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THE STRONGLY IRREDUCIBLE DIMENSION OF RINGS VS. THE
DERIVED DIMENSION OF THE SPACE OF STRONGLY IRREDUCIBLE

IDEALS WITH V-TOPOLOGY

JAMAL HASHEMI∗ AND FATEMEH HASSANZADEH

Abstract. An ideal I of a ring R is called strongly irreducible ideal (SI-ideal, for short),

whenever the inclusion J ∩K ⊆ I, implies that J ⊆ I or K ⊆ I. Let X = SSpec(R) be the

set of all strongly irreducible ideals of a ring R. Then X with certain topology has derived

dimension if and only if R has strongly irreducible dimension. Moreover, the two dimensions

differ by at most 1.

1. Introduction

Karamzadeh in [4] has proved a useful result connecting two different concepts from topo-
logical spaces and general rings which is toward the unity in mathematics. This in particular
shows that given any non-limit ordinal α = β + 1 we may use the set of X = Spec(R) with
a certain quasi-compact topology, where R is a Noetherian domain with Krull-dimension β
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(note, such a domain always exists, see [4, Note added in proof]), to provide a quasi-compact
space with given a non-limit ordinal as its derived dimension which is important in topology
(note, derived dimension of a topological space is also called Cantor-Bendixon dimension, and
it is well-known that this dimension for quasi-compact spaces is always non-limit ordinal, see
[6, P. 176]. Motivated by this fact in [4], in what follows we are going to set the stage for prov-
ing a similar connecting result. A proper ideal I of a ring R is said to be strongly irreducible
(briefly, SI-ideal) if for each pair of ideals J and K of R, J ∩K ⊆ I implies that either J ⊆ I

or K ⊆ I. A strongly irreducible ring R (briefly, SI-ring ) is a ring in which 0 is strongly
irreducible. A minimal strongly irreducible ideal in a ring R is any strongly irreducible ideal
of R such that it does not properly contain any other strongly irreducible ideal. It is easy to
see that every SI-ideal contains a minimal strongly irreducible ideal, for more details see [1].
If I is an ideal in a ring R, the set of all minimal strongly irreducible ideals Q containing I is
denoted by siMin(I). In what follows we recall the classical Krull-dimension of a ring R. Let
X = Spec(R) be the set of all prime ideals in R and Spec0(R) denotes the set of all maximal
ideals of R. For an ordinal α > 0 denote Specα(R) to be the set of all prime ideals P in R

such that whenever a prime ideal Q properly contains P , then Q belongs to Specβ(R) for some
β < α. The smallest ordinal α such that Specα(R) = X is called classical Krull-dimension of
R, denoted by cl.K.dim(R). It is well-known that cl.K.dim(R) exists if and only if R has acc
on prime ideals, for more details, see [2, 4]. Motivated by the above definition we introduce a
new dimension for a ring R using SI-ideals instead of prime ideals and denote by si.dim(R).
In this article, we extend the results of [4], in the same vein. For example we show that the
existence of si.dim(R) is equivalent having acc on SI-ideals. Also similarly we study the de-
rived dimension of a topological space defined on X = SSpec(R) (The set of all SI-ideals). In
particular we show that this derived dimension exists if and only if si.dim(R) exists and they
differ by at most one. In this article all rings are associative with 1 ̸= ◦.

2. Strongly irreducible dimension

Definition 2.1. Let SSpec(R) be the set of all SI-ideals of a ring R and SSpec0(R) denote
the set of all maximal ideals of R. Let α > 0 be an ordinal and define SSpecα(R) to be
the set of all ideals Q of R such that for any SI-ideal Q′ where Q ⊂ Q′, then Q′ belongs to
SSpecβ(R) for some β < α. Then the smallest ordinal α for which SSpec(R) = SSpecα(R) is
called strongly irreducible dimension of R, denoted by si.dim(R).

The following result provides an equivalent condition for the existence of si.dim(R) in a ring
R.

Theorem 2.2. A ring R has acc on SI-ideals if and only if si.dim(R) exists.
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Proof. First suppose that R has acc on SI-ideals and define the sets SSpecα(R) of SI-ideals as in
the previous definition. Since for each α, card(SSpecα(R)) ≤ 2card(R), the chain SSpec0(R) ⊆
SSpec1(R) ⊆ · · · cannot be properly increasing forever. Hence, there exists an ordinal γ such
that SSpecγ(R) = SSpecγ+1(R). If si.dim(R) does not exist, then using acc on SI-ideals, there
is an SI-ideal Q which is maximal with respect to the property Q /∈ SSpecα(R). Hence all
SI-ideals properly containing Q lie in SSpecα(R). Therefore, we infer that Q ∈ SSpecα+1(R) =

SSpecα(R), which is a contradiction.
For the converse, we show that every nonempty set of SSpec(R) has a maximal element.

So, let si.dim(R) exists and S be a nonempty set of SSpec(R). Therefore, there is an ordinal
α ≥ 0 such that SSpecα(R) = SSpec(R), and we may assume that β is the smallest ordinal
such that S ∩ SSpecβ(R) is not empty. Let Q ∈ S ∩ SSpecβ(R) and assume there is an
element Q

′ in S which contains Q properly. Then Q
′ ∈ SSpecγ(R) for some γ < β and hence

Q
′ ∈ SSpecγ(R) ∩ S for some γ < β, and this contradicts the fact that β is minimal . Thus Q

is maximal in S, i.e., R has acc on SI-ideals.

Remark 2.3. Clearly that every prime ideal of a ring R is an SI-ideal. Thus, if R is a ring
with no acc on prime ideals (i.e., cl.K.dim(R) does not exist, see [2, Ex. 14A(b)] and [2,
Proposition 14.1]), then from theorm 2.2, we conclud that si.dim(R) also does not exist.

Example 2.4. Let Z be the ring of integers. It is clear that every nonzero strongly irreducible
ideal in Z is of the form piZ, where p is a prime number and i is a positive integer. Therefore
for any nonnagative integer n, SSpecn(Z) consists of all ideals of the form piZ where 1 ≤ i ≤
n + 1. So si.dim(Z) = ω, where ω is the first infinite ordinal. The same result holds for any
commutative principal ideal domain that is not a field.

Example 2.5. Let R be a strongly regular ring (i.e., a = a2b for any a ∈ R and some b ∈ R).
Then cl.K.dim(R) = si.dim(R) = 0

Example 2.6. If R is a polynomial ring in an infinite number of indeterminates over a field
k, then R does not have acc for prime ideals. Therfore according to Remark 2.3, si.dim(R) is
not exist.

Remark 2.7. We observe that if Q is an SI-ideal in R containing an ideal I, then Q/I is
an SI-ideal of R/I. For the converse we also observe that if R is an arithmetical ring (note,
we recall that a ring R is called arithmetical ring whenever the lattice of all ideals of R is
distributive, i.e., for any three ideals I, J and K in R, I + (J ∩K) = (I + J) ∩ (I +K), or
equivalently, I∩(J+K) = (I∩J)+(I∩K)) and Q/I is an SI-ideal of R/I, then Q is an SI-ideal
in R. To this end, let J ∩K ⊆ Q then (J ∩K) + I = (J + I)∩ (K + I) ⊆ Q and consequently
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(J + I)/I ∩ (K + I)/I ⊆ Q/I. Since Q/I is SI-ideeal, we infer that (J + I)/I ⊆ Q/I or
(K + I)/I ⊆ Q/I. Hence J ⊆ Q or K ⊆ Q, i.e., Q is an SI-ideal.

Lemma 2.8. Let R be an arithmetical ring and α ≥ 0 be an ordinal. Then:

(1) If I is an ideal contained in the SI-ideal Q, then Q ∈ SSpecα(R) if and only if
Q/I ∈ SSpecα(R/I).

(2) si.dim(R) = α implies si.dim(R/I) ≤ α for every ideal I of R.

(3) If R is an SI-ring with si.dim(R) = α and Q ̸= 0 is an SI-ideal, then si.dim(R/Q) < α.

Proof. (1) The statement is obvious for α = 0. Let α ≥ 0 and assume (1) holds for all β < α.
From the definition of SSpecα(R) and the induction hypothesis we get: Q ∈ SSpecα(R) if
and only if Q ⊂ Q

′ ∈ SSpec(R) implies Q
′ ∈ SSpecβ(R) for some β < α. And we also note

that Q/I ⊂ Q
′
/I ∈ SSpec(R/I) implies Q

′
/I ∈ SSpecβ(R/I) for some β < α , if and only if

Q/I ∈ SSpecα(R/I).
(2) If Q/I ∈ SSpec(R/I), then I ⊆ Q ∈ SSpec(R) = SSpecα(R). By (1), Q/I ∈ SSpecα(R/I)

and hence si.dim(R/I) ≤ α.
(3) Since R is an SI-ring and 0 ⊂ Q , clearly Q ∈ SSecβ(R) for some β < α. Now, if
Q

′
/Q ∈ SSpec(R/Q) then Q

′ ∈ SSpecγ(R) for some γ < β and hence Q
′
/Q ∈ SSpecγ(R/Q)

by (1). Thus SSpec(R/Q) ⊆ SSpecγ(R/Q) which implies that si.dim(R/Q) < α.

The following corollary is now immediate.

Corollary 2.9. Let R be an arithmetical ring and si.dim(R) exists. If P and Q are SI-ideals
with P ⊂ Q, then si.dim(R/Q) < si.dim(R/P ).

In what follows we present several more results concerning SI-ideal in arithmetical rings.

Lemma 2.10. Let R be an arithmetical ring with si.dim(R) = α. If β ≥ 0 is any ordinal
strictly less than α, then there is an SI-ideal Q such that si.dim(R/Q) = β. If R is a right or
left Neotherain, then there is a minimal SI-ideal Q such that si.dim(R/Q) = α.

Proof. First, we observe that for an SI-ideal Q, we have si.dim(R/Q) = β if and only if β is the
smallest ordinal such that Q ∈ SSpecβ(R). If there is no SI-ideal Q such that si.dim(R/Q) = β,
then we must have SSpecβ(R) = SSpecβ+1(R), which implies that SSpecβ(R) = SSpecγ(R)

for any β < γ. Therefore, we infer that si.dim(R) ≤ β, which is a contradiction. Here, we
observe that this argument especially shows that si.dim(R) is the supremum of the ordinals
si.dim(R/Q), where Q ranges over the set of SI-ideals, and it is clear that we may restrict the



Alg. Struc. Appl. Vol. XX No. X (20XX) XX-XX. 5

set of SI-ideals to the set of minimal SI-ideals, for, every SI-ideals contains a minimal SI-ideal.
If R is right or left Noetherian, then there are only finitely many minimal SI-ideals, therefore
there is a minimal SI-ideal, Q say, such that si.dim(R/Q) = α.

Lemma 2.11. Let R be an arithmetical ring with si.dim(R) ≥ α ≥ 0. If si.dim(R/I) < α for
every ideal I ̸= 0, then R is an SI-ring with si.dim(R) = α.

Proof. We show that SSpecα(R) = SSpec(R). Let P and Q be two SI-ideals with P ⊂ Q. Since
si.dim(R/P ) = β < α and Q/P is an SI-ideal of R/P , by Lemma 2.8(1), we get Q ∈ SSpecβ(R).
Thus P ∈ SSpecα(R) for all P ∈ SSpec(R), and this yields si.dim(R) ≤ α, i.e., si.dim(R) = α.

Now suppose that R is not an SI-ring, therefore there are nonzero SI-ideals I and J such
that I∩J = 0. Let β be the maximum of si.dim(R/I) and si.dim(R/J). It is sufficient to prove
that SSpecβ(R) = SSpec(R), which is a contradiction because we show that si.dim(R) = α. To
this end, suppose that P is an SI-ideal of R. Since I ∩J = 0 ⊆ P , we may assume that I ⊆ P .
Hence (P/I) is an SI-ideal of (R/I) (note that R is an arithmetical ring). Now by Lemma 2.8
(2), si.dim(R/I)/(P/I) ≤ si.dim(R/I), so si.dim(R/P ) ≤ β < α, i.e., (P/I) ∈ SSpecβ(R/I)

and consequently P ∈ SSpecβ(R).

Lemma 2.12. Let R be an arithmetical ring with acc on two-sided ideals. The following are
equivalent:

(1) R is an SI-ring.
(2) For every SI-ideal Q ̸= 0, si.dim(R/Q) < si.dim(R).
(3) For every ideal I ̸= 0, si.dim(R/I) < si.dim(R).

Proof. (1) implies (2) by Lemma 2.8 (3). (3) implies (1) by the previous lemma. Finally, in
what follows we prove (2) implies (3). Suppose that (2) holds and let I be an ideal which is
maximal with respect to si.dim(R/I) = si.dim(R). Now, suppose that K/I is a nonzero ideal
of R/I, then by the maximality of I, we have si.dim(R/I)/(K/I) = si.dim(R/K) < si.dim(R).
Thus by the previous lemma, (R/I) is an SI-ring. So I is an SI-ideal and by (2), we get I = 0.

The following corollary is evident.

Corollary 2.13. Let R be a right or left Noetherian arithmetical ring and si.dim(R) exists.
If Q is an SI-ideal of R and I is an ideal of R with Q ⊂ I, then si.dim(R/I) < si.dim(R/Q).

Proposition 2.14. Let R be a ring with acc on SI-ideals. Then R has acc on ideals I of the
form Ik =

∩
Q∈Fk

Q, where Fk is a finite set of noncomparable SI-ideals.
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Proof. Let I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ · · · be an infinite ascending chain of ideals, each of which is
of the form Ik =

∩
P∈Fk

P , where Fk is a finite set of noncomparable SI-ideals. If it happens
that Fr1 = Fr2 = · · · = Frn = · · · , where r1 < r2, · · · < rn < · · · is an infinite sequence, then
Ir1 = Ir2 = · · · = Irn = · · · and we are through. Now we may assume Fn+1 − Fn ̸= ∅, for all
n and complete the proof by obtaining a contradiction. We note that Fi ∩ Fr ⊆ Fi−1 ∩ Fr for
all r and r ≤ i− 1, for if not, then there exists Qi ∈ Fi ∩ Fr such that Qi /∈ Fi−1. Hence there
exists Qi−1 ∈ Fi−1 such that Qi−1 ⊂ Qi and since r ≤ i − 1, there exists Qr ∈ Fr such that
Qr ⊆ Qi−1 ⊂ Qi. But Qr and Qi are both in Fr and can not be comparable. This shows that
without loss of generality we can assume that Fi−1∩Fr = Fi∩Fr, for all r and r ≤ i− 1. Now
let Qm ∈ Fm − Fm−1, for any integer m > 0. Then Qm /∈

∪m−1
i=1 Fi, for otherwise Qm ∈ Fr,

for some r ≤ m− 1 and Fm ∩ Fr = Fm−1 ∩ Fr implies that Qm ∈ Fm−1, which is impossible.
Hence there exists Qm−1 ∈ Fm−1 such that Qm−1 ⊂ Qm and Qm−1 /∈

∪m−2
i=1 Fi, for otherwise

Qm−1 ∈ Fm−1∩Fr for some r ≤ m−2 implies that Qm−1 ∈ Fm, which is impossible. Repeating
this process we get a chain Q1 ⊂ Q2 ⊂ · · ·Qn of SI-ideals such taht each Qi belongs to Fi.
Now put Fn

1 = {Q1 ∈ F1: there exists a chain Q1 ⊂ Q2 ⊂ · · ·Qn, where Qi ∈ Fi, i = 1, · · · , n}.
We have already shown that Fn

1 ̸= ∅ for all n. Moreover, Fn
1 is finite and Fn

1 ⊆ Fm
1 , for m ≤ n.

Therefore the chain F 1
1 ⊇ F 2

1 ⊇ · · · ⊇ Fn
1 ⊇ · · · stationary and we can choose Q

′
1 ∈

∩∞
n=1 F

n
1 .

Now for each n ≥ 2, let Fn
2 = {Q2 ∈ F2 : there exists a chain Q

′
1 ⊂ Q2 ⊂ · · ·Qn where

Qi ∈ Fi, i = 2, · · · , n}. It is clear that Fn
2 ̸= ∅ for all n. Now we can choose Q

′
2 ∈

∩∞
n=2 F

n
2 .

Hence proceeding inductively we get a chain Q
′
1 ⊂ Q

′
2 ⊂ · · · ⊂ Q

′
n ⊂ · · · of SI-ideals, which is

the desired contradiction.

First let us recall that the Z-topology on the set of prime ideals in noncommutative rings
as in [4]. If A is an ideal of R we let V (A) denote the subset of Spec(R) consisting of those
prime ideals that contain A. Now just by replacing the prime ideal in the previous definition
by SI-ideals we get a topology on the SI-ideals, see also [1].

It is shown that in [4] that the set of X − V (A) satisfy the axioms for open sets in this
topological space and we call it the SIZ- topology on X = SSpec(R). Put B = {V (A) : A is
a ideal of R }, then clearly B can be take as a base for open sets on SSpec(R). This topology
is also called V-topology. The name V-topology is first introduced by Karamzadeh in [4].

The following result is in [4], without proof. Next we give a proof for the sake of the reader.

Proposition 2.15. Let X = SSpec(R) be with the SIZ-topology, then the following statements
are equivalent:

(1) X has acc on open subsets.
(2) Every subset of X is quasi-compact.
(3) X has acc on intersections of SI-ideals.
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Proof. (1) ⇒ (2) Let A ⊆
∪

λ∈ΛOλ, where each Oλ is an open subset of X and A is a subset
of X. Since X has acc on open subsets, then T = {

∪n
i=1Oλi

: λi ∈ Λ, n ∈ N} has maximal
element, say

∪n
i=1Oλi

. It is clear that A ⊆
∪n

i=1Oλi
.

(2) ⇒ (3) Let I1 ⊆ I2 ⊆ · · · be an infinite ascending chain of ideals, where each Ik is an
intersection of a family of SI-ideals. Then

X − V (I1) ⊆ X − V (I2) ⊆ · · · .

Let A =
∪

k∈N(X −V (Ik)), then By assumption, there exists n ∈ N such that A = X −V (In).
It follows that V (In) = V (In+k), and consequently In = In+k for all k ∈ N.
(3) ⇒ (1) Since every open set of X is of the form X − V (I), where I is an ideal of R, so to
prove 3, it suffices to prove that X has the dcc on closed sets. Hence let V (I1) ⊇ V (I2) ⊇ · · ·
be an infinite descending chain of closed subset of X. It is clear that

∩
V (I1) ⊆

∩
V (I2) ⊆ · · ·

and by hypothesis, there exists n ∈ N such that
∩
V (In) =

∩
V (In+k), for all k ∈ N. Since

for every ideal I of R, V (
∩

V (I)) = V (I), we infer that V (In) = V (In+k) for all k ∈ N, and
the proof is complete.

In what follows we prove some needed results which are counterparts of similar results in
[4]

Corollary 2.16. If R is a ring with si.dim(R) and has only finitely many minimal SI-ideals
over any ideal, then every SI-ideal is minimal over some finitely generated subideal.

Proof. If I is an ideal in R, let P (I) denote the intersection of SI-ideal containing I. It is suf-
ficient to show that P (I) = P (⟨x1, x2, · · · , xn⟩), where ⟨x1, x2, · · · , xn⟩ is the ideal generated
by x1, x2, · · · , xn ∈ I. It is clear that V (I) =

∩
x∈I V (⟨x⟩) and X−V (I) =

∪
x∈I(X−V (⟨x⟩)).

Now by Proposition 2.14, R has acc on intersections of SI-ideals. Therefore Proposition 2.15
shows that every subset and in particular X−V (I) is quasi-compact. Thus there are some ele-
ment x1, x2, · · · , xn ∈ I such that X −V (I) =

∪n
i=1(X −V (⟨xi⟩)), hence V (I) =

∩n
i=1 V (⟨xi⟩)

implies that P (I) = P (⟨x1, x2, · · · , xn⟩).

We cite the following proposition from [3], which is counterpart of the prime avoidance
lemma for SI-ideals. We give the proof for the sake of the reader.

Proposition 2.17. Let I,Q1, Q2, · · · , Qn, n ≥ 2, be ideals of a ring R and I ⊆
∪n

i=1Qi. If
at most two of the Qi’s are not SI-ideal, then I ⊆ Qi for some Qi.

Proof. For n = 2, the assertion holds, even if Q1 and Q2 are not SI-ideal, which is a classical
result in ring theory. Now assume n ≥ 3. In this case, without loss of generality we may
assume that Q1 is an SI-ideal and Qi ⊈ Qj for i ̸= j. Also by induction we may assume that
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I ⊈
∪n

i=2Qi. Hence there is x ∈ I such that x /∈
∪n

i=2Qi. We show that I ⊆ Q1 and we are
done. Let us put J =

∩n
i=2Qi and note that for each y ∈ I ∩ J we have x + y /∈ Qi for all

i ≥ 2. Therefore x+ y ∈ Q1 which means y ∈ Q1 and so I ∩ J ⊆ Q1. Since Q1 is an SI-ideal
and J ⊈ Q1, we infer that I ⊆ Q1.

The next proposition is the counterpart of Proposition 2 in [4]. But before that, we express
the concept of the rank of an SI-ideal. Let Q, Q1,· · · , Qn be distinc SI-ideals and Q = Q0 ⊃
Q1 ⊃ · · · ⊃ Qn, then we say that this chain is of length n. Now, we say that Q has rank n

which is abbriveted by rank(Q) = n, if there exists a chain of length n descending from Q,
but no longer chain. If for any positive integer n, there exists a descending chain from Q of
length n, then we say that Q has rank ∞. We note that a minimal SI-ideal has rank 0.

Proposition 2.18. Let R be an arithmetical ring with si.dim(R) = n and have only finitely
many minimal SI-ideals over any ideal, then every SI-ideal is minimal over a subideal generated
by less than or equal to n elements.

Proof. Let si.dim(R) = n, Q is an SI-ideal and Q1, Q2, · · · , Qt be all minimal SI-ideals. By
Corollary 2.9, it is clear that for any SI-ideal Q, rank(Q) ≤ si.dim(R). We may proceed by
induction on k = rank(Q) and show that Q is minimal over a subideal which is generated by
≤ k elements. For rank(Q) = 0 is clear. Now suppose that it is true for rank(Q) ≤ k − 1.
And let rank(Q) = k where k > 0. By Proposition 2.17, we infer that Q ⊈

∪t
i=1Qi because

k > 0, so there exists a1 ∈ Q such that a1 /∈
∪t

i=1Qi. Now let π : R → R/⟨a1⟩ with π(x) = x̄

be the canonical projection and we observe that rank(Q/⟨a1⟩) ≤ k − 1. Therefore Q/⟨a1⟩ is
minimal over ⟨ā2, ā3, · · · , āk⟩ by hypothesis induction, then it is clear that Q is minimal over
⟨a1, a2, · · · , ak⟩.

3. Drived dimension of a topological space

Recall that in a topological space X an element x ∈ X is called a limit point of a subset A

of X if each open set of X contains at least one point of A distinct from x. The set of all limit
points of A is denoted by A

′ and is called the drived set of A. A point a ∈ A is called isoleted
whenever a ∈ A−A

′ .
Without further ado we begin with the definition of the above dimension.

Definition 3.1. The α-derivative of a toplogical space X is defined by transfinite induction:
X0 = X, Xα+1 = X

′
α and Xα =

∩
β<αXβ, for a limit ordinal α. If for an ordinal α we have

Xα = ∅ then X is called scattered. If X is scattered and α is the smallest ordinal such that
Xα = ∅, then α is called derived dimension of X and is denoted by d(X) = α, for more
information see [4].
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The following lemma is well known, see[4].

Lemma 3.2. Let X be a topoligical space, then the following are equivalent.

(1) Every non empty subset of X contains an isolated point.
(2) There is an α > 0 such that Xα = ∅

The following is the counterpart of [4, lemma 4].

Lemma 3.3. Let X = SSpec(R) be the space with the V-topology and S ⊆ X, then an element
Q ∈ S is an isolated point of S if and only if it is a maximal element of S.

Proof. If Q ∈ S is maximal element of S then V (Q) ∩ S = {Q} shows that P is an isolated
point of S. Now suppose that Q is an isolated point of S then there exists an open subset G

such that P ∈ G and G ∩ S = {Q}. But there exists V (A) such that Q ∈ V (A) ⊆ G, then
V (A) ∩ S = {Q}. Now we claim that Q is a maximal in S. If Q ⊂ Q

′ and Q
′ ∈ S then

Q
′ ∈ V (A) which is impossible.

We need the next proposition which is also the counterpart of [4, Corollary 3].

Proposition 3.4. Let X = SSpec(R) be the space with the V-topology. Then SSpecα(R) =∪
β≤α Sβ , where Sβ is the set of isolated points of Xβ.

Proof. We proceed by induction on α. For α = 0 it is clear. Let us assume that SSpecβ(R) =∪
γ≤β Sγ for all β < α. Now let Q ∈

∪
β≤α Sβ. If Q ∈ Sα, then Q is a maximal element of Xα

and so Q
′ ∈ X, Q ⊂ Q

′ implies that Q′
/∈ Xα = X−

∪
β<α Sβ. Hence we have Q

′ ∈ Sβ for some
β < α. Thus Q

′ ∈
∪

γ≤β Sγ = SSpecβ(R) which implies that Q ∈ SSpecα(R), and if Q /∈ Sα,
then Q ∈ Sβ for some β < α which implies that Q ∈

∪
γ≤β Sγ = SSpecβ(R) ⊆ SSpecα(R) .

Therefore, we have
∪

β≤α Sβ ⊆ SSpecα(R).
Conversely, let Q ∈ SSpecα(R), then if Q /∈

∪
β<α Sβ, we show that Q ∈ Sα. To this end, let

Q
′ ∈ X, Q ⊂ Q

′ , then Q
′ ∈ SSpecβ(R) =

∪
γ≤β Sγ implies that Q

′
/∈ Xα = X −

∪
γ<α Sγ . But

Q ∈ Xα shows that Q must be a maximal element of Xα, so by the previous lemma Q ∈ Sα.
Therefore we have SSpecα(R) ⊆

∪
β≤α Sβ.

Corollary 3.5. Let si.dim(R) = α, then X = SSpec(R) with V-topology have derived dimen-
sion and d(X) ≤ α+ 1

Proof. Let S be a non empty subset of X, then by Theorem 2.2, there exists a maximal element
Q in S. We note that V (Q) ∩ S = {Q}. This shows that Q is an isolated points of S with
respect to V-topology. Hence by Lemma 3.2, there is an α > 0 such that Xα = ∅. Hence d(X)
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exists and since according to the previous proposition Xα+1 = X −
∪

β≤α Sβ = ∅, therefore we
have d(X) ≤ α+ 1.

The next result is our main theorem.

Theorem 3.6. Let X = SSpec(R) be the space with the V-topology, then the derived dimension
of X exists if and only if si.dim(R) exists and d(X) = si.dim(R) if d(X) is a limit ordinal and
d(X) = si.dim(R) + 1 if d(X) is not a limit ordinal.

Proof. Since SSpecα(R) =
∪

β≤α Sβ and Xα+1 = X −
∪

β≤α Sβ, so the first part holds. For
the last part, first consider d(X) = α, where α is a limit ordinal. In this case we have Xα =

X −
∪

β<α Sβ = ∅, therefore X =
∪

β<α Sβ =
∪

β≤α Sβ = SSpecα(R). Hence si.dim(R) ≤ α,
and since by Corollary 3.5, d(X) ≤ si.dim(R) + 1, thus si.dim(R) = α. Now let d(X) = α+1,
then Xα+1 = ∅ which implies that X =

∪
β≤α Sβ = SSpecα(R). Therefore si.dim(R) ≤ α and

from d(X) ≤ si.dim(R) + 1, we get si.dim(R) = α.
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