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SYMBOLIC REES ALGEBRA AND REDUCTION OF MODULES

PRITI SINGH∗, SHARVAN KUMAR, AJIM UDDIN ANSARI AND SHIV DATT KUMAR

Abstract. In this paper, we study the symbolic Rees algebras of modules by using the theory

of reductions of modules. We extend several results of the symbolic Rees algebra of ideals

to the symbolic Rees algebra of modules and prove the necessary condition for the symbolic

Rees algebras of modules to be Noetherian. Several examples of the symbolic Rees algebra

are provided.

1. Introduction

Algebraic geometry relates algebraic objects (e.g. rings, ideals, modules) to geometric ob-
jects (e.g. curves, surfaces, spaces). A good example of this is the Rees algebra of an ideal.
The Rees algebra of an ideal I in a ring R is an algebraic object that is defined as the graded
ring R(I) = ⊕∞

n=0I
n. Rees algebras were first used for studying valuations of ideals, they are

perhaps best known for being coordinate rings of blow ups.
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When we are working with geometric objects such as curves and surfaces, one of the most
desirable classes of objects is those that are smooth i.e., without singularities. A singularity
of a curve can be thought of as a point, where the curve has more than one direction. It is
desirable to have methods of resolving the singularities while preserving other properties of
the curve. One of the methods to resolve singularities is the blow up of a space (scheme) in
a closed subspace (subscheme). A blow up of a curve produces a new curve that is birational
to the original, where singularities might have vanished. The blow up is computed by taking
the projective spectrum of the Rees algebra of the corresponding ideal ([8], [9], [5]).

The symbolic Rees algebra is a central object in commutative algebra and algebraic geometry
for their tight connection to the primary decomposition of ideals and the order of vanishing of
polynomials. In general, this algebra is not finitely generated, even if the ring is Noetherian.
It was first introduced by Rees [8] in order to answer Zariski′s conjecture to give a counter
example by constructing a non-Noetherian symbolic Rees algebra. The necessary and sufficient
condition for the symbolic Rees algebras of a prime ideal, Rs(p) to be a Noetherian ring in
three dimensional regular local ring with ht(p) = 2 is established by Huneke [6]. The finite
generation problem on the R-algebra Rs(p) was observed by R. C. Cowsik [2] showing that if p
is set theoretic complete intersection in R with dimA/p = 1, then Rs(p) is a finitely generated
R-algebra. Therefore it is important to know when the symbolic Rees algebra is Noetherian.
Cowsik asked whether Rs(p) is a Noetherian ring for every prime ideal in a regular local
ring. In general, the answer is not affirmative. In fact, Roberts [9] showed that the answer
is negative by constructing the examples of prime ideals in polynomial and power series rings
whose symbolic Rees algebras are not Noetherian.

The properties of the symbolic powers of an ideal is the reduction of an ideal, a concept
developed by Northcott and Rees [7]. An ideal J contained in I is called a reduction of I if
Ir+1 = JIr for some r ≥ 0. An ideal J ⊂ I is a minimal reduction if it is not contained in
any reduction of I. Goto et al. [3] showed suitable symbolic powers of an ideal and using its
minimal reduction, we get some information about the Noetherian property of Rs(I). Several
mathematicians ([5], [4], [3], [12]) carried out a study on non-Noetherian and Noetherian
symbolic Rees algebras of ideals.

The main purpose of this paper is to construct non-trivial new examples of symbolic Rees
algebra of modules. We have extended several results of the symbolic Rees algebra of ideals to
the symbolic Rees algebra of modules and obtained the necessary conditions for the symbolic
Rees algebras of modules to be Noetherian. Other results come from the fact that the symbolic
Rees algebra of a module is a special case of the symbolic multi Rees ring, where the module
is a direct sum of ideals.
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2. Rees algebras of modules

Definition 2.1. Let R be a Noetherian ring and Q = S−1R be the total ring of quotient,
where S = R ∖ Z(R) and Z(R) = {x ∈ R | x y = 0 for some 0 ̸= y ∈ R}. Suppose E

is a finitely generated R-module with rank e > 0, (which means E ⊗R Q ≃ Qe). Suppose
E ⊂ G ≃ Re. Then the tensor algebra T (E) = ⊕∞

n=0T
n(E) = R ⊕ E ⊕ E ⊗ E ⊕ · · · and

C(E) := two sided ideal of T (E) generated by {x⊗y−y⊗x : x, y ∈ E} and Sym(E) =
T (E)

C(E)
is the symmetric algebra of E. Let φ : E −→ G be homomorphisms, where G runs over all free
modules, Sym(φ) : Sym(E) −→ Sym(G) and Lϕ = Ker(Sym(φ)). Then the Rees algebra
R(E) of E is Sym(E) modulo its R-torsion submodule i.e.,

R(E) =
Sym(E)

ker(Sym(φ))
=

Sym(E)

∩ϕLϕ
,

where intersection is taken over all homomorphisms φ : E −→ G and G runs over all free
modules. We denote the nth component of the Rees algebra of E by En. Therefore, the Rees
algebra R(E) = ⊕n≥0E

n is a standard graded algebra over R with E0 = R and E1 = E. Note
that if E has rank, then Ker(Sym(φ)) = TorR(Sym(E)).

Definition 2.2. The fiber cone of a module over a Noetherian local ring (R,m) is defined as
F (E) = R/m⊗R R(E) =

⊕
n≥0

En

mEn
. The analytic spread of E, denoted as l(E) is the Krull

dimension of F (E).

Definition 2.3. Let U ⊆ E be a submodule of E. Then the module U is said to be a reduction
of E if En+1 = U.En for some n ≥ 0.

The least integer n for which En+1 = U.En is called the reduction number of E. A sub-
module U of E is said to be a minimal reduction of E if it is minimal with respect to among
all the reductions of E.

Definition 2.4. Let E ⊂ G ≃ Re, e > 0 be an R-submodule of G with rank e but not
free. Then E is said to be an ideal module if the double dual E∗∗ is a free R-module, where
E∗ := HomR(E,R).

An ideal module E is said to be equimultiple module if l(E) = ht(Fe(E)) + e − 1, where
Fe(E) is the e-th Fitting invariant of E.

Example 2.5. Let R = k[[x, y, z]] be a ring over a field k and E = (zx, zy) be an R-module.
Note that E is not a free R module. Since E ≃ I = (x, y) (as R-modules), E∗∗ ≃ I∗∗. So that
E∗∗ is a free R- module, for I is an ideal of grade 2. Thus E is an ideal module.

3. Interpretation of symbolic Rees algebra of prime ideal

If K is an algebraically closed field, S = K[x1, . . . , xn] the polynomial ring in n variables,
P ⊂ S a prime ideal, X ⊂ Kn the irreducible algebraic set corresponding to P , and ma =



4 P. Singh, S. Kumar, A. U. Ansari and S. D. Kumar

(x1 − a1, . . . , x − an) the maximal ideal corresponding to the point a = (a1, a2, . . . , an) ∈ X,
then P (n) =

⋂
a∈X

mn
a = {f ∈ S | f vanishes to order ≤ n at every point of X} = Taylor series

of f around a begins with term of order ≥ n.

Definition 3.1. The symbolic Rees algebra of I is the graded ring

Rs(I) =
⊕
n≥0

I(n)tn ⊆ R[t],

where I(n) = {r ∈ R | rs ∈ In for some s ∈ R−∪ P whereP ∈ Min(RI )I} =
⋂

p∈Min(R
I
)(I

n)p∩
R and t is an indeterminate.

We generalize this construction to a finitely generated R-module E having rank. The
symbolic Rees algebras of a module E

Rs(E) =
⊕
n≥0

E(n) ⊆ R[t1, . . . , te],

where E(n) =
⋂

p∈Min(G
E
)(E

n)p ∩ Gn, and Min(G/E) denotes the set of minimal elements of
Ass(G/E).

A special case is the Rees algebra of a module E = I1⊕· · ·⊕Ie, where I1, . . . , Ie are R-ideals.
Then the symbolic Rees algebra is the multi-symbolic Rees algebra

Rs(I1, . . . , Ie) =
⊕

n1,...,ne∈N
(In1

1 . . . Ine
e )∗∗tn1

1 tn2
2 . . . tne

e ,

where (In1
1 . . . Ine

e )∗∗ is the reflexive hull of In1
1 . . . Ine

e (see [10]) and

E(n) ≃
⊕

n1+···+ne=n

(In1
1 . . . Ine

e )∗∗.

Remark 3.2. If E is a free R-module of rank e, then the symbolic Rees algebra Rs(E) ≃
R[t1, . . . , te], for R(E) ≃ R[t1, . . . , te] and R(E) ⊂ Rs(E) ⊂ R[t1, . . . , te]. In general, if E is an
R-module of rank e and G is a free R-module of rank r, then

Rs(E ⊕G) ≃ Rs(E)[t1, . . . , tr].

Example 3.3. Consider G = F e as F -module, where F is a field and E = {(x1, x2, . . . , xe)|x1+
x2 + · · · + xe = 0} is a submodule of G of dimension e − 1. Let φ : E −→ G be an embed-
ding. Symmetric algebra of E and G are as follows: Sym(E) = ⊕k≥0S

k(E) = ⊕k≥0E
k and

note that dimSk(E) = k+e−2Ce−2 = dk. In fact Ek = Sk(E) = F dk , ∀ k ≥ 2. This im-
plies Sym(E) = F ⊕ F e−1 ⊕ F d2 ⊕ F d3 ⊕ · · · . Further Sym(G) = ⊕k≥0S

k(G) = ⊕k≥0G
k,

dim Sk(G) = k+e−1Ce−1 = lk and so Sym(G) = F ⊕ F e ⊕ F l2 ⊕ F l3 ⊕ · · · .
Also Sym(φ) : Sym(E) −→ Sym(G) given by Sym(φ)|Sn(E)(x1 ⊗ x2 ⊗ . . .⊗ xn +Cn(E)) =

φ(x1)⊗φ(x2)⊗. . .⊗φ(xn)+Cn(G) = x1⊗x2⊗· · ·⊗xn+Cn(G) and Sym(φ)|F = IF = identity



Alg. Struc. Appl. Vol. XX No. X (20XX) XX-XX. 5

map on F . Therefore Ker(Sym(φ)) = {0}. Thus Rees algebra of E= R(E) =
Sym(E)

Ker(φ)
=

⊕n≥0E
n, where En ∼= F

n+e−2Ce−2 . Here En and Gn are called n-th symmetric powers of
E and G respectively. Note that minimal elements of Ass(G/E) and Supp(G/E) coincide.
In fact, Ass(G/E) = Supp(G/E) = {0} and {0} = Ann((1, 1, . . . , 1) + E) and localization
(G/E){0} ̸= 0. Thus (En){0} =

{x

t
|x ∈ En, t ∈ F − {0}

}
, e.g., if V is a vector space, then

V{0} = V . So (En){0} ∼= En and E(n) = (En){0} ∩ Gn = En, for En ⊂ Gn. Thus symbolic
Rees algebra of E is Rs(E) = ⊕n≥0E

(n) = ⊕n≥0E
n = ⊕n≥0F

n+e−2Ce−2 .

Example 3.4. Let E = Z2, R = Z4. Then E is a finitely generated R-module, which
is not free. Any Z4 module is of the form (⊕k Z2) ⊕ (⊕m Z4), for k ̸= m. Sym(E) =

Z4 ⊕ Z⊗2
2 ⊕ Z⊗3

2 ⊕ · · · = Z4 ⊕ Z⊗N
2 . Since C(E) = 0 and Z2 ⊗Z4 Z2 = Z2. This implies

Z⊗n
2 = Z2. In fact Z⊗n

2 = {0̄ ⊗ 0̄ ⊗ · · · ⊗ 0̄, 1̄ ⊗ 1̄ ⊗ · · · ⊗ 1̄} for all n ≥ 1. Let F be a free
Z4-module. Then F = ⊕i∈JZ4 for some J ⊂ N. Any homomorphism φ : Z2 −→ ⊕i∈JZ4 sends
1̄ → (ai)i∈J , where ai’s are 2̄ finitely many times and rest are 0̄, for o(1̄) = 2 and so o(ai) should
be 2. Now consider Sym(φ) : Sym(Z2) −→ Sym(⊕i∈JZ4) ∼= ZN

4 . Thus Sym(φ)|Z4 = IdZ4 and
Sym(φ)|Z⊗n

4 = 0, for every n ≥ 2. Thus Lϕ = Ker(Sym(φ)) = ⊕n≥2Z2
⊗n for all non-zero

homomorphism φ. The same will be obtained for the case of zero homomorphism also. Hence
∩ϕLϕ = ⊕n≥2Z⊗n

2 . Consequently, the Rees algebra of E is Z4 ⊕ Z2.

Example 3.5. Let A = R/(XY − ZW )R be a ring, where R = k[[X,Y, Z,W ]] is a formal
power series ring over a field k. Assume that E = (y, z, w)A is an A-module, where x =

X + (XY −ZW ), y = Y + (XY −ZW ), z = Z + (XY −ZW ), w = W + (XY −ZW ). Then
the symbolic Rees algebra is Rs(E) = A[yt, zt, wt, yt2].

Example 3.6. Let R = k[a, b, x, y] be a ring and E = (ax, ay) ⊕ (ax, by) be an R-module.
Then the symbolic Rees algebra is isomorphic to the Segre product of two polynomial rings
k[X1, X2, X3]× k[Y1, Y2, Y3].

4. Noetherian symbolic Rees algebra of a module

For proving the Noetherian property of the symbolic Rees algebras, we need the following
results to prove Theorem 4.6 and Proposition 4.10.

Proposition 4.1. Let R be a ring and E ⊂ G ≃ Re, e > 0 be an R-module. Then

(1) En ⊂ E(n) for all n > 0.
(2) E(n)m ⊂ E(nm) and E(n).E(m) ⊂ E(n+m) for all m, n ≥ 1, where the product is taken

in Rs(E).
(3) E(mn) ⊂ E(m)(n) for all m, n ≥ 1.
(4) Er ⊆ E(m) if and only if m ≤ r.
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Proof. (1) Denote X = Min(G/E). Let x ∈ En. Then xRp ⊂ EnRp for each prime
ideal p ∈ X. Therefore, xRp ⊂

⋂
p∈X

EnRp. Since En ⊂ Gn, x ∈ Gn. So that

x ∈
⋂

p∈X
EnRp ∩Gn =

⋂
p∈X

(En)p ∩Gn and x ∈ E(n). Hence En ⊂ E(n) for all n ≥ 1.

(2) Let x ∈ E(n)m. Then x ∈ [
⋂

p∈X
(En)p∩Gn]m = [

⋂
p∈X

(Ep)
n∩Gn]m ⊂

⋂
p∈X

(Ep)
nm∩Gnm =⋂

p∈X
(Enm)p ∩Gnm. Therefore, E(n)m ⊂ E(nm).

Let x ∈ E(n).E(m). Then x = αβ, where α ∈ E(n) and β ∈ E(n). So that, x ∈
(
⋂

p∈X
(En)p ∩Gn).(

⋂
p∈X

(Em)p ∩Gm) ⊂
⋂

p∈X
(En+m)p ∩Gn+m, where product is taken in

Rs(E). Therefore, x ∈ E(n+m) and E(n).E(m) ⊂ E(n+m).
(3) Let x ∈ E(mn). Then x ∈

⋂
p∈X

(Ep)
mn ∩Gmn for all m, n ≥ 1. By (1), Em ⊂ E(m) and

Emn ⊂ [E(m)]n ⊂ E(m)(n). This implies that x ∈ E(m)(n).
(4) Let m ≤ r. Then Er ⊆ Em ⊆ E(m). Conversely, let r < m and Er ⊆ E(m). Then

Em ⊆ Er and E(m) ⊆ E(r). Since Er ⊆ E(m), E(r) ⊆ E(m). Therefore, E(r) = E(m)

and then there is a minimal associated prime ideal of E such that ErRp = EmRp =

ErRp · EsRp, where r + s = m. By Nakayama lemma, ErRp = 0. Then E = 0 is the
contradiction, for E has rank. Thus m ≤ r.

Proposition 4.2. Let R be a Noetherian ring, E a finitely generated torsion free R-module
having rank and A be a flat R-algebra. Then we have a natural isomorphism of a graded A-
algebra Rs(E ⊗R A) ≃ Rs(E)⊗R A.

Proof. It is enough to show that E(n) ⊗R A ≃ (E ⊗R A)(n) for n ≥ 1. Suppose En ↪→ E(n)

for any n ≥ 1. Since A is a flat R-algebra, En ⊗R A ↪→ E(n) ⊗R A. Consider the following
diagram

En ⊗R A
β−−−−→ E(n) ⊗R Ayf

yg

(E ⊗R A)n
α−−−−→ (E ⊗R A)(n).

Note that the diagram commutes. Therefore E(n)⊗RA ≃ (E⊗RA)(n), for (E⊗RA)n ≃ En⊗RA.

Corollary 4.3. Let p ∈ spec(R). Then Rs(Ep) ≃ Rs(E)⊗R Rp.

Proposition 4.4. Let R be a Noetherian ring with dim(R) = d > 0 and E ⊂ G ≃ Re, e > 0

be an R-module with dim(G/E) > 0. Then
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(1) depth

(
Gn

E(n)

)
≥ 1 for any n ≥ 1.

(2) If R is a Cohen-Macaulay, then 1 ≤ depth(E(n)) ≤ depth(Gn/E(n)) + 1 ≤ d− 1.

Proof. (1) Claim: Supp (G/E) ⊆ Supp (Gn/En). For n = 1, it is obvious. Now suppose,

for n > 1, p /∈ Supp(Gn/En). Then
(
Gn

En

)
p

= 0. This implies (Gn)p
(En)p

=
(Gp)

n

(Ep)n
= 0.

Thus Gn
p = En

p . Note that En−1
p ⊆ Gn−1

p and so EpE
n−1
p ⊆ Ep · Gn−1

p , i.e.
EpG

n−1
p ⊆ Ep ·Gn−1

p ⊆ Gp ·Gn−1
p = Gn

p = En
p , so equality holds throughout. Therefore,

Ep is a reduction of Gp. Note that if Gp is a free Rp-module, then Gp has no proper re-
duction. Thus Ep = Gp and so p /∈ Supp(G/E). Hence Supp (G/E) ⊆ Supp (Gn/En).
Conversely, suppose p /∈ Supp (G/E). Then (G/E)p = 0. This implies Gp

Ep
= 0

so Gp = Ep. Thus
Gn

p

En
p

= 0. Hence p /∈ Supp (Gn/En). Now we show that

Min (G/E) = Min (Gn/En). Let p ∈ Min(Gn/En). Then by definition of
Min(Gn/En), p ∈ Supp(Gn/En) = Ass(Gn/En) for all n ≥ 1. Since Supp(Gn/En) =

Supp(G/E), p ∈ Supp(G/E). Therefore, p ∈ Ass(G/E) = Supp(G/E) and p ∈ X.
Conversely, let p ∈ Min(G/E). Then by definition of Min(G/E), p ∈ Supp(G/E) =

Ass(G/E) and Supp(Gn/En) = Supp(G/E), p ∈ Ass(Gn/En) = Supp(Gn/En).
Hence p ∈ Min(Gn/En). Similarly Ass (G/E) = Ass (Gn/En). By definition

E(n) = ∩P∈Min(G/E)(E
n)P ∩Gn and dim(G/E) > 0, depth

(
Gn

E(n)

)
≥ 1 for all n ≥ 1.

(2) Since E(n) ⊂ Gn ≃ R

(
n+ e− 1

e− 1

)
, depth(Gn) = depth(R) = dim(R) = d > 0.

Consider a short exact sequence of R-modules

0 → E(n) → Gn → Gn/E(n) → 0.

Then applying the depth lemma in this exact sequence, we have

depth(E(n)) ≥ min{depth(Gn), depth(Gn/E(n)) + 1}.

By (1) depth(Gn/E(n)) > 0, 1 ≤ depth(E(n)) ≤ depth(Gn/E(n)) + 1 ≤ d− 1.

Lemma 4.5. Let R be a ring and E ⊂ G ≃ Re be a submodule of G. If the symbolic Rees
algebra Rs(E) is a Noetherian ring, then there exist k > 0 such that E(k)n = E(kn) for all
n ≥ 1.
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Proof. The inclusion ⊆ is clear (see Proposition 4.1). Conversely, we have to show that there
exists k > 0 such that E(kn) ⊆ E(k)n for all n ≥ 1. Let the symbolic Rees algebra Rs(E)

be a Noetherian ring. Then A+ = ⊕n≥1E
(n) is a finitely generated ideal of Rs(E). Suppose

A+ = (x1, . . . , xs), where xi ∈ E(ri) for i = 1, . . . , s. Suppose r = lcm(r1, . . . , rs) and k =

rs. Note that E(m) is R-linear combination of monomials of the form xu1
1 . . . . .xus

s , where
u1r1 + · · ·+ usrs = m. There are two cases:
Case 1. If m < k, then u1r1 + . . . usrs < k = rs. Since r = lcm(r1, . . . , rs), m < k is not
possible.
Case 2. If m ≥ k, then uiri ≥ r for some i = 1, . . . , s. Suppose contrary that uiri < r for
all i = 1, . . . , s. Then m = u1r1 + . . . , usrs < rs = k, which is a contradiction, for m ≥ k.
Therefore, uiri ≥ r for some i = 1, . . . , s. Suppose r = vri. Then

xu1
1 . . . . .xus

s = (xu1
1 . . . . .xui−v

i xus
s )xvi .

Since xi ∈ E(ri) and xvi ∈ E(ri)v ⊂ E(riv) (see Proposition 4.1), xvi ∈ E(r) and
(xu1

1 . . . . .xui−v
i xus

s ) ∈ E(m−r). Thus

(1) E(m) ⊆ E(m−r).E(r) for m ≥ k.

By equation (1), for any positive integer l,

E(k+rl) ⊆ E(k+rl−r).E(r) for k + rl > k

= E(k+r(l−1)).E(r)

⊆ E(k+r(l−1)−r).E(r)E(r)by equation (1)

= E(k+r(l−2)).E(r)2

⊆ E(k+r(l−l)).E(r)l.

Therefore, E(k+rl) ⊆ E(k).E(r)l ⊆ E(k).E(rl) (see Proposition 4.1). Now we show that E(nk) ⊆
E(k)n for all n ≥ 1 by induction on n. If n = 1, then the result holds trivially. Suppose the
result is true for n− 1. Then E((n−1)k) ⊆ E(k)n−1. Now,

E(nk) = E(k+(n−1)k))

⊆ E(k).E((n−1)k), for E(k+rl) ⊆ E(k).E(rl)

⊆ E(k).E(k)n−1 by assumption

= E(k)n.

Therefore, E(nk) ⊆ E(k)n for all n ≥ 1.
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Theorem 4.6. Let (R,m) be a Noetherian local ring with dim(R) = d > 0 and G ≃ Re be a
free R-module with rank e > 0. Assume that E ⊂ G is an R-submodule of G and the symbolic
Rees algebra Rs(E) is a Noetherian ring. Then there exists k > 0 such that l(E(k)) ≤ d+e−2.

Proof. Since the symbolic Rees algebra Rs(E) is a Noetherian ring and Lemma 4.5 there
exists k > 0 such that E(k)n = E(kn) for any n > 0. So that there exists k > 0 such

that l(E(k)) ≤ d + e − 1 − infn≥1depth

(
Gnk

E(k)n

)
(Theorem 1.1, [1]). By Proposition 4.4,

depth

(
Gnk

E(k)n

)
≥ 1. Therefore, l(E(k)) ≤ d+ e− 2.

Following example shows that l(E(k)) ≤ d+ e− 2 for some k > 0 but we do not always have
a reduction generated by d+ e− 2 elements, even when Rs(E) is a Noetherian ring and R/m

is an infinite residue field.

Example 4.7. Consider the formal power series ring R = K[[x, y, z]] over an infinite field K.
Let p be the prime ideal defining the space monomial curve: x = t3, y = t4, z = t5. Then
Rs(p) = R(p) is a Noetherian ring, l(p) = 3 and l(p(k)) ≤ d+ e− 2 = 3+ 1− 2 = 2. Note that
p has a minimal reduction generated by 3 elements. So, we can not find a reduction generated
by 2 elements.

Lemma 4.8. Let R be a Noetherian ring and En ⊂ E(n) finitely generated R-modules such
that grade

(
E(n)/En

)
≥ 2 for all n > 0. Then (En)∗∗ ≃ (E(n))∗∗.

Proof. Consider the short exact sequence of R-modules

0 → En → E(n) → E(n)/En → 0.

Dualizing above short exact sequence of R-modules, we have

0 →
(
E(n)/En

)∗ → (E(n))∗ → (En)∗ → Ext1R
(
E(n)/En, R

)
.

Since grade
(
E(n)/En

)
≥ 2, E(n)/En = Ext1R

(
E(n)/En, R

)
= 0. So that (En)∗ ≃ (E(n))∗ and

(En)∗∗ ≃ (E(n))∗∗.

Remark 4.9. (1) Let E be a non-zero module over a Noetherian ring R. Then E is an
ideal module if and only if E ⊂ G ≃ Re and grade(G/E) ≥ 2.

(2) If E is an ideal module, then En is an ideal module for n > 0.
(3) Let En be an ideal module and En ⊂ E(n) with grade

(
E(n)/En

)
≥ 2. Then E(n) is an

ideal module (Lemma 4.8) for any n.
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Proposition 4.10. Let E ⊂ G ≃ Re be an ideal module with e > 0, Rs(E) be a Noetherian
ring with grade

(
E(n)/En

)
≥ 2 and depth(Gn/En) = d − ht(Fe(E)) for infinitely many n.

Then E(k) is a equimultiple module for some k > 0.

Proof. Let Rs(E) be a Noetherian ring. Then by Lemma 4.5, there exists k > 0 such that
E(k)n = E(kn) for any n > 0. Note that if E is an ideal module, then E(k) is an ideal
module for any k > 0 (Remark 4.9). Therefore, taking k large enough we may assume that
depth(Gnk/E(n)k) = d − ht(Fe(E

(k))) for any n ≥ 1 and E(k) is an equimultiple module
(Corollary 6.2, [1]).
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