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MEET-NONESSENTIAL GRAPH OF AN ARTINIAN LATTICE

SHAHABADDIN EBRAHIMI ATANI∗

Abstract. Let L be a lattice with 1. The meet-nonessential graph MG(L) of L is a graph

whose vertices are all nonessential filters of L and two distinct filters F and G are adjacent if

and only if F ∧G is a nonessential filter of L. The basic properties and possible structures of

the graph MG(L) are investigated. The clique number, domination number and independence

number of MG(L) and their relations to algebraic properties of L are explored.

1. Introduction

The study of algebraic structures, using the properties of graph theory, tends to an exciting
research topic in last decade. Associating a graph with an algebraic structure allows us to
obtain characterizations and representations of special classes of algebraic structures in terms
of graphs and vice versa (see for example [1, 2, 3, 10, 9, 12]).
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Let L be a distributive lattice with 1. The purpose of this paper is to investigate a graph
associated to a lattice L called the meet-nonessential graph of L. This will result in character-
ization of lattices in terms of some specific properties of those graphs. The meet-nonessential
graph of L is a simple graph MG(L) whose vertices are all nonessential filters and two distinct
vertices are adjacent if and only if the meet of the corresponding filters is not an essential
filter of L. The small intersection graph ΓS(R) of a commutative ring R is a graph whose
vertices are all non-small proper ideals of R and two distinct ideals I and J are adjacent if
and only if I ∩ J is not small in R was introduced and investigated in [9]. The concept of
the nonessential sum graph of a commutative Artinian ring R was introduced and studied in
[3]. The sum-essential graph ΓM (R) of a left R-module M is a graph whose vertices are all
nontrivial submodules of M and two distinct submodules are adjacent if and only if their sum
is an essential submodule of M was introduced and investigated in [12].

Here is a brief outline of the article. Among many results in this paper, the first, Prelim-
inaries section contains elementary observations needed later on. In Section 3, we show in
Theorem 3.9 that MG(L) is connected if and only if |S(L)| ̸= 2. Also, if MG(L) is a connected
graph, then diam(MG(L)) ≤ 2 and gr(MG(L)) = 3 provided MG(L) contains a cycle (Thorem
3.10). For a lattice L, it is shown that MG(L) cannot be a complete r-partite graph (Theorem
3.12) and MG(L) has no cut vertex (Theorem 3.11). Moreover, MG(L) cannot be a complete
graph (Theorem 3.13). Also it is proved that if MG(L) contains a vertex with degree 1, then
|S(L)| = 2 (Theorem 3.14). We also prove in Theorem 3.18 that every vertex of MG(L) is
of finite degree if and only if the graph has only finitely many vertices. In Section 3, the
clique number, domination number and independence number of MG(L) and their relations
to algebraic properties of L are explored.

2. Preliminaries

Let G be a simple graph with vertex set V (G) and edge set E (G). For every vertex v ∈ V
(G), the degree of v, denoted by degG(v), is defined the cardinality of the set of all vertices
which are adjacent to v. A graph G is said to be connected if there exists a path between
any two distinct vertices, G is a complete graph if every pair of distinct vertices of G are
adjacent and Kn will stand for a complete graph with n vertices. The graph G is k-regular, if
degG(v) = k < ∞ for every v ∈ V (G). Let u and v be elements of V (G). We say that u is a
universal vertex of G if u is adjacent to all other vertices of G and write u ∽ v if u and v are
adjacent. The distance d(u, v) is the length of the shortest path from u to v if such path exists,
otherwise, d(a, b) = ∞. The diameter of G is diam(G) = sup{d(a, b) : a, b ∈ V(G)}. The girth
of a graph G, denoted by gr(G), is the length of a shortest cycle in G. If G has no cycles, then
gr(G) = ∞. A subset S ⊆ V(G) is an independent set if the subgraph induced by S is totally
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disconnected. The independence number α(G) is the maximum size of an independent set in
G. A clique of a graph is its maximal complete subgraph and the number of vertices in the
largest clique of graph G, denoted by ω(G), is called the clique number of G. For a positive
integer k, a k-partite graph is a graph whose vertices can be partitioned into k nonempty
independent sets. The complete bipartite graph with part sizes m and n is denoted by Km,n.
We will sometimes call K1,n a star graph. The (open) neighborhood N(v) of a vertex v of
V(G) is the set of vertices which are adjacent to v. For each S ⊆ V(G), N(S) = ∪v∈SN(v) and
N [S] = N(S) ∪ S set of vertices S in G is a dominating set, if N [S] = V(G). The domination
number, γ(G), of G is the minimum cardinality of a dominating set of G. Note that a graph
whose vertices set is empty is a null graph and a graph whose edge set is empty is an empty
graph. A vertex x of a connected graph G is a cut vertex of G if there are vertices y and z of
G such that x is in every path from y to z (and x ̸= y, x ̸= z). Equivalently, for a connected
graph G, x is a cut vertex of G if G \ {x} is not connected [13].

By a lattice we mean a poset (L,≤) in which every couple elements x, y has a g.l.b. (called
the meet of x and y, and written x ∧ y) and a l.u.b. (called the join of x and y, and written
x ∨ y). A lattice L is complete when each of its subsets X has a l.u.b. and a g.l.b. in
L. Setting X = L, we see that any nonvoid complete lattice contains a least element 0 and
greatest element 1 (in this case, we say that L is a lattice with 0 and 1). A lattice L is called a
distributive lattice if (a∨b)∧c = (a∧c)∨(b∧c) for all a, b, c in L (equivalently, L is distributive
if (a ∧ b) ∨ c = (a ∨ c) ∧ (b ∨ c) for all a, b, c in L). A non-empty subset F of a lattice L is
called a filter, if for a ∈ F , b ∈ L, a ≤ b implies b ∈ F , and x ∧ y ∈ F for all x, y ∈ F (so
if L is a lattice with 1, then 1 ∈ F and {1} is a filter of L). If A is a subset of L, then the
filter generated by A, denoted by T (A), is the intersection of all filters that is containing A.
A subfilter G of a filter F of L is called essential in F (written G ⊴ F ) if G∩H ̸= {1} for any
subfilter H ̸= {1} of F . For terminology and notation not defined here, the reader is referred
to [4].

Lemma 2.1. Let L be a lattice [4, 7, 8, 10].
(1) A non-empty subset F of L is a filter of L if and only if x∨ z ∈ F and x∧ y ∈ F for all

x, y ∈ F , z ∈ L. Moreover, since x = x ∨ (x ∧ y), y = y ∨ (x ∧ y) and F is a filter, x ∧ y ∈ F

gives x, y ∈ F for all x, y ∈ L.
(2) If F1, F2 are filters of L and a ∈ L, then F1 ∨ F2 = {a1 ∨ a2 : a1 ∈ F1, a2 ∈ F2} and

a ∨ F1 = {a ∨ a1 : a1 ∈ F1} are filters of L and F1 ∩ F2 = F1 ∨ F2 ⊆ F1, F2.
(3) If L is distributive, F,G are filters of L, and x ∈ L, then (G :L F ) = {x ∈ L : x∨F ⊆ G},

(F :L T ({x}) = (F :L x) = {a ∈ L : a∨x ∈ F} and ({1} :L x) = (1 :L x) = {a ∈ L : a∨x = 1}
are filters of L.
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(4) If L is distributive and F1, F2 are filters of L, then F1 ∧ F2 = {a ∧ b : a ∈ F1, b ∈ F2} is
a filter of L, F1, F2 ⊆ F1 ∧ F2 (for if x ∈ F1, then x = x ∧ 1 ∈ F1 ∧ F2) and if F1 ⊆ F2, then
F1 ∧ F2 = F2.

Lemma 2.2. Let L be a lattice [6].
(1) Let A be an arbitrary non-empty subset of L. Then T (A) = {x ∈ L : a1∧a2∧· · ·∧an ≤

x for some ai ∈ A (1 ≤ i ≤ n)}. Moreover, if F is a filter and A is a subset of L with A ⊆ F ,
then T (A) ⊆ F and T (F ) = F .

(2) If F and G are filters of L, then T (G ∪ F ) = F ∧G;
(3) (modular law) If F , G and H are filters of L with F ⊆ G, then G∩(F∧H) = F∧(G∩H).

Let U be a subfilter of a filter F of L. If subfilter V of F is maximal with respect to
U ∩ V = {1}, then we say that V is a complement of U . Using the maximal principle we
readily see that if U is a subfilter of F , then the set of those subfilters of F whose intersection
with U is {1} contains a maximal element V . Thus every subfilter U of F has a complement.
As a direct application of the Lemma 2.2 and [6] Lemma 2.15, we obtain the following lemma:

Lemma 2.3. Let A,B,C and D be filters of L.
(1) If A ⊴ B and C ⊴ D, then A ∧ C ⊴ B ∧D;
(2) If B ∩D = {1}, then A ⊴ B and C ⊴ D if and only if A ∧ C ⊴ B ∧D.
(3) If B is a complement of A in L, then A ∧B ⊴ L.

A lattice L is called semisimple, if for each proper filter F of L, there exists a filter G of L
such that L = F ∧G and F ∩G = {1}). In this case, we say that F is a direct meet of L, and
we write L = F ⊙ G. A filter F of L is called a semisimple filter, if every subfilter of F is a
direct meet. A simple filter is a filter that has no filters besides the {1} and itself.

Let Λ = {Fi : i ∈ I} be a set of filters of L. Then it is easy to see that
∧

i∈IFi = {
∧

i∈I′fi :

fi ∈ Fi, I
′ ⊂ I, I ′ is finite} is a filter of L (if Λ = ∅, then we set

∧
i∈IFi = {1}). L =

⊙
i∈I Fi is

said to be a direct decomposition of L into the meet of the filters {Fi : i ∈ I} if (1) L =
∧

i∈IFi

and (2) {Fi : i ∈ I} is independent i.e for each j ∈ I, Fj ∩
∧

j ̸=i∈IFi = {1}. For each filter F

of L, Soc(F ) =
∧

i∈ΛFi, where {Fi}i∈Λ is the set of all simple filters of L contained in F .

3. Basic properties of MG(L)

Throughout this paper, we shall assume unless otherwise stated, that L is a distributive
lattice with 1. In this section, we collect basic properties concerning the graph MG(L). A
filter F ̸= {1} of L is called L-second if for each a ∈ L, either a ∨ F = {1} or a ∨ F = F . By
[8] Proposition 2.1, F is L-second if and only if the only subfilters of F are {1} and F itself
(i.e. F is simple) and in this case, |F | = 2. The set of all simple filters of L is denoted by
S(L). The next lemma plays a key role in the sequel.
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Lemma 3.1. Let L be an Artinian lattice. Then:
(1) If F is a filter of L with F ̸= {1}, then F contains only a finite number of simple filters.

In particular, S(L) is a finite set;
(2) Soc(L) ⊴ L and Soc(L) contains only finitely many subfilters.

Proof. Clearly, S(F ) ̸= ∅ since L is Artinian. Indeed (1) is a direct consequence of [8], Theorem
2.2 (i) and (2) is a consequence of (1).

The proof of the following Lemma (Lemma 3.2 (1)) can be found in [11] (with some different
proof and notions), but we give the details for convenience.

Lemma 3.2. (1) If F(L) is the set of all filters of L, then

Soc(L) = ∩{F ∈ F(L) : F is essential in L};

(2) If G ∈ F(L), then G ⊴ L if and only if Soc(L) ⊆ G;
(3) If H is a nontrivial subfilter of Soc(L), then H is not essential in L.

Proof. (1) Let Soc(L) =
∧

i∈ISi, where {Si}i∈I is the set of all simple filters of L. Set K =

∩{F ∈ F(L) : F is essential in L}. Let S be a simple filter of L. If G ⊴ L, then S ∩G ̸= {1},
so S ⊆ G. Thus Soc(L) is contained in every essential filter of L; so Soc(L) ⊆ K. We claim
that K is semisimple. Let G be a filter of L such that G ⊆ K. If G ⊴ L, then K ⊆ G;
hence G = K. So we may assume that G is not essential in L. Let G′ be a complement of
G in L; so G ∧ G′ ⊴ L by Lemma 2.3. It follows that G ⊆ K ⊆ G ∧ G′, and by modularity
K = K ∩ (G ∧ G′) = G ∧ (K ∩ G′) which implies that K is semisimple; thus K ⊆ Soc(L) and
so we have equality.

(2) One side is clear by (1). To prove the other side, assume to the contrary, that G is not
essential in L. Then there exists a filter H of L such that G∩H = {1}. By Lemma 2.1, there
is a simple filter S of L such that S ⊆ H. So we have S ∩ G ⊆ H ∩ G = {1} which implies
that S ⊈ G, a contradiction. Thus G ⊴ L.

(3) This is straightforward.

Lemma 3.3. Assume that S(L) = {Si}i∈Λ and let I be a nonempty proper finite subset of Λ,
where |Λ| > 1. Then

∧
i∈ISi is a nonessential filter of L.

Proof. Suppose to the contrary, that
∧

i∈ISi ⊴ L. Since each Sj ̸= {1}, so (
∧

i∈ISi)∩Sj ̸= {1}
for j /∈ I which implies that Sj ⊆

∧
i∈ISi. If 1 ̸= x ∈ Sj , then x = ∧i∈Isi for some si ∈ Si

(i ∈ I). Then there is an element t ∈ I such that st ̸= 1, as x ̸= 1. Now Sj is a filter gives
st ∈ Sj ∩ St = {1} by Lemma 2.1, a contradiction. This completes the proof.
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Lemma 3.4. If S is a simple filter of L and F,G are two filters such that S ⊆ F ∧ G, then
either S ⊆ F or S ⊆ G.

Proof. If 1 ̸= s ∈ S, then s = a ∧ b for some a ∈ F and b ∈ G. Now S is a filter gives a, b ∈ S

by Lemma 2.1 (so either a ̸= 1 or b ̸= 1). Without loss of generality, we can assume that
a ̸= 1. It follows that F ∩ S ̸= {1} which gives S ⊆ F .

Henceforth we will assume that all considered lattices L are Artinian. We recall that S(L) ̸=
∅ and L contains only a finite number of simple filters by Lemma 3.1.

Proposition 3.5. MG(L) is a null graph if and only if L has exactly one simple filter.

Proof. One side is clear. To prove the other side, suppose that L has exactly one simple filter
S (so Soc(L) = S ⊴ L by Lemma 2.1). Let G be a nontrivial filter of L. If H is a non-trivial
filter of L, then Lemma 3.1 shows that S ⊆ H ∩G; so G is essential in L. Thus every nontivial
filter of L is essential in L; hence MG(L) is a null graph.

Example 3.6. (1) Let L = {0, a, b, c, 1} be a lattice with 0 ≤ a ≤ c ≤ 1, 0 ≤ b ≤ c ≤ 1,
a∨b = c and a∧b = 0. An inspection will show that the nontrivial filters of L are S1 = {1, a, c},
S2 = {1, b, c} and S3 = {1, c} with S3 is a simple filter of L and S1, S2 are essential in L. Thus
MG(L) is a null graph by Proposition 3.5.

(2) Assume that R is a discrete valuation ring with unique maximal ideal P = Rp and let
E = E(R/P ), the R-injective hull of R/P . For each positive integer n, set An = (0 :E Pn).
Then by [5] Lemma 2.6, every non-zero proper submodule of E is equal to Am for some m

with a strictly increasing sequence of submodules A1 ⊂ A2 ⊂ · · · ⊂ An ⊂ An+1 ⊂ · · · . The
collection of submodules of E form a complete lattice which is a chain under set inclusion
which we shall denote by L(E) with respect to the following definitions: An ∨Am = An +Am

and An ∧ Am = An ∩ Am for all submodules An and Am of E. Then by [8] Example 2.3 (b),
we have

(i) Every proper filter of L(E) is of the form [An, E] = {X ∈ L(E) : An ⊆ X ⊆ E} for some
n. For each positive integer n, set Fn = [An, E]. Then F1 ⫌ F2 ⫌ · · ·Fn ⫌ Fn+1 · · · gives L is
not Artinian.

(ii) S(L(E)) = ∅ and Fn ⊴ L(E) for each n ∈ N; so V (MG(L) = ∅. Thus MG(L) is a null
graph by Proposition 3.5.

Theorem 3.7. MG(L) is an empty graph if and only if L has exactly two simple filters which
are the only nonessential filters of L.
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Proof. Let MG(L) be an empty graph. If |S(L)| = 1, then MG(L) is a null graph by Proposi-
tion 3.5 which is impossible. Suppose that |S(L)| ≥ 3 and let S1, S2 and S3 be simple filters
of L. Then S1 and S2 are adjacent in MG(L) by Lemma 3.3 which is a contradiction. So we
may assume that S(L) = {S1, S2} with S1 ̸= S2 (so S1 and S2 are nonessential filters of L).
If G ̸= {1} is a nonessential filter of L with G ̸= S1, S2, then either S1 ⊆ G or S2 ⊆ G by
Lemma 3.1. Without loss of generality, we can assume that S1 ⊆ G. This gives G = G ∧ S1

is not essential in L; hence S1 and G adjacent in MG(L) which is impossible. Thus S1 and
S2 are the only non-essental filters of L. To prove the other side, we consider L has exactely
two simple filters which are the only nonessential filters of L. Thus S1 ∧ S2 = Soc(L) ⊴ L by
Lemma 3.1. Hence MG(L) is an empty graph.

Example 3.8. Let L = {0, a, b, c, d, 1} be a lattice with 0 ≤ d ≤ c ≤ a ≤ 1, 0 ≤ d ≤ c ≤ b ≤ 1,
a∨ b = 1 and a∧ b = c. An inspection will show that the nontrivial filters of L are S1 = {1, a},
S2 = {1, b}, S3 = {1, a, b, c} and S4 = {1, a, b, c, d} with S1, S2 are the only nonessential simple
filter of L and S3, S4 are essential in L. Thus MG(L) is an empty graph by Theorem 3.7.

Theorem 3.9. For the lattice L, the following conditions are equivalent:
(1) MG(L) is not connected;
(2) |S(L)| = 2;
(3) There exist two disjoint complete subgraphs H1,H2 of MG(L) such that MG(L) =

H1 ∪H2.

Proof. (1) ⇒ (2) Assume that H1 and H2 are two components of MG(L) and let F,G be filters
of L such that F ∈ V(H1) and G ∈ V(H2) (so F and G are not essential in L). There are simple
filters S1 and S2 such that S1 ⊆ F and S2 ⊆ G by Lemma 3.1. If S1 = S2, then F ∽ S1 ∽ G

is a path in MG(L), a contradiction. So we may assume that S1 ̸= S2. If |S(L)| ≥ 3, then
S1 ∧ S2 is not essential in L by Lemma 3.3 which gives F ∽ S1 ∽ S2 ∽ G is a path in MG(L),
a contradiction. Thus |S(L)| = 2.

(2) ⇒ (3) Let |S(L)| = 2. Then Soc(L) = S1 ∧ S2, where S1, S2 are simple filters of L. Let
H1 = {F ∈ F(L) : S1 ⊆ F and F is not essential in L} and

H2 = {F ∈ F(L) : S2 ⊆ F and F is not essential in L}.

Let F,G ∈ V(H1). If F and G are not adjacent in MG(L), then G ∧ F ⊴ L which gives
S2 ⊆ Soc(L) ⊆ G ∧ F by Lemma 3.2. So either S2 ⊆ F or S2 ⊆ G by Lemma 3.4, a
contradiction because in that case either F is essential or G is essential. Thus H1 is a complete
subgraph of MG(L). Similarly, H2 is a complete subgraph of MG(L). It remains to show that
there is no path between H1 and H2. Assume to the contrary, that there exist F ∈ V(H1)

and G ∈ V(H2) such that F and G are adjacent in MG(L) (note that each vertex in MG(L)
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is contained in V(H1) or V(H2)). Since Soc(L) = S1 ∧ S2 ⊆ F ∧G, we have F ∧G is essential
in L by Lemma 3.2 which is impossible. This completes the proof.

The implication (3) ⇒ (1) is clear.

Note that the condition “L is an Artinian lattice” is necessary in Theorem 3.9 by Example
3.6 (2).

Theorem 3.10. For the lattice L, the following statements hold:
(1) If MG(L) is a connected graph, then diam(MG(L)) ≤ 2.
(2) If MG(L) contains a cycle, then gr(MG(L)) = 3.

Proof. (1) By Theorem 3.9, MG(L) is a connected graph. Let F and G be nonessential filters
of L such that G ∧ F ⊴ L. Then there exist simple filters S1 and S2 such that S1 ⊆ F and
S2 ⊆ G by Lemma 3.1. If F ∧ S2 is not essential in L, then F ∽ S2 ∽ G is a path in MG(L)

with d(F,G) = 2. Similarly, if G ∧ S1 is not essential in L, then d(G,F ) = 2. So we may
assume that F ∧ S2 ⊴ L and G ∧ S1 ⊴ L. As MG(L) is connected, |S(L)| ≥ 3 by Theorem
2.9. Let S3 be a simple filter of L such that S1 ̸= S3 and S2 ̸= S3. Since G ∧ F ⊴ L, we have
S3 ⊆ Soc(L) ⊆ G ∧ F by Lemma 3.2 which gives either S3 ⊆ F or S3 ⊆ G. We can assume
that S3 ⊆ F . Then F = F ∧ S3 is nonessential in L. We claim that S3 ∧G is nonessential in
L. If S3 ∧G ⊴ L, then S1 ⊆ Soc(L) ⊆ S3 ∧G gives S1 ⊆ G; hence S1 ∧G = G is nonessential
in L, a contradiction. Thus F ∽ S3 ∽ G is a path in MG(L) with d(G,F ) = 2.

(2) If |S(L)| = 2 and MG(L) contains a cycle, then gr(MG(L)) = 3 by Theorem 3.9. So we
may assume that |S(L)| ≥ 3. Let S1, S2 and S3 be three distinct simple filters of L. Then by
Lemma 3.3, S1 ∧ S2, S2 ∧ S3 and S3 ∧ S1 are nonessential in L; so S1 ∽ S2 ∽ S3 ∽ S1 is a
cycle in MG(L) which implies that gr(MG(L)) = 3.

Theorem 3.11. If MG(L) is a connected graph, then MG(L) has no cut vertex.

Proof. Assume to the contrary, that MG(L) has a cut vertex S (so MG(L) \ {S} is not con-
nected). Then there are vertices G and H such that S lies on every path from H to G. Thus
G ∽ S ∽ H is a path between G and H by Theorem 3.10 (1). It follows that G ∧ S is not
essential in L, G ∧H ⊴ L and S ∧H is not essential in L. Let K ⫋ S for any filter K of L.
By Lemma 2.3, S is not essential in L gives K is not essential in L. As G ∧K ⊆ G ∧ S, we
get that G ∧K is not essential in L. Similarly, H ∧K is not essential in L. So G ∽ K ∽ H

is a path in MG(L) \ S which is impossible. Thus S is a simple filter of L. We claim that
there is a simple filter Si ̸= S of L such that Si ⊈ G. Otherwise,

∧
S ̸=Si

Si ⊆ G which gives
Soc(L) = S ∧

∧
S ̸=Si

Si ⊆ S ∧ G, a contradictin to the fact that S ∧ G is not essential. Sim-
ilarly, there is a simple filter Si ̸= S of L such that Si ⊈ H. Since G ∧ H ⊴ L, we have
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Si ⊆ Soc(L) ⊆ G ∧H for each Si ∈ S(L) which gives either Si ⊆ G or Si ⊆ H. So for each
Si ∈ S(L), we have either Si ⊆ G or Si ⊆ H. As MG(L) is a connected graph, Theorem 3.8
gives |S(L)| ≥ 3. Let Si and Sj be simple filters of L such that Si ̸= S, Sj ̸= S, Si ⊈ G and
Sj ⊈ H. It follows that Si ⊆ H and Sj ⊆ G. Thus G ∽ Sj ∽ Si ∽ H is a path in MG(L)

which is a contradiction. So MG(L) has no cut vertex.

Theorem 3.12. For a positive integer r, MG(L) is not a complete r-partite graph.

Proof. Assume to the contrary, that MG(L) is a complete r-partite graph with parts V1, · · · , Vr.
Since two distinct simple filters are always adjacent by Lemma 3.3, so each Vi contains at most
one simple filter of L. Therefore by Pigeon hole principle we have |S(L)| ≤ r. We claim that
|S(L)| = r. Let S(L) = {S1, · · · , Sk}, where k < r. If Si ∈ Vi for 1 ≤ i ≤ k, then Vk+1

contains no simple filter. As the number of simple filters is finite,
∧

j ̸=iSj is not essential in L

by Lemma 3.3. Since (
∧

j ̸=iSj) ∧ Si = Soc(L) ⊴ L by Lemma 3.2, so
∧

j ̸=iSj and Si are not
adjacent. Thus

∧
j ̸=iSj ∈ Vi, as Si ∈ Vi. Assume that G is a vertex in Vs+1 and let Sm ⊆ G

for some simple filter Sm of L. So G is adjacent to all elements of Vm. It follows that G is
adjacent to

∧
j ̸=mSj which is impossible, as Soc(L) ⊆ G ∧ (

∧
j ̸=mSj) and Soc(L) ⊴ L. Hence

k = r. Consider the filter H =
∧

r
i=3Si (so H is not essential in L by Lemma 3.3). Since

H ∧ S1 =
∧

i ̸=2Si is not essential in L, we obtain that H and S1 are adjacent. Similarly, H
and S2 are adjacent. So H /∈ V1 and H /∈ V2. It is clear that H ∧ Si = H is not essential in
L for each 3 ≤ i ≤ r. Hence H is adjacent to all simple filters Si of L; so H ∈ Vi for each
1 ≤ i ≤ r which is impossible, as required.

Theorem 3.13. For the Lattice L, the following conditions hold:
(1) MG(L) has no a universal vertex;
(2) MG(L) is not a complete graph.

Proof. (1) Set S(L) = {S1, · · · , Sn} by Lemma 3.1. Assume to the contrary, that MG(L) has
a universal vertex G. Then there is a simple filter Sj such that Sj ⊆ G. By Lemma 3.3,
H =

∧
i ̸=jSi is not essential in L (so H is a vertex of MG(L)). Since G is a universal vertex, G

and H are adjacent in MG(L); hence H∧G is not essential in L. But Soc(L) = Sj∧H ⊆ H∧G
gives H ∧ G ⊴ L which is impossible. So there is no vertex in MG(L) which is adjacent to
every other vertex.

(2) By an argument like that (1), MG(L) cannot be a complete graph.

Theorem 3.14. MG(L) contains a vertex with degree one if and only if MG(L) = H1 ∪H2,
where H1,H2 are two disjoint complete subgraphs of MG(L) and |V (Hi)| = 2 for some i = 1, 2.
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Proof. Let G be a vertex of MG(L) with deg(G) = 1. By Proposition 3.5, |S(L)| > 1. Suppose
that |S(L)| ≥ 3. By Lemma 3.3, for each simple filter Si of L, Si is adjacent to every other
simple filter of L; so deg(Si) ≥ 2. It follows that G is not a simple filter of L. Without loss
of generality, let S1 ⊆ G. Then G and S1 are adjacent in MG(L). Since deg(G) = 1, so the
only vertex adjacent to G is S1 and Sk ⊈ G for k ̸= 1; hence G and S2 are not adjacent. Thus
S2 ∧G ⊴ L which implies that Sj ⊆ Soc(L) ⊆ G∧S2 for j ̸= 1, 2; hence Sj ⊆ G for j ̸= 1, 2, a
contradiction. Therefore |S(L)| = 2. Now by theorem 3.9, MG(L) = H1 ∪H2, where H1,H2

are two disjoint complete subgraphs of MG(L). Without loss of generality, suppose G ∈ H1.
As H1 is a complete subgraph and deg(G) = 1, we get that |V (H1)| = 2. This completes the
proof.

Corollary 3.15. For the lattice L, MG(L) is not a star graph.

Proof. Assume to the contrary, that MG(L) is a star graph. Then MG(L) has a vertex with
degree one. Thus |S(L)| = 2 by Theorem 3.14; so MG(L) is not connected by Theorem 3.9
which is impossible. Therefore MG(L) cannot be a star graph

Theorem 3.16. If MG(L) is a k-regular graph, then |V (MG(L))| = 2k + 2.

Proof. At first we show that if F and G are vertices of MG(L) with F ⊆ G, then deg(G) ≤
deg(F ). If K is a vertex adjacent to G, then K ∧ G is not essential in L gives K ∧ F is not
essenial in L By Lemma 2.3; hence deg(G) ≤ deg(F ). Let MG(L) be a k-regular graph. Then
for each simple filter Si of L, deg(Si) = k. Let S(L) = {S1, · · · , Sn}, where n ≥ 3. By Lemma
3.3, H =

∧
i ̸=2Si is not essential in L. It is clearly that H is adjacent to S1 but H is not adjacent

to S1 ∧ S2 since H ∧ (S1 ∧ S2 = Soc(L) ⊴ L by Lemma 3.1; hence deg(S1 ∧ S2) ≨ deg(S1). It
follows that deg(S1∧S2) < k which is impossible. Thus |S(L)| ≤ 2. Since MG(L) is not a null
graph, we have |S(L)| ̸= 1. Therefore S(L) = {S1, S2}. Thus by Theorem 3.9, There exist two
disjoint complete subgraphs H1,H2 of MG(L) such that MG(L) = H1 ∪H2. We can assume
that S1 ∈ H1 and S2 ∈ H2. Since deg(S1) = k, we have |H1| = k + 1. Similarly, |H2| = k + 1.
Hence |V (MG(L))| = 2k + 2.

We say that filters F and G of L are strongly disjoint if for any elements 1 ̸= f ∈ F and
1 ̸= g ∈ G, (1 :L f) ̸= (1 :L g).

Theorem 3.17. If MG(L) is not an empty graph and is a tree, then the following conditions
are hold:

(1) If F and G are elements of V (MG(L)) with G∧F is not essential in L, then G and F

are strongly disjoint.
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(2) If F and G are elements of V (MG(L)) with G∧F is not essential in L, then one of F
and G is a simple filter.

Proof. (1) Since MG(L) is a tree, so it is a triangle-free graph. Let F,G be elements of V
(ΓP (L)) such that G ∧ F is not essential in L. At first we show that G ∩ F = {1} and if
S is a subfilter of G ∧ F with S ̸= {1}, then S ∩ F ̸= {1} or S ∩ G ̸= {1}. Assume that
K = F ∩ G ̸= {1} and let S′ be a simple filter of L such that S′ ⊆ K. Then F, S′, G would
form a triangle. This is impossible, so K = {1}. Let S be a subfilter of F ∧ G with S ̸= {1}
(so S is not essential in L). If {1} ⫋ H ⫋ S, the H,S, F ∧ G would form a triangle, a
contradiction. Thus S is a simple filter with S ⊆ F ∧ G which implies that either S ⊆ F or
S ⊆ G by Lemma 3.4. Assume to contrary, that there are elements a ∈ F and b ∈ G such
that (1 :L a) = (1 :L b). Then {1} ̸= T ({a, b}) ⊆ G ∧ F gives either F ∩ T ({a, b}) ̸= {1} or
G ∩ T ({a, b}) ̸= {1}. Without loss of generality, we can assume that F ∩ T ({a, b}) ̸= {1}.
Then there exists x ∈ F such that a∧ b ≤ x which implies that x = (x∨ b)∧ (x∨ a) ∈ F . Now
F is a filter gives x ∨ b ∈ F ∩G = {1}; so x ∈ (1 :L a) = (1 :L b). It follows that x = 1 which
is a contradiction. Thus F and G are strongly disjoint.

(2) Let {1} ̸= S1 ⫋ G and {1} ̸= S2 ⫋ F . Since every tree is a bipartite graph, we have a
cycle S1 ∽ G ∽ F ∽ S2 ∽ S1 in a tree which is impossible. Thus one of F and G is a simple
filter and so (2) holds.

Theorem 3.18. For the lattice L, the following conditions are equivalent:
(1) Every vertex of MG(L) is of finite degree;
(2) The graph MG(L) is finite.

Proof. (1) ⇒ (2) Let every vertex of MG(L) is of finite degree. By Lemma 3.1, G ∩ Soc(L) ̸=
{1} for every nontrivial filter G of L and Soc(L) contains only finitely many subfilters. Assume
that K is any non-trivial subfilter of Soc(L) and let AK = {G ∈ F(L) : G ∩ Soc(L) =

K}. At first we show that V(MG(L)) =
∪

K⫋Soc(L)AK . Since the inclusion V(MG(L)) ⊆∪
K⫋Soc(L)AK is clear, we will prove the reverse inclusion. Suppose that H ∈

∪
K⫋Soc(L)AK .

Then there is a proper subfilter G of Soc(L) such that H ∩ Soc(L) = G. Then G is not
essential gives H is not essential; hence H ∈ V(MG(L)) and so we have equality. Now it is
enough to show that AK is a finite set for every proper subfilter K of Soc(L). Let SK be
a simple filter of L such that SK ⊆ K. Let U ∈ AK (so U is not essential in L). Then
SK = SK ∩ K = SK ∩ (U ∩ Soc(L)) = SK ∩ U gives SK ⊆ U ; hence SK is adjacent to any
U ∈ AK . As SK is of finite degree, we obtain that AK is finite. This completes the proof.
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4. Clique number, independence number and domination number

Let us begin this section with the following theorem:

Theorem 4.1. For the lattice L, the following statements hold:
(1) If MG(L) is a non-empty graph, then ω(MG(L)) ≥ |S(L)|;
(2) If MG(L) is an empty graph, then ω(MG(L)) = 1 if and only if S(L) = {S1, S2}, where

S1, and S2 are the only nonessential distinct simple filters of L;
(3) If ω(MG(L)) is finite, then ω(MG(L)) ≥ 2|S(L)|−1 − 1.

Proof. (1) Since any two simple distinct filters of L are adjacent by Lemma 3.3 , the subgraph of
MG(L) with the vertex set of {Si}Si∈S(L) is a complete subgraph of MG(L). Thus ω(MG(L)) ≥
|S(L)|.

(2) This is a direct consequence of Theorem 3.7.
(3) Let S(L) = {S1, · · · , Sn}. Also for each 1 ≤ i ≤ n, set

Ai = {S1, · · ·Si−1, Si+1, · · · , Sn}.

For each i (1 ≤ i ≤ n), Let P (Ai) be the power set of Ai and set BX =
∧

Fi∈XFi for each
∅ ̸= X ∈ P (Ai). Then the subgraph of MG(L) with the vertex set {BX}X∈P (Ai)\{∅} is a
complete subgraph of MG(L) by Lemma 3.3. Clearly, |{BX}X∈P (Ai)\{∅}| = 2|S(L)|−1 − 1.
Hence ω(MG(L)) ≥ 2|S(L)|−1 − 1.

Theorem 4.2. For the lattice L, α(MG(L)) = |S(L)|.

Proof. Let S(L) = {S1, · · · , Sn}. Since Ω = {
∧

n
j=1,i ̸=jSj}ni=1 is an independent set in MG(L),

we have n ≤ α(MG(L)) (note that if C,D ∈ Ω, then C ∧ D = Soc(L) ⊴ L, and so C is
not adjacent to D by Lmma 3.2). Assume that α(MG(L)) = t and let A = {F1, · · · , Ft}
be a maximal independent set in MG(L). Then for each F ∈ A, F is not essential in L (so
Soc(L) ⊈ F by Lemma 3.2); hence S ⊈ G for some simple filter S of L. If t > n, then by
Pigeon hole principal, there exist 1 ≤ i, j ≤ n and S ∈ S(L) such that S ⊈ Fi and S ⊈ Fj ;
so S ⊈ Fi ∧ Fj by Lemma 3.4. Since A is an independent set in MG(L), Fi and Fj are not
adjacent, and so Fi ∧ Fj ⊴ L. It follows that S ⊆ Soc(L) ⊆ Fi ∧ Fj which is impossible. If
α(MG(L)) = ∞, then by a similar argument as above, we have a contradiction. This proves
that α(MG(L)) = |S(L)|.

Theorem 4.3. For the lattice L, γ(MG(L)) = 2.

Proof. Note that |S(L)| ≥ 2, as MG(L) is a non-null graph. Set A = {S1, S2}, where S1, S2

are distinct simple filters of L. Let G be a vertex of MG(L). If either S1 ⊆ G or S2 ⊆ G,
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the S1 ∧ G = G or S2 ∧ G = G is non-essential in L. Then G is adjacent to S1 or S2. So we
may assume that S1 ⊈ G and S2 ⊈ G. Without loss of generality, we can assume that G is
not adjacent to S1 (so G ∧ S1 ⊴ L). Then S2 ⊆ Soc(L) ⊆ S1 ∧ G by Lemma 3.2. It follows
that S2 ⊆ G by Lemma 3.4 which is impossible. Thus G is adjacent to S1. Similarly, G is
adjacent to S2. Hence γ(MG(L)) ≤ 2. By Theorem 3.13, MG(L) has no a universal vertex;
so γ(MG(L)) ̸= 1. Thus γ(MG(L)) = 2.
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