rings, In Abelian Groups, Module Theory, and Topology, pp. 37-54, Lect. Notes Pure Appl. Math., 201, Marcel-Dekker, New York, 1998.
- [3] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlag, 1992.
- [4] L. Chambless, N-Dimension and N-critical modules, application to Artinian modules, Comm. Algebra, 8
 No. 16 (1980) 1561-1592.
- [5] M. Davoudian, Dimension of non-finitely generated submodules, Vietnam J. Math., 44 (2016) 817-827.
- [6] M. Davoudian, Modules satisfying double chain condition on non-finitely generated submodules have Krull dimension, Turk. J. Math., 41 (2017) 1570-1578.
- [7] M. Davoudian On α -quasi short modules, Int. Electron. J. Algebra, **21** (2017) 91-102.
- [8] M. Davoudian, Modules with chain condition on non-finitely generated submodules, Mediterr. J. Math., 15
 No. 1 (2018) 1-12.
- [9] M. Davoudian, On α-semi short modules, J. Algebr. Syst., 6 (2019) 91-99.
- [10] M. Davoudian, Dimension on non-essential submodules, J. Algebra Appl., 18 No. 05 (2019) 1950089.
- [11] M. Davoudian, Dimension of uncountably generated submodules, Int. Electron. J. Algebra, 35 (2024) 149-159.
- [12] M. Davoudian, On α -short type modules, J. Algebr. Syst., 14 No. 3 (2024) 41-53.
- [13] M. Davoudian and O. Ghayour, The length of Artinian modules with countable Noetherian dimension, Bull. Iranian Math. Soc., 43 No. 6 (2017) 1621-1628.
- [14] M. Davoudian, A. Halali and N. Shirali, On α-almost Artinian modules, Open Math., 14 (2016) 404-413.
- [15] M. Davoudian and O. A. S. Karamzadeh, Artinian serial modules over commutative (or left Noetherian) rings are at most one step away from being Noetherian, Comm. Algebra, 44 (2016) 3907-3917.
- [16] M. Davoudian, O. A. S. Karamzadeh and N. Shirali, On α -short modules, Math. Scand., **114** No. 1 (2014) 26-37.
- [17] M. Davoudian, O. A. S. Karamzadeh and N. Shirali, Erratum to "On α -short modules" Math. Scand., 114, 26-37 (2014). DOI: 10.13140/RG.2.2.36116.81280.
- [18] M. Davoudian and N. Shirali, On α -tall modules, Bull. Malays. Math. Sci. Soc., 41 (2018) 1739-1747.
- [19] R. Gordon and J. C. Robson, Krull Dimension, Vol. 133, American Mathematical Soc., 1973.
- [20] J. Hashemi, O. A. S. Karamzadeh and N. Shirali, Rings over which the Krull dimension and Noetherian dimension of all modules coincide, Comm. Algebra, 37 No. 2 (2009) 650-662.
- [21] J. Hein, Almost Artinian modules, Math. Scand., 45 (1979) 198-204.
- [22] O. A. S. Karamzadeh, Noetherian-dimension, Ph.D. Thesis, Chamran University, 1974.
- [23] O. A. S. Karamzadeh and M. Motamedi, On α-Dicc modules, Comm. Algebra, 22 No. 6 (1994) 1933-1944.
- [24] O. A. S. Karamzadeh and M. Motamedi, Erratum to "On α-Dicc modules" Commun. Algebra, 22 No. 6 (1994) 1933-1944, Comm. Algebra, 46 No. 7 (2018) 2927.
- [25] O. A. S. Karamzadeh and A. R. Sajedinejad, Atomic modules, Comm. Algebra, 29 No. 7 (2001) 2757-2773.
- [26] O. A. S. Karamzadeh and A. R. Sajedinejad, On the Loewy length and the Noetherian dimension of Artinian modules, Comm. Algebra, 30 (2002) 1077-1084.
- [27] O. A. S. Karamzadeh and N. Shirali, On the countability of Noetherian dimension of modules, Comm. Algebra, 32 (2004) 4073-4083.

[28] G. Krause, Ascending chains of submodules and the Krull dimension of Noetherian modules, J. Pure Appl. Algebra, 3 (1973) 385-397.

- [29] B. Lemonnier, Deviation des ensembless et groupes totalement ordonnes, Bull. Sci. Math., 96 (1972) 289-303.
- [30] R. N. Roberts, Krull dimension for Artinian modules over semi local commutative rings, Quart. J. Math. Oxford., 26 (1975) 269-273.

Maryam Davoudian

Department of Mathematics,
Shahid Chamran University of Ahvaz, Ahvaz, Iran
m.davoudian@scu.ac.ir

Nahid Naseri

Department of Mathematics, Shahid Chamran University of Ahvaz, Ahvaz, Iran nahidnaseri2017@gmail.com