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Abstract. Let Pq(n) be the set of all subspaces in the vector space Fn
q . There is a subspace

distance dS(U, V ) between any two subspaces U and V . A subspace code is also a subset

of Pq(n). It is known that dS(U, V ) ≥ dH(ν(πU), ν(πV )), where π ∈ Sn, ν(U) denotes the

pivot vector of E(U) and E(U) is the reduced row echelon form of the generator matrix

of U . In this paper, we show that if E(U) and E(V ) have at most one non-zero entry

in each rows and each columns then the equality holds. Moreover, we introduce the sets

GU,V = {π ∈ Sn | dS(U, V ) = dH(ν(πU), ν(πV ))} for any U, V ∈ Pq(n) and examine them in

the spaces P2(4), P2(5), P2(6) and P3(4). It is shown that the groups 1, Z2, Z2 × Z2, S3, S4

and 1, Z2, Z2 × Z2, S3, D8, S3 × Z2, S4, S5 appears between these sets in P2(4) and P2(5),

respectively. Moreover, the groups 1, Z2, Z2×Z2, S3, D8, Z2×Z2×Z2, S3×Z2, D8×Z2, S4,

S3 × S3, S4 × Z2, (S3 × S3):2, S5, S6 and 1, Z2, Z2 × Z2, S3, D8, S4 appears between these

sets in P2(6) and P3(4), respectively.
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1. Introduction

Let Σ be a non-empty set and n ≥ 1 be an integer. Any subset C of Σn is called a block
code of length n over the alphabet Σ. The elements of C are called codewords. The Hamming
distance between two words w = w1w2 · · ·wn and w′ = w′

1w
′
2 · · ·w′

n in Σn is

dH(w,w′) = #{i | 1 ≤ i ≤ n, wi ̸= w′
i},

and the minimum (Hamming) distance of C is given by

dH(C) = min{dH(c, c′) | c, c′ ∈ C, c ̸= c′}.

When the alphabet is the finite field Fq of order q, the code C is called linear if it is closed
under addition and scalar multiplication. The code C is binary if Σ = F2. The (Hamming)
weight of the word w = w1w2 · · ·wn is defined by wt(w) = #{i | 1 ≤ i ≤ n, wi ̸= 0}. Clearly,
wt(w) = dH(w, 0). Also, set w ∗w′ = (w1w

′
1)(w2w

′
2) · · · (wnw

′
n), where w = w1w2 · · ·wn and

w′ = w′
1w

′
2 · · ·w′

n are two words in Fn
q . See [4, 5] for more details.

Let Fn
q be the vector space of dimension n ≥ 0 over Fq. We denote by Pq(n) the set of

all subspaces in Fn
q . Each subset of Pq(n) is called a subspace code. See [2, 6] for some

applications of subspace codes in random linear network coding, cryptography and distributed
storage. The subspace distance between two subspaces U, V ∈ Pq(n) is defined by

dS(U, V ) = dim(U + V )− dim(U ∩ V )

= dim(U) + dim(V )− 2 dim(U ∩ V ).

If C is a subspace code then the minimum subspace distance of C is

dS(C) = min{dS(U, V ) | U, V ∈ C, U ̸= V }.

An k×n matrix G over Fq is called a generator matrix of the k-dimensional subspace U ∈ Pq(n)

if the rows of G form a basis of U , i.e., U = ⟨G⟩. Applying the elementary row operations on G,
we can obtain the generator matrix E(G) in reduced row echelon form such that U = ⟨E(G)⟩.
Since such a matrix E(G) is unique for any given subspace U , we also denote it by E(U).
Denote by ν(U) the characteristic vector of the pivot columns in E(U). This binary vector is
called a pivot vector. Clearly, ν(U) ∈ Fn

2 and ν(U) depends on the ordering of the positions.
Note that if U is a k-dimensional subspace of Fn

q then wt(ν(U)) = k. For example, if

U =

⟨
1 1 0 0 0

0 2 0 0 1

0 0 0 1 0


⟩

⊆ F5
3,
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then

E(U) =


1 0 0 0 1

0 1 0 0 2

0 0 0 1 0

 ,

and ν(U) = (11010) ∈ F5
2. See [3] for more information. Moreover, see [7, 8] for some recent

research on the subspace codes.
Let U and V be two subspaces in Pq(n) with the pivot vectors ν(U) and ν(V ), respectively.

It is known that dS(U, V ) ≥ dH(ν(U), ν(V )) [3]. Let Sn be the symmetric group on {1, . . . , n}.
For a matrix M of size k × n over Fq and a permutation π ∈ Sn, let πM denotes the matrix
arising from M by permuting its columns according to π. If U is a subspace of Pq(n) then
πU is defined to be ⟨πE(U)⟩. It is easy to see that ⟨E(U ∩ V )⟩ = ⟨E(U)⟩ ∩ ⟨E(V )⟩, ⟨πE(U ∩
V )⟩ = ⟨πE(U)⟩ ∩ ⟨πE(V )⟩ and dS(U, V ) = dS(πU, πV ) for all U, V ∈ Pq(n) and π ∈ Sn.
Moreover, dS(U, V ) ≥ dH(ν(πU), ν(πV )). In this paper, we show that if E(U) and E(V ) are
two matrices with at most one non-zero entry in each rows and each columns then dS(U, V )

and dH(ν(πU), ν(πV )) are equal to each other. Moreover, we define the subset GU,V = {π ∈
Sn | dS(U, V ) = dH(ν(πU), ν(πV ))} of Sn. This set consists of permutations that achieve
equality in the mentioned inequality. Generally, this set is not a group. We examine these sets
for any unordered pair {U, V } in P2(4), P2(5), P2(6) and P3(4). We prove that the groups 1,
Z2, Z2 × Z2, S3, S4 and 1, Z2, Z2 × Z2, S3, D8, S3 × Z2, S4, S5 appears between these sets in
P2(4) and P2(5), respectively. Furthermore, the groups 1, Z2, Z2 × Z2, S3, D8, Z2 × Z2 × Z2,
S3 × Z2, D8 × Z2, S4, S3 × S3, S4 × Z2, (S3 × S3):2 , S5, S6 and 1, Z2, Z2 × Z2, S3, D8, S4

appears between the mentioned sets in P2(6) and P3(4), respectively.

2. On the subspace distance and pivot vectors

In this section, a sufficient condition for the equality between subspace distance of two
subspaces and the hamming distance of their pivot vectors is given. In fact, we have the
following theorem:

Theorem 2.1. Let U and V be two subspaces in Pq(n). If E(U) and E(V ) are two ma-
trices with at most one non-zero entry in each rows and each columns then dS(U, V ) =

dH(ν(πU), ν(πV )) for all π ∈ Sn.

Proof. Suppose that U and V are two subspaces of dimensions k and l, respectively. Set
E(U) = (αij)k×n, E(V ) = (βhj)l×n, ν(U) = (a1, a2, . . . , an) and ν(V ) = (b1, b2, . . . , bn). Since
E(U) and E(V ) have at most one non-zero entry in each rows and each columns,

aj =

1, if ∃1 ≤ i ≤ k αij ̸= 0;

0, otherwise;
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and

bj =

1, if ∃1 ≤ h ≤ l βhj ̸= 0;

0, otherwise;

for any 1 ≤ j ≤ n. Hence,

wt(ν(U) ∗ ν(V )) = wt(a1b1, a2b2, . . . , anbn)

= #{1 ≤ j ≤ n | aj = bj = 1}

= #{1 ≤ j ≤ n | ∃1 ≤ i ≤ k ∃1 ≤ h ≤ l αij ̸= 0, βhj ̸= 0}

= dim(⟨E(U)⟩ ∩ ⟨E(V )⟩)

= dim(U ∩ V ).(1)

Now, let π be an arbitary permutation in Sn and set πU = πE(U) = (γij)k×n and πV =

πE(V ) = (δhj)l×n. Clearly, γij = αiπ−1(j) and δhj = βhπ−1(j) for all 1 ≤ i ≤ k, 1 ≤ h ≤ l and
1 ≤ j ≤ n. We can say that γiπ(j) ̸= 0 and δhπ(j) ̸= 0 if and only if αij ̸= 0 and βhj ̸= 0. It
follows from the assumption that πE(U) and πE(V ) are also matrices that they have at most
one non-zero entry in each rows and each columns. By (1), we have

wt(ν(πU) ∗ ν(πV )) = #{1 ≤ j ≤ n | ∃1 ≤ i ≤ k ∃1 ≤ h ≤ l γij ̸= 0, δhj ̸= 0}

= #{1 ≤ j ≤ n | ∃1 ≤ i ≤ k ∃1 ≤ h ≤ l αiπ−1(j) ̸= 0, βhπ−1(j) ̸= 0}

= #{1 ≤ π(j) ≤ n | ∃1 ≤ i ≤ k ∃1 ≤ h ≤ l αij ̸= 0, βhj ̸= 0}

= wt(ν(U) ∗ ν(V ))

= dim(U ∩ V ).(2)

So, (2) implies that

dH(ν(πU), ν(πV )) = wt(ν(πU)) + wt(ν(πV ))− 2wt(ν(πU) ∗ ν(πV ))

= dim(U) + dim(V )− 2 dim(U ∩ V )

= dS(U, V ).

Now, the proof is complete.
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The mentioned condition in Theorem 2.1 is sufficient but it is not necessary. To see this,
consider the subspaces

U =

⟨
1 1 1 0 1

1 0 1 0 1

0 1 1 0 0


⟩
, and V =

⟨
1 0 0 1 0

1 0 0 0 0

0 0 0 1 1


⟩
.

So, we have

E(U) =


1 0 0 0 1

0 1 0 0 0

0 0 1 0 0

 , and E(V ) =


1 0 0 0 0

0 0 0 1 0

0 0 0 0 1

 .

This implies that ν(U) = (11100) and ν(V ) = (10011). By a computer promgram in Maple
software, dH(ν(πU), ν(πV )) = 4 for all π ∈ S5. On the other hand, by definition, U ∩ V =⟨(

1 0 0 0 1
)⟩

and dS(U, V ) = 3 + 3− 2 · 1 = 4. So, the equality is hold but E(U) does
not satisfy in the condition of Theorem 2.1. Now, we present an example where equality does
not hold.

Example 2.2. Consider the subspaces

U =

⟨
1 0 0 1

0 1 1 0

0 0 1 1


⟩
, and V =

⟨
1 0 1 1

0 1 1 1

0 0 1 1


⟩
.

So,

E(U) =


1 0 0 1

0 1 0 1

0 0 1 1

 , and E(V ) =


1 0 0 0

0 1 0 0

0 0 1 1

 .

Clearly, U ∩ V =

⟨1 1 0 0

0 0 1 1

⟩ and ν(U) = ν(V ) = (1110). Thus, dH(ν(U), ν(V )) =

0 and dS(U, V ) = dim(U) + dim(V ) − 2dim(U ∩ V ) = 2. This implies that ds(U, V ) >

dH(ν(U), ν(V )).

3. On the spaces Pq(n) for some n and q

Consider again the set Pq(n) consisting of all subspaces of Fn
q . For any U and V in Pq(n),

we define

GU,V = {π ∈ Sn | dS(U, V ) = dH(ν(πU), ν(πV ))}.
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The subset GU,V ⊆ Sn is not necessarily a group. For example, if

U =

⟨

1 0 0 1

0 1 0 0

0 0 1 0

0 0 0 0


⟩
, and V =

⟨

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0


⟩

then

GU,V = {(), (12), (34), (23), (13), (24), (123), (132), (234), (243), (12)(34), (1342)}

and clearly, this set is not a group. Also, consider the subspaces U and V of example 2.2.
Since 1 /∈ GU,V , the set GU,V is not a group. Now, a consequence of Theorem 2.1 is as follows:

Corollary 3.1. If U and V satisfy in the assumptions of Theorem 1 then GU,V
∼= Sn.

In this section, we examine these sets by a computer program in Maple software, where
(n, q) = (4, 2), (5, 2), (6, 2), (4, 3). By [1, 3],

|Pq(n)| =
n∑

k=1

[
n

k

]
q

=
n∑

k=1

k−1∏
i=0

qn−i − 1

qk−i − 1
,

and hence, we have
(|P2(4)|

2

)
= 2145 ,

(|P2(5)|
2

)
= 69378 ,

(|P2(6)|
2

)
= 3986076 and

(|P3(4)|
2

)
= 22155

such sets in the cases (n, q) = (4, 2) , (n, q) = (5, 2), (n, q) = (6, 2) and (n, q) = (4, 3),
respectively. Among these sets, there are 602, 8030, 140912 and 2765 subgroups, respectively.
The information we obtain about all such subgroups are listed in Tables 1-6. The subgroups
and theirs numbers are written under the columns ‘GU,V ’ and ‘#’, respectively. The headings
‘∼=’ indicates the shape of the group GU,V . The last column gives an example for each case.
Therefore, we obtain the following theorems:

Theorem 3.2. Consider the words in the space P2(4). There are 602 groups among the 2145
sets of GU,V and these groups are isomorphic to 1, Z2, Z2 × Z2, S3 and S4.

Theorem 3.3. Consider the words in the space P2(5). There are 8030 groups among the
69378 sets of GU,V and these groups are isomorphic to 1, Z2, Z2 × Z2, S3, D8, S3 × Z2, S4

and S5.

Theorem 3.4. Consider the words in the space P2(6). There are 140912 groups among the
3986076 sets of GU,V and these groups are isomorphic to 1, Z2, Z2×Z2, S3, D8, Z2×Z2×Z2,
S3 × Z2, D8 × Z2, S4, S3 × S3, S4 × Z2, (S3 × S3):2, S5 and S6.

Theorem 3.5. Consider the words in the space P3(4). There are 2765 groups among the
22155 sets of GU,V and these groups are isomorphic to 1, Z2, Z2 × Z2, S3, D8 and S4.
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Table 1. The groups GU,V , where n = 4 and q = 2.

GU,V # ∼= example

⟨()⟩ 2 1
(

0 1 1 0
0 0 0 1
0 0 0 0
0 0 0 0

)
,
(

1 1 0 0
0 0 1 1
0 0 0 0
0 0 0 0

)
⟨(12)⟩

⟨(23)⟩

⟨(34)⟩

3

1

3

Z2

(
0 0 1 1
0 0 0 0
0 0 0 0
0 0 0 0

)
,
(

1 0 1 0
0 1 1 0
0 0 0 1
0 0 0 0

)
(

1 1 1 0
0 0 0 1
0 0 0 0
0 0 0 0

)
,
(

0 1 0 1
0 0 1 1
0 0 0 0
0 0 0 0

)
(

0 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0

)
,
(

1 1 0 0
0 0 1 1
0 0 0 0
0 0 0 0

)

⟨(12), (34)⟩ 4 Z2 × Z2

(
1 0 1 1
0 1 1 1
0 0 0 0
0 0 0 0

)
,
(

1 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

)
⟨(12), (123)⟩

⟨(24), (234)⟩

6

6

S3

(
1 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

)
,
(

1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 0

)
(

1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0

)
,
(

0 1 1 0
0 0 0 1
0 0 0 0
0 0 0 0

)
⟨(12), (1234)⟩ 577 S4

(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
,
(

1 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

)

4. conclusion

In this paper, we show that if E(U) and E(V ) have at most one non-zero entry in each rows
and each columns then inequality dS(U, V ) ≥ dH(ν(πU), ν(πV )) becomes equality. Moreover,
we introduce the sets GU,V = {π ∈ Sn | dS(U, V ) = dH(ν(πU), ν(πV ))} for any U, V ∈ Pq(n)

and examine them for some n and q. Interested authors can work on finding a necessary
condition for this inequality to become an equality. Also, interested authors can find the
application of these results in coding theory.
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Table 2. The groups GU,V , where n = 5 and q = 2.

GU,V # ∼= example

⟨()⟩ 4 1
(

0 1 1 0 0
0 0 0 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

)
,
(

1 1 0 0 0
0 0 1 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

)
⟨(12)⟩

⟨(23)⟩

⟨(34)⟩

⟨(45)⟩

12

2

2

12

Z2

(
1 0 1 0 0
0 1 1 0 0
0 0 0 1 1
0 0 0 0 0
0 0 0 0 0

)
,
(

0 0 1 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

)
(

1 1 1 0 1
0 0 0 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

)
,
(

0 1 0 1 0
0 0 1 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

)
(

1 1 0 0 0
0 0 1 0 1
0 0 0 1 1
0 0 0 0 0
0 0 0 0 0

)
,
(

0 1 1 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

)
(

1 1 0 1 1
0 0 1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

)
,
(

0 1 1 0 0
0 0 0 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

)
⟨(12), (34)⟩

⟨(12), (45)⟩

⟨(23), (45)⟩

3

16

3

Z2 × Z2

(
1 1 0 0 1
0 0 1 0 1
0 0 0 1 1
0 0 0 0 0
0 0 0 0 0

)
,
(

1 0 1 1 0
0 1 1 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

)
(

1 1 0 1 1
0 0 1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

)
,
(

1 0 1 0 0
0 1 1 0 0
0 0 0 1 1
0 0 0 0 0
0 0 0 0 0

)
(

0 1 0 1 1
0 0 1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

)
,
(

1 1 1 0 0
0 0 0 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

)
⟨(12), (123)⟩

⟨(23), (234)⟩

⟨(34), (345)⟩

13

1

13

S3

(
1 0 1 0 1
0 1 1 0 1
0 0 0 1 1
0 0 0 0 0
0 0 0 0 0

)
,
(

1 0 0 1 0
0 1 0 1 0
0 0 1 1 0
0 0 0 0 1
0 0 0 0 0

)
(

0 1 0 0 1
0 0 1 0 1
0 0 0 1 1
0 0 0 0 0
0 0 0 0 0

)
,
(

1 1 1 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

)
(

0 1 1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

)
,
(

1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

)

⟨(12), (1425)⟩ 1 D8

(
1 1 0 1 1
0 0 1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

)
,
(

1 0 1 0 1
0 1 1 0 1
0 0 0 1 1
0 0 0 0 0
0 0 0 0 0

)
⟨(12), (123), (45)⟩

⟨(34), (345), (12)⟩

12

12

S3 × Z2

(
1 0 0 1 1
0 1 0 1 1
0 0 1 1 1
0 0 0 0 0
0 0 0 0 0

)
,
(

1 0 1 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

)
(

1 0 1 1 1
0 1 1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

)
,
(

1 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

)
⟨(12), (1234)⟩

⟨(23), (2345)⟩

26

26

S4

(
1 0 0 1 0
0 1 0 1 0
0 0 1 1 0
0 0 0 0 1
0 0 0 0 0

)
,
(

1 0 0 0 1
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1
0 0 0 0 0

)
(

0 1 0 1 1
0 0 1 1 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

)
,
(

1 1 1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

)

⟨(12), (12345)⟩ 7872 S5

(
1 0 0 0 1
0 0 1 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

)
,
(

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

)
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Table 3. The groups GU,V , where n = 6 and q = 2.

GU,V # ∼= example

⟨()⟩ 16 1

 1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

 0 1 1 0 0 0
0 0 0 1 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


⟨(12)⟩

⟨(23)⟩

⟨(34)⟩

⟨(45)⟩

⟨(56)⟩

40

8

4

8

40

Z2

 1 0 1 0 0 0
0 1 1 0 0 0
0 0 0 1 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

,

 1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 1 1 1 0 0 0
0 0 0 1 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

 0 1 0 1 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 1 1 0 0 0 0
0 0 1 0 1 0
0 0 0 1 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

,

 0 1 1 1 0 0
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 0 1 1 0 0 0
0 0 0 1 0 1
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

 1 1 0 0 0 0
0 0 1 1 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

 0 1 1 0 0 0
0 0 0 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


⟨(12), (34)⟩

⟨(12), (45)⟩

⟨(12), (56)⟩

⟨(23), (45)⟩

⟨(23), (56)⟩

⟨(34), (56)⟩

12

20

132

2

20

12

Z2 × Z2

 0 0 1 0 1 0
0 0 0 1 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

 1 0 1 1 0 1
0 1 1 1 0 1
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 1 1 0 0 0 0
0 0 1 1 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

 1 0 1 0 0 0
0 1 1 0 0 0
0 0 0 1 0 1
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0

 1 0 1 0 0 1
0 1 1 0 0 0
0 0 0 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

 1 1 0 0 0 1
0 0 1 1 0 0
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 1 1 1 0 0 0
0 0 0 1 0 1
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

 0 1 0 1 1 0
0 0 1 1 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 0 1 0 1 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

 1 1 1 0 0 0
0 0 0 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 1 1 0 0 0 0
0 0 1 0 1 1
0 0 0 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

 0 1 1 1 0 0
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


⟨(12), (123)⟩

⟨(23), (234)⟩

⟨(34), (345)⟩

⟨(45), (456)⟩

104

2

2

104

S3

 1 0 1 0 0 0
0 1 1 0 0 0
0 0 0 1 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

,

 1 0 0 1 0 0
0 1 0 1 0 0
0 0 1 1 0 1
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0

 1 1 1 1 0 0
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

 0 1 0 0 1 0
0 0 1 0 1 0
0 0 0 1 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

 0 1 1 1 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

 1 1 0 0 0 0
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0

 0 1 1 0 0 0
0 0 0 1 0 1
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

 1 1 0 0 0 0
0 0 1 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


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Table 4. The groups GU,V , where n = 6 and q = 2 (Continued).

GU,V # ∼= example

⟨(56), (1625)⟩ 3 D8

 1 0 1 0 1 0
0 1 1 0 0 1
0 0 0 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

 1 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


⟨(12), (34), (56)⟩ 16 Z2 × Z2 × Z2

 0 0 1 0 1 1
0 0 0 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

 1 0 1 1 0 1
0 1 1 1 0 1
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


⟨(12), (123), (45)⟩

⟨(12), (123), (56)⟩

⟨(24), (243), (56)⟩

⟨(34), (345), (12)⟩

⟨(45), (456), (12)⟩

⟨(45), (456), (23)⟩

13

117

3

3

117

13

S3 × Z2

 0 1 1 0 0 0
0 0 0 1 0 1
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

 1 0 0 1 1 0
0 1 0 1 1 0
0 0 1 1 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

 0 0 0 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

 1 0 0 1 0 0
0 1 0 1 0 0
0 0 1 1 0 1
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0

 0 1 0 0 1 1
0 0 1 0 1 1
0 0 0 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

 1 1 1 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

 1 0 1 1 1 0
0 1 1 1 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 1 0 1 0 0 1
0 1 1 0 0 0
0 0 0 1 0 1
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0

,

 1 1 0 0 0 1
0 0 1 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 0 1 0 1 1 1
0 0 1 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

 1 1 1 0 0 0
0 0 0 1 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


⟨(12), (1526), (34)⟩ 1 D8 × Z2

 1 1 0 0 1 1
0 0 1 0 1 1
0 0 0 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

 1 0 1 1 0 1
0 1 1 1 0 1
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


⟨(12), (1234)⟩

⟨(23), (2345)⟩

⟨(34), (3456)⟩

83

1

83

S4

 0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

 1 0 0 0 1 0
0 1 0 0 1 0
0 0 1 0 1 0
0 0 0 1 1 0
0 0 0 0 0 1
0 0 0 0 0 0

 1 1 1 1 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

 0 1 0 0 0 1
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0

 0 1 1 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

 1 1 0 0 0 0
0 0 1 0 1 0
0 0 0 1 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0


⟨(12), (123)

, (45), (456)⟩
35 S3 × S3

 0 0 0 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

 1 0 0 1 1 1
0 1 0 1 1 1
0 0 1 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



⟨(14), (1423), (56)⟩

⟨(34), (3456), (12)⟩

52

52
S4 × Z2

 0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

 1 0 0 0 1 1
0 1 0 0 1 1
0 0 1 0 1 1
0 0 0 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0

 1 0 1 1 1 1
0 1 1 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

 0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


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Table 5. The groups GU,V , where n = 6 and q = 2 (Continued).

GU,V # ∼= example

⟨(142536), (13)⟩ 1 (S3 × S3):2

 1 1 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

 1 0 0 1 1 1
0 1 0 1 1 1
0 0 1 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


⟨(12), (12345)⟩

⟨(23), (23456)⟩

158

158

S5

 1 1 0 0 0 0
0 0 1 0 1 0
0 0 0 1 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0

,

 1 0 0 0 0 1
0 1 0 0 0 1
0 0 1 0 0 1
0 0 0 1 0 1
0 0 0 0 1 1
0 0 0 0 0 0

 1 1 1 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

,

 0 1 1 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


⟨(12), (123456)⟩ 139477 S6

 1 0 0 0 0 0
0 1 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 0

,

 0 0 1 1 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


Table 6. The groups GU,V , where n = 4 and q = 3.

GU,V # ∼= example

⟨()⟩ 24 1
(

1 2 0 2
0 0 1 1
0 0 0 0
0 0 0 0

)
,
(

0 1 1 0
0 0 0 1
0 0 0 0
0 0 0 0

)
⟨(12)⟩

⟨(23)⟩

⟨(34)⟩

56

16

56

Z2

(
1 0 1 0
0 1 1 0
0 0 0 1
0 0 0 0

)
,
(

1 2 0 2
0 0 1 1
0 0 0 0
0 0 0 0

)
(

1 1 1 0
0 0 0 1
0 0 0 0
0 0 0 0

)
,
(

0 1 0 1
0 0 1 2
0 0 0 0
0 0 0 0

)
(

0 1 1 2
0 0 0 0
0 0 0 0
0 0 0 0

)
,
(

1 2 0 0
0 0 1 0
0 0 0 1
0 0 0 0

)

⟨(12), (34)⟩ 136 Z2 × Z2

(
1 0 2 2
0 1 2 1
0 0 0 0
0 0 0 0

)
,
(

1 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

)
⟨(12), (123)⟩

⟨(24), (234)⟩

120

120

S3

(
1 0 2 0
0 0 0 1
0 0 0 0
0 0 0 0

)
,
(

1 0 0 2
0 1 0 1
0 0 1 1
0 0 0 0

)
(

1 2 1 2
0 0 0 0
0 0 0 0
0 0 0 0

)
,
(

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

)
⟨(34), (1324)⟩ 8 D8

(
1 0 1 1
0 1 2 2
0 0 0 0
0 0 0 0

)
,
(

1 2 0 1
0 0 1 2
0 0 0 0
0 0 0 0

)
⟨(12), (1234)⟩ 2229 S4

(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
,
(

1 0 0 2
0 0 0 0
0 0 0 0
0 0 0 0

)
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