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ON AUTOMORPHISMS OF A CLASS OF NORMAL TRANSFORMATION
SEMIGROUPS

AFTAB HUSSAIN SHAH AND DILAWAR JUNEED MIR∗

Abstract. In this paper, we are interested in the (as yet) unsolved problem of determining

all subsemigroups of T (X) in which every automorphism is inner. We show that the semigroup

of full transformations with restriction on a fixed set is bijective, has an inner automorphism

property (i.a.p).

1. Introduction

Transformation semigroups play a foundational role across various branches of mathemat-
ics and find extensive practical applications. Their unique ability to model dynamic systems
through function composition makes them valuable in fields such as automata theory, combi-
natorial optimization, and mathematical analysis. By providing a structured framework for
analyzing transformations, these semigroups enable researchers to classify and uncover the
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properties of numerous mathematical structures, leading to critical insights, particularly in
computer science and optimization.

The study of automorphisms within transformation semigroups further deepens our under-
standing of these algebraic constructs, revealing inherent symmetries and manipulability. This
exploration not only enhances theoretical comprehension but also connects abstract concepts
to real-world applications, making automorphisms a key area of focus.

As research in this field progresses, the significance of automorphisms within transformation
semigroups is likely to grow, illuminating connections with other mathematical areas such as
order theory and topology. This ongoing inquiry promises to yield new insights and applica-
tions, affirming the role of transformation semigroups as a cornerstone in both mathematical
theory and applied mathematics. Automorphisms of these structures play a significant role in
understanding their symmetries and internal structure.

Let X be an arbitrary infinite set. The semigroup T (X) of full transformations on X

consists of the functions from X to X, with composition as the semigroup operation. As
established in [1], any semigroup S can be embedded in a transformation semigroup, making
transformation semigroups a prototype for semigroups in general. Examining automorphisms
of transformation semigroups is a crucial aspect of semigroup theory, with extensive work
already accomplished in this area. For instance, Schreier [8] and Mal’cev [5] comprehensively
described the automorphisms of the semigroup of all mappings from a set X to itself. In
1966, Magill [4] introduced and studied transformation semigroups on X that leave a subset
Y invariant. Subsequently, Symons [13] explored classical concepts of these semigroups, and
Sullivan [12] extended Symons’ results to the class of constant-rich subsemigroups of B(X).
Additionally, Levi [3] introduced the concept of S(X)-normality, describing inner automor-
phisms within the class of S(X)-normal semigroups, which are transformation semigroups
closed under conjugation by permutations. Recently, Mir et al. [7] generalized the findings of
Sullivan [12] and Levi [3] to PM(X), the semigroup of monotone partial transformations on a
poset X.

A comprehensive study has been undertaken on the inner automorphisms of monoids of
(partial) maps, with significant contributions from researchers who established fundamental
results for several semigroups. The research have predominantly concentrated on particular
instances such as the semigroups of all mappings, partial maps, and symmetric inverse semi-
groups. Recent improvements, notably the research by Mir et al. [7], have expanded these
findings to encompass wider categories of transformation semigroups. Additionally, Mir and
Alali, in [6], investigated the automorphisms of a semigroup S of centralizers of idempotent
transformations with restricted range. However, the study of inner automorphisms in general
monoids is still inadequately investigated, with only a limited number of general theorems
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and algorithms have been developed. More recently, Shah et al. in [9, 11, 10] extended the
inner automorphism theorem from groups to monoids, introducing the concept of nearly com-
plete monoids. Furthermore, they established necessary and sufficient conditions for a strong
semilattice of groups to be classified as nearly complete.

In this paper, we introduce S(X,Y )-normal semigroups and prove some general results
on the automorphisms of these semigroups. We find a relationship between different types
of ideals and finally we characterize the inner automorphisms of a class of S(X,Y )-normal
semigroups.
We consider a semigroup defined as for any fixed non-empty subset Y of X,

PS(X,Y ) = {α ∈ T (X) : α|Y ∈ S(Y )}.

These semigroups were introduced by Laysirikul [2] in 2016. He studied the regularity and char-
acterize the complete regular elements of PS(X,Y ) and find the relationship between PS(X,Y ),
the subsemigroups of PS(X,Y ) and S(X,Y ). Also, let S(X,Y ) = {α ∈ S(X) : α|Y ∈ S(Y )},
then one can easily seen that S(X,Y ) forms a subgroup of S(X). A subsemigroup S of
PS(X,Y ) is said to have an inner automorphism property (i.a.p) if every automorphism ϕ of
S takes the form ϕ(s) = hsh−1 for all s ∈ S, where h is some fixed element of S(X,Y ) (in such
a case we say ϕ is inner induced by h). By (x y) we mean permutation of order 2 and α|Y is
restriction of α to Y . In this paper, we show the every normal subsemigroup S of PS(X,Y )

which is not contained in O(X) has i.a.p.
Section 2 offers a comprehensive overview of the foundational concepts and general results in

normal semigroups that form the basis for the discussions and findings in this paper. In Section
3, we introduce and rigorously prove key results concerning point and function right ideals,
establishing a relationship between these structures. Finally, in Section 4, we demonstrate
that each automorphism ϕ of S permutes point right ideals and provide a characterization of
the inner automorphisms within a class of S(X,Y )-normal semigroups.

2. General Results on Normal Semigroups

Definition 2.1. A semigroup S of transformations on X is said to be S(X,Y )-normal if for
all α ∈ S, g ∈ S(X,Y ), gαg−1 ∈ S.

It is clear that for all α ∈ PS(X,Y ), g ∈ S(X,Y ), gαg−1 ∈ PS(X,Y ), so PS(X,Y ) is S(X,Y )-
normal. Now we have the following lemma.

Lemma 2.2. If S is S(X)-normal semigroup, then S is S(X,Y )-normal semigroup.

Proof. Let S is S(X)-normal then for all α ∈ S and g ∈ S(X), g−1αg ∈ S. In particular,
g−1αg ∈ S for all g ∈ S(X,Y ), therefore S is S(X,Y )-normal.
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The converse of above lemma is not true and is illustrated in the following example.

Example 2.3. Let X = N and consider Y = {1, 2}, then it is clear that, S(X,Y ) = {α ∈
S(X) : α|Y = idY or α|Y = (1 2)}. Consider a semigroup

S = S(X,Y ) ∪
(
1 2 3
1 2 1

)
,
(
1 2 3
1 2 2

)
,
(
1 2 3
2 1 1

)
,
(
1 2 3
2 1 2

)
}.

Since S(X,Y ) is subgroup of S, so for any α ∈ S and g ∈ S(X,Y ), g−1αg ∈ S. This implies,
S is S(X,Y )-normal. But S is not S(X)-normal, as g = (2 3) ∈ S(X), α = (1 2) ∈ S, and
g−1αg /∈ S.

So in view of Lemma 2.2 it is now natural to introduce S(X,Y )-normal semigroups and
describe their automorphisms.

Definition 2.4. If S is an arbitrary semigroup of transformations on X then

∆(S) = {im α : α ∈ S}.

Definition 2.5. We say that ∆(S) is S(X,Y )-normal if for each h ∈ S(X,Y )

h(∆(S)) = ∆(S),

(by h(∆(S)) we mean {h(A) : A ∈ ∆(S)}.

Lemma 2.6. If S is a S(X,Y )-normal semigroup, then ∆(S) is S(X,Y )-normal.

Proof. Let B ∈ h(∆(S)) there exists A ∈ ∆(S) such that h(A) = B. Therefore

B = h(α(X)) for some α ∈ S

= hαh−1h(X) (h−1h = idX)

= (hαh−1)h(X)

= gh(X) (hαh−1 = g ∈ S)

= g(X) ∈ ∆(S) (as h is onto),

hence h(∆(S)) ⊆ ∆(S). Now let B ∈ ∆(S) therefore,

B = α(X) for some α ∈ S

= hh−1α(X) (as hh−1 = idX)

= h(h−1α(X))

= hg(X) ∈ h∆(S) (as h−1α = g),

that is, ∆(S) ⊆ h(∆(S)), that is, ∆(S) = h(∆(S)). Hence ∆(S) is S(X,Y )-normal.
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We denote the semigroup of all onto mappings by O(X).

Lemma 2.7. If S is S(X,Y )-normal subsemigroup of PS(X,Y ) such that S ⊈ O(X), then
for given x, y ∈ X \ Y with x ̸= y there exists an A ∈ ∆(S) with y ∈ A, x ∈ X \A.

Proof. Since S ⊈ O(X), then there exists α ∈ S such that α(X) = A ⊊ X. Take any
x, y ∈ X \ Y with x ̸= y. If y ∈ A and x ∈ X \ A, then we are done, otherwise the following
cases will arise:
Case (i). If x, y ∈ A, we choose h = (x z), where z /∈ A, then we have h(A) = (x z)(A) =

(A ∪ {z}) \ {x} = A′ ∈ ∆(S), thus for given x, y ∈ X with x ̸= y there exists an A′ ∈ ∆(S)

with y ∈ A′, x ∈ X \A′.
Case (ii). If x, y /∈ A, since by definition of S we have Y ⊊ A so we choose h = (y a), where
a ∈ A \ Y , then we have h(A) = (y a)(A) = (A ∪ {y}) \ {a} = A′ ∈ ∆(S), thus the required
set A′ in ∆(S) exists.

3. Relationship between Point and Function Right Ideals

From now on, let S denote the subsemigroup of PS(X,Y ) that contains S(X,Y ), with the
condition that S ⊈ O(X). Clearly, S is S(X,Y )-normal. We begin with the following lemma.

Lemma 3.1. For any x ∈ X \ Y the set

Ix = {r ∈ S : x ∈ X \∆(r)},

is a right ideal of S.

Proof. Suppose Ix is not right ideal of S, then there exists s ∈ S and r ∈ Ix such that rs /∈ Ix,
that is, x ∈ ∆(rs), this implies for any y ∈ X we have rs(y) = x then r(z) = x where
z = s(y) ∈ X. Which gives x ∈ ∆(r), that is, r /∈ Ix a contradiction. Hence Ix is right ideal
of S.

Definition 3.2. For any x ∈ X \ Y , the ideal Ix = {r ∈ S : x ∈ X \∆(r)} is called a point
right ideal of S.

Lemma 3.3. Given x, y ∈ X \ Y , then Ix ⊆ Iy if and only if x = y.

Proof. Suppose x ̸= y by Lemma 2.7 we can choose an A ∈ ∆(S) with y ∈ A, x ∈ X \ A. If
α ∈ S with ∆(α) = A, then x ∈ X \∆(α), that is, α ∈ Ix. Since y ∈ ∆(α), implies α /∈ Iy.
That is, α ∈ Ix \ Iy, and so Ix ⊈ Iy, which is a contradiction. Hence x = y. The converse is
obvious.
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Consider a set A = {Ix : x ∈ X \ Y } ∪ Y . Now define a map θ : X → A defined by

θ(x) =

Ix, if x ∈ X \ Y,

g(x), where g ∈ S(Y ).

Lemma 3.4. θ defined above is a bijection of X onto A.

Proof. θ is clearly onto and Lemma 3.3 ensures that θ is one-one.

Lemma 3.5. For any α1, α2 ∈ S if α1 ̸= α2 then the set

Iα1,α2={r ∈ S : α1r = α2r},

is a right ideal of S.

Proof. For every s ∈ S and r ∈ Iα1,α2 , we have α1r = α2r, this implies α1(rs) = α2(rs), that
is, rs ∈ Iα1,α2 . Hence Iα1,α2 is a right ideal of S.

Definition 3.6. Given distinct α1, α2 ∈ S, the ideal

Iα1,α2={r ∈ S : α1r = α2r},

is called a function right ideal of S.

Lemma 3.7. Given α1 and α2 in S, we have

r ∈ Iα1,α2 ⇔ ∆(r) ⊆ {x ∈ X : α1(x) = α2(x)}.

Proof. Let r ∈ Iα1,α2 , then we have α1r = α2r. Let y ∈ ∆(r), then there exists some z ∈ X

such that r(z) = y. Since α1r = α2r, so we have α1r(z) = α2r(z), that is, α1(y) = α2(y),
implies that, y ∈ {x ∈ X : α1(x) = α2(x)}. Thus we have ∆(r) ⊆ {x ∈ X : α1(x) = α2(x)}.
Conversely, suppose ∆(r) ⊆ {x ∈ X : α1(x) = α2(x)}, this implies, for any y ∈ ∆(r), we have
α1(y) = α2(y), that is, α1r = α2r, implies, r ∈ Iα1,α2 .

The following notation applies to an arbitrary S(X,Y )-normal semigroup S.
Let α1, α2 be distinct transformations in S then

Dα1,α2 = {x ∈ X : α1(x) ̸= α2(x)}.

We now establish the relationships between point right ideals and function right ideals of an
S(X,Y )-normal subsemigroup S of PS(X,Y ), where S is not contained in O(X).

Proposition 3.8. Let α1, α2 ∈ S with Iα1,α2 ̸= ∅. Then

Iα1,α2 =
∩

x∈Dα1,α2

Ix.
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Proof. Let r ∈ Iα1,α2 , that is α1r = α2r. If x ∈ Dα1,α2 , then α1(x) ̸= α2(x), therefore
x ∈ X \∆(r), that is, r ∈ Ix. Since this is true for each x ∈ Dα1,α2 , so we have

r ∈
∩

x∈Dα1,α2

Ix,

or

Iα1,α2 ⊆
∩

x∈Dα1,α2

Ix.

Conversely, if

r ∈
∩

x∈Dα1,α2

Ix,

then for each y in ∆(r) we have y ∈ X \Dα1,α2 therefore α1(y) = α2(y) and hence α1r = α2r,
that is, r ∈ Iα1,α2 and so ∩

x∈Dα1,α2

Ix ⊆ Iα1,α2 .

This proves the desired equality.

We now show that there always exist distinct elements α1, α2 ∈ S such that Iα1,α2 is non-
empty. However, in some cases, Iα1,α2 may still be empty. For instance, if α1 and α2 are
chosen such that they are never equal, then Iα1,α2 = ∅.

Proposition 3.9. Given x ∈ X \ Y there exists α1, α2 ∈ S such that Ix = Iα1,α2.

Proof. Let x ̸= w ∈ X then as S contains non-constant maps there exists α ∈ S such that
α(x) = y ̸= α(w), suppose z /∈ ∆(α) and z ≠ x. Take β = (x z) α (x z) in S then

β(z) = (x z) α(x z)(z)

= (x z) α((x z)(z))

= (x z) α(x)

= y.

Hence, we get β(z) = y and z /∈ ∆(β), for otherwise z ∈ ∆(α) a contradiction. We let

λ = (y z), α1 = βα and α2 = λβλ−1α.
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Then for each u ̸= x in X we have,

α1(u) = βα(u)

= βλ−1α(u) (as u ̸= x and z /∈ ∆(α))

= λβλ−1α(u)

= α2(u).

Hence α1(u) = α2(u). While

α2(x) = λβλ−1α(x) = λβλ−1(y) = λβ(z) = λ(y) = z ̸= β(y) = βα(x) = α1(x).

Hence α1(x) ̸= α2(x) and so Dα1,α2= {x}, exactly as required.

Proposition 3.10. Given f1 and f2 in S, Iα1,α2 is maximal function right ideal if and only
if |Dα1,α2 |=1.

Proof. Suppose Iα1,α2 is a maximal function right ideal, while x, y ∈ Dα1,α2 , x ̸= y. Then

Iα1,α2 =
∩

x∈Dα1,α2

Ix (by Proposition 3.8)

⊆ Ix ∩ Iy

⫋ Ix (by Lemma 3.3).

It follows from Proposition 3.9 that there exists β1 and β2 with Iβ1,β2 = Ix, and so Iα1,α2 ⫋
Ix = Iβ1,β2 , a contradiction to the maximality of Iα1,α2 . Hence |Dα1,α2 |=1.
Conversely, suppose Dα1,α2={x}, for some x ∈ X, while there exists β1, β2 in S such that

Iβ1,β2 ⊇ Iα1,α2 .

Since

Iβ1,β2 =
∩

y∈Dα1,α2

Iy (by Proposition 3.8).

We have ∩
y∈Dβ1,β2

Iy = Iβ1,β2 ⊇ Iα1,α2 = Ix, (by Proposition 3.8)

and so Lemma 3.3 ensures Dα1,α2={x}, that is,

Iβ1,β2 = Ix = Iα1,α2 .
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Next we have the corollary which follows from Proposition 3.8 and 3.9.

Corollary 3.11. Given α1 and α2 in S, Iα1,α2 is maximal function right ideal if and only if
Iα1,α2 = Ix, some x ∈ X \ Y .

4. Inner Automorphisms of a Class of Normal Semigroups

In this section we first show that each automorphism ϕ of S permutes point right ideals.

Proposition 4.1. Given x ∈ X \ Y and ϕ ∈ Aut(S), ϕ(Ix) = Iu for some u ∈ X \ Y .

Proof. Choose α1 and α2 in S such that Iα1,α2 = Ix (Proposition 3.9), then

ϕ(Ix) = ϕ(Iα1,α2)

= ϕ({r : α1r = α2r})

= {ϕ(r) : ϕ(α1r) = ϕ(α2r)}

= {ϕ(r) : ϕ(α1)ϕ(r) = ϕ(α2)ϕ(r)}

= {r′ : ϕ(α1)r
′ = ϕ(α2)r

′}.

= Iϕ(α1),ϕ(α2).

Now Corollary 3.11 ensures Iα1,α2 is a maximal function right ideal, hence Iϕ(α1),ϕ(α2)(=

ϕ(Iα1,α2)) is a maximal function right ideal, so there exists u ∈ X such that Iϕ(α1),ϕ(α2) = Iu

(by Corollary 3.11) and thus ϕ(Ix) = Iϕ(α1),ϕ(α2) = Iu.

Lemma 4.2. The mapping η : A → A defined by

η(s) =

ϕ(s), if s ∈ {Ix; x ∈ X \ Y },

g(s), where g ∈ S(Y ).

is a bijection.

Proof. That η is a mapping in the content of Proposition 4.1. Similarly by considering the
automorphism ϕ−1 we define a map ζ : A → A via

ζ(s) =

ϕ−1(s), if s ∈ {Ix; x ∈ X \ Y },

g−1(s), where g−1 ∈ S(Y ).

Certainly, ζ is the inverse of η and so η is a bijection.
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Definition 4.3. Define a map h : X → X defined by

h(x) =

u, where η(Ix) = Iu, for each x ∈ X \ Y,

g(x), where g ∈ S(Y ).

Remark 4.4. By Lemma 3.4 and Lemma 4.2, it is clear that h = θ−1ηθ, and so Lemma 3.4
ensures h is a bijection of X and since each of θ and η is a bijection on Y , it follows that
h|Y ∈ S(Y ), that is, h ∈ S(X,Y ). We call h the bijection associated with ϕ.

Lemma 4.5. Given α ∈ S and ϕ ∈ Aut(S), ∆(ϕ(α)) = h(∆(α)).

Proof. Let h ∈ S(X,Y ), then h(X \∆(α)) = X \ h(∆(α)). Now we have the following cases:
Case (i). If x ∈ X \∆(α), that is α ∈ Ix, then

ϕ(α) ∈ ϕ(Ix) = η(Ix) = Iu = Ih(x),

so

h(x) ∈ X \∆(ϕ(α)),

or

h(X \∆(α)) ⊆ X \∆(ϕ(α)).

Thus

h(∆(α)) ⊆ ∆(ϕ(α)).

For the reverse inclusion, observe that h−1 = θ−1η−1θ is a bijection associated with ϕ−1 and
by above inclusion we have for given β ∈ S,

h−1(∆(β)) ⊆ ∆(ϕ−1(β)).

Specifically, by setting β = ϕ(α), we obtain

h−1(∆(ϕ(α))) ⊆ ∆(ϕ−1(ϕ(α))),

or

∆(ϕ(α)) ⊆ h(∆(α)),

and the equality follows.
Case (ii). Let ∆(α) = X and ϕ(α) = β, then we have h(∆(α)) = X = ∆(α). If ∆(β) ⊊ X,
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then by Case (i), it follows that

h(∆(β)) = ∆(ϕ−1(β)) ( where ϕ−1 ∈ Aut(S))

= ∆(α)

= X,

this implies ∆(β) = X, thus ∆(ϕ(α)) = ∆(β) = X = h(∆(α)) and the equality follows in this
case.

Now we have the main theorem of this section in which we show that every subsemigroup of
PS(X,Y ) containing S(X,Y ) is nearly complete.

Theorem 4.6. Let S be a subsemigroup of PS(X,Y ) containing S(X,Y ) such that S ⊈ O(X),
then S is nearly complete, that is, for some h ∈ S(X,Y )

ϕ(α) = hαh−1, for each α ∈ S.

Proof. Consider the bijection h associated with ϕ as defined to Lemma 4.5. Take an arbitrary
α ∈ S, x ∈ X and let α(x) = u for some u ∈ X. Choose A in ∆(S) with A ̸= X and x ∈ A.
Let z /∈ A and B = (A \ {x}) ∪ {z} ∈ ∆(S) (Lemma 2.7). Choose γ and δ in S such that
∆(γ) = A and ∆(δ) = B.
Now

∆(γ) \∆(δ) = A \B= {x},

thus

∆(αγ) \∆(αδ)= {α(A \B)} = {α(x)} = {u}.

By using Lemma 4.5 we have,

∆(ϕ(γ)) \∆(ϕ(δ)) = h(∆(γ) \∆(δ))

= {h(A \B)}

= {h(x)},

and

∆(ϕ(αγ)) \∆(ϕ(αδ)) = {h(u)}.

However
∆(ϕ(αγ)) \∆(ϕ(αδ)) = ∆(ϕ(α)ϕ(γ)) \∆(ϕ(α)ϕ(δ)) = {ϕ(α)h(x)}.

So

ϕ(α)h(x) = h(u) = hα(x),
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that is,

ϕ(α) = hαh−1.

Hence the Theorem.
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