

Algebraic Structures **Their Applications**

Algebraic Structures and Their Applications Vol. 12 No. 1 (2025) pp 51-63.

Research Paper

MEET-NONESSENTIAL GRAPH OF AN ARTINIAN LATTICE

SHAHABADDIN EBRAHIMI ATANI*[∗]*

ABSTRACT. Let L be a lattice with 1. The meet-nonessential graph $M\mathbb{G}(L)$ of L is a graph whose vertices are all nonessential filters of *L* and two distinct filters *F* and *G* are adjacent if and only if $F \wedge G$ is a nonessential filter of *L*. The basic properties and possible structures of the graph $MG(L)$ are investigated. The clique number, domination number and independence number of $MG(L)$ and their relations to algebraic properties of *L* are explored.

1. INTRODUCTION

The study of algebraic structures, using the properties of graph theory, tends to an exciting research topic in last decade. Associating a graph with an algebraic structure allows us to obtain characterizations and representations of special classes of algebraic structures in terms of graphs and vice versa (see for example [[1](#page-12-0), [2](#page-12-1), [3](#page-12-2), [10](#page-12-3), [9](#page-12-4), [12\]](#page-12-5)).

MSC(2010): Primary: 03G10, 06A11.

Keywords: Essential filter, Lattice, Meet-essential graph.

Received: 21 January 2023, Accepted: 16 July 2024.

DOI: 10.22034/as.2024.19586.1613

*[∗]*Corresponding author

^{© 2025} Yazd University.

Let L be a distributive lattice with 1. The purpose of this paper is to investigate a graph associated to a lattice *L* called the meet-nonessential graph of *L*. This will result in characterization of lattices in terms of some specific properties of those graphs. The meet-nonessential graph of L is a simple graph $MG(L)$ whose vertices are all nonessential filters and two distinct vertices are adjacent if and only if the meet of the corresponding filters is not an essential filter of *L*. The small intersection graph $\Gamma_S(R)$ of a commutative ring R is a graph whose vertices are all non-small proper ideals of *R* and two distinct ideals *I* and *J* are adjacent if and only if $I \cap J$ is not small in R was introduced and investigated in [[9](#page-12-4)]. The concept of the nonessential sum graph of a commutative Artinian ring *R* was introduced and studied in [[3\]](#page-12-2). The sum-essential graph Γ*M*(*R*) of a left *R*-module *M* is a graph whose vertices are all nontrivial submodules of *M* and two distinct submodules are adjacent if and only if their sum is an essential submodule of *M* was introduced and investigated in [[12\]](#page-12-5).

Here is a brief outline of the article. Among many results in this paper, the first, Preliminaries section contains elementary observations needed later on. In Section 3, we show in Theorem 3.9 that $M\mathbb{G}(L)$ is connected if and only if $|\mathcal{S}(L)| \neq 2$. Also, if $M\mathbb{G}(L)$ is a connected graph, then $\text{diam}(\mathbb{MG}(L)) \leq 2$ and $\text{gr}(\mathbb{MG}(L)) = 3$ provided $\mathbb{MG}(L)$ contains a cycle (Thorem 3.10). For a lattice *L*, it is shown that MG(*L*) cannot be a complete *r*-partite graph (Theorem 3.12) and $M\mathbb{G}(L)$ has no cut vertex (Theorem 3.11). Moreover, $M\mathbb{G}(L)$ cannot be a complete graph (Theorem 3.13). Also it is proved that if MGL) contains a vertex with degree 1, then $|\mathcal{S}(L)| = 2$ (Theorem 3.14). We also prove in Theorem 3.18 that every vertex of $\mathbb{MG}(L)$ is of finite degree if and only if the graph has only finitely many vertices. In Section 3, the clique number, domination number and independence number of $MGL(L)$ and their relations to algebraic properties of *L* are explored.

2. Preliminaries

Let *G* be a simple graph with vertex set $V(G)$ and edge set $\mathcal{E}(G)$. For every vertex $v \in V$ (G) , the degree of *v*, denoted by $deg_G(v)$, is defined the cardinality of the set of all vertices which are adjacent to *v*. A graph G is said to be connected if there exists a path between any two distinct vertices, *G* is a complete graph if every pair of distinct vertices of *G* are adjacent and K_n will stand for a complete graph with *n* vertices. The graph *G* is *k*-regular, if $deg_G(v) = k < \infty$ for every $v \in V(G)$. Let *u* and *v* be elements of *V* (*G*). We say that *u* is a universal vertex of *G* if *u* is adjacent to all other vertices of *G* and write $u \sim v$ if *u* and *v* are adjacent. The distance $d(u, v)$ is the length of the shortest path from u to v if such path exists, otherwise, $d(a, b) = \infty$. The diameter of *G* is diam(*G*) = sup $\{d(a, b) : a, b \in V(G)\}$. The girth of a graph G , denoted by $\text{gr}(G)$, is the length of a shortest cycle in G . If G has no cycles, then $gr(G) = \infty$. A subset $S \subseteq V(G)$ is an independent set if the subgraph induced by S is totally

disconnected. The independence number $\alpha(G)$ is the maximum size of an independent set in *G*. A clique of a graph is its maximal complete subgraph and the number of vertices in the largest clique of graph *G*, denoted by $\omega(G)$, is called the clique number of *G*. For a positive integer *k*, a *k*-partite graph is a graph whose vertices can be partitioned into *k* nonempty independent sets. The complete bipartite graph with part sizes m and n is denoted by $K_{m,n}$. We will sometimes call $K_{1,n}$ a star graph. The (open) neighborhood $N(v)$ of a vertex v of $V(G)$ is the set of vertices which are adjacent to *v*. For each $S \subseteq V(G)$, $N(S) = \bigcup_{v \in S} N(v)$ and *N*[*S*] = *N*(*S*)∪*S* set of vertices *S* in *G* is a dominating set, if *N*[*S*] = *V*(*G*). The domination number, $\gamma(G)$, of *G* is the minimum cardinality of a dominating set of *G*. Note that a graph whose vertices set is empty is a null graph and a graph whose edge set is empty is an empty graph. A vertex *x* of a connected graph *G* is a cut vertex of *G* if there are vertices *y* and *z* of *G* such that *x* is in every path from *y* to *z* (and $x \neq y$, $x \neq z$). Equivalently, for a connected graph *G*, *x* is a cut vertex of *G* if $G \setminus \{x\}$ is not connected [\[13\]](#page-12-6).

By a lattice we mean a poset (L, \leq) in which every couple elements x, y has a g.l.b. (called the meet of *x* and *y*, and written $x \wedge y$ and a l.u.b. (called the join of *x* and *y*, and written $x \vee y$). A lattice *L* is complete when each of its subsets *X* has a l.u.b. and a g.l.b. in *L*. Setting *X* = *L*, we see that any nonvoid complete lattice contains a least element 0 and greatest element 1 (in this case, we say that *L* is a lattice with 0 and 1). A lattice *L* is called a distributive lattice if $(a \vee b) \wedge c = (a \wedge c) \vee (b \wedge c)$ for all a, b, c in L (equivalently, L is distributive if $(a \land b) ∨ c = (a ∨ c) ∧ (b ∨ c)$ for all a, b, c in L). A non-empty subset F of a lattice L is called a filter, if for $a \in F$, $b \in L$, $a \leq b$ implies $b \in F$, and $x \wedge y \in F$ for all $x, y \in F$ (so if *L* is a lattice with 1, then $1 \in F$ and $\{1\}$ is a filter of *L*). If *A* is a subset of *L*, then the filter generated by A , denoted by $T(A)$, is the intersection of all filters that is containing A . A subfilter *G* of a filter *F* of *L* is called essential in *F* (written $G \leq F$) if $G \cap H \neq \{1\}$ for any subfilter $H \neq \{1\}$ of *F*. For terminology and notation not defined here, the reader is referred to [[4](#page-12-7)].

Lemma 2.1. *Let L be a lattice* [[4](#page-12-7), [7](#page-12-8), [8,](#page-12-9) [10](#page-12-3)]*.*

(1) A non-empty subset F of L is a filter of L if and only if $x \vee z \in F$ and $x \wedge y \in F$ for all $x, y \in F$, $z \in L$. Moreover, since $x = x \vee (x \wedge y)$, $y = y \vee (x \wedge y)$ and F is a filter, $x \wedge y \in F$ *gives* $x, y \in F$ *for all* $x, y \in L$ *.*

(2) If F_1, F_2 are filters of L and $a \in L$, then $F_1 \vee F_2 = \{a_1 \vee a_2 : a_1 \in F_1, a_2 \in F_2\}$ and $a \vee F_1 = \{a \vee a_1 : a_1 \in F_1\}$ are filters of L and $F_1 \cap F_2 = F_1 \vee F_2 \subseteq F_1, F_2$.

(3) If L is distributive, F, G are filters of L, and $x \in L$, then $(G :_L F) = \{x \in L : x \vee F \subseteq G\}$, $(F:_{L} T(\{x\}) = (F:_{L} x) = \{a \in L : a \vee x \in F\}$ and $(\{1\}:_{L} x) = (1:_{L} x) = \{a \in L : a \vee x = 1\}$ *are filters of L.*

(4) If L is distributive and F_1, F_2 are filters of L, then $F_1 \wedge F_2 = \{a \wedge b : a \in F_1, b \in F_2\}$ is a filter of L, $F_1, F_2 \subseteq F_1 \wedge F_2$ (for if $x \in F_1$, then $x = x \wedge 1 \in F_1 \wedge F_2$) and if $F_1 \subseteq F_2$, then $F_1 \wedge F_2 = F_2.$

Lemma 2.2. *Let L be a lattice* [[6](#page-12-10)]*.*

(1) Let *A* be an arbitrary non-empty subset of *L*. Then $T(A) = \{x \in L : a_1 \land a_2 \land \cdots \land a_n \leq$ x for some $a_i \in A$ $(1 \leq i \leq n)$. Moreover, if F is a filter and A is a subset of L with $A \subseteq F$, *then* $T(A) \subseteq F$ *and* $T(F) = F$ *.*

(2) If *F* and *G* are filters of *L*, then $T(G \cup F) = F \wedge G$;

(3) (modular law) If F, G and H are filters of L with $F \subseteq G$, then $G \cap (F \wedge H) = F \wedge (G \cap H)$.

Let *U* be a subfilter of a filter *F* of *L*. If subfilter *V* of *F* is maximal with respect to $U \cap V = \{1\}$, then we say that *V* is a complement of *U*. Using the maximal principle we readily see that if U is a subfilter of F , then the set of those subfilters of F whose intersection with U is $\{1\}$ contains a maximal element V . Thus every subfilter U of F has a complement. As a direct application of the Lemma 2.2 and [[6](#page-12-10)] Lemma 2.15, we obtain the following lemma:

Lemma 2.3. *Let* A, B, C *and* D *be filters of* L *.*

- *(1) If* $A ⊆ B$ *and* $C ⊆ D$ *, then* $A ∧ C ⊆ B ∧ D$ *;*
- *(2) If* $B \cap D = \{1\}$ *, then* $A \leq B$ *and* $C \leq D$ *if and only if* $A \wedge C \leq B \wedge D$ *.*
- *(3)* If *B is a complement of A in L*, *then* $A \wedge B \leq L$ *.*

A lattice *L* is called semisimple, if for each proper filter *F* of *L*, there exists a filter *G* of *L* such that $L = F \wedge G$ and $F \cap G = \{1\}$. In this case, we say that *F* is a direct meet of *L*, and we write $L = F \odot G$. A filter *F* of *L* is called a semisimple filter, if every subfilter of *F* is a direct meet. A simple filter is a filter that has no filters besides the *{*1*}* and itself.

Let $\Lambda = \{F_i : i \in I\}$ be a set of filters of L. Then it is easy to see that $\bigwedge_{i \in I} F_i = \{\bigwedge_{i \in I'} f_i : i \in I\}$ $f_i \in F_i$, $I' \subset I$, I' is finite} is a filter of L (if $\Lambda = \emptyset$, then we set $\bigwedge_{i \in I} F_i = \{1\}$). $L = \bigodot_{i \in I} F_i$ is said to be a direct decomposition of *L* into the meet of the filters ${F_i : i \in I}$ if (1) $L = \bigwedge_{i \in I} F_i$ and (2) $\{F_i : i \in I\}$ is independent i.e for each $j \in I$, $F_j \cap \bigwedge_{j \neq i \in I} F_i = \{1\}$. For each filter F of *L*, Soc $(F) = \bigwedge_{i \in \Lambda} F_i$, where $\{F_i\}_{i \in \Lambda}$ is the set of all simple filters of *L* contained in *F*.

3. Basic properties of MG(*L*)

Throughout this paper, we shall assume unless otherwise stated, that *L* is a distributive lattice with 1. In this section, we collect basic properties concerning the graph MG(*L*). A filter $F \neq \{1\}$ of *L* is called *L*-second if for each $a \in L$, either $a \vee F = \{1\}$ or $a \vee F = F$. By [[8\]](#page-12-9) Proposition 2.1, *F* is *L*-second if and only if the only subfilters of *F* are *{*1*}* and *F* itself (i.e. F is simple) and in this case, $|F| = 2$. The set of all simple filters of L is denoted by $S(L)$. The next lemma plays a key role in the sequel.

Lemma 3.1. *Let L be an Artinian lattice. Then:*

(1) If F is a filter of *L* with $F \neq \{1\}$ *, then F* contains only a finite number of simple filters. *In particular,* $S(L)$ *is a finite set;*

 (2) Soc(*L*) ⊴ *L* and Soc(*L*) *contains only finitely many subfilters.*

Proof. Clearly, $S(F) \neq \emptyset$ since *L* is Artinian. Indeed (1) is a direct consequence of [[8](#page-12-9)], Theorem 2.2 (i) and (2) is a consequence of (1). \Box

The proof of the following Lemma (Lemma 3.2 (1)) can be found in [\[11](#page-12-11)] (with some different proof and notions), but we give the details for convenience.

Lemma 3.2. (1) If $\mathbb{F}(L)$ *is the set of all filters of* L *, then*

 $Soc(L) = \bigcap \{ F \in \mathbb{F}(L) : F \text{ is essential in } L \};$

- *(2) If* $G \in \mathbb{F}(L)$ *, then* $G \leq L$ *if and only if* $Soc(L) \subseteq G$ *;*
- *(3)* If *H* is a nontrivial subfilter of $Soc(L)$, then *H* is not essential in *L*.

Proof. (1) Let $\text{Soc}(L) = \bigwedge_{i \in I} S_i$, where $\{S_i\}_{i \in I}$ is the set of all simple filters of *L*. Set $K =$ \cap {*F* \in $\mathbb{F}(L)$: *F* is essential in *L*}. Let *S* be a simple filter of *L*. If $G \leq L$, then $S \cap G \neq \{1\}$, so $S \subseteq G$. Thus $Soc(L)$ is contained in every essential filter of *L*; so $Soc(L) \subseteq K$. We claim that *K* is semisimple. Let *G* be a filter of *L* such that $G \subseteq K$. If $G \leq L$, then $K \subseteq G$; hence $G = \mathcal{K}$. So we may assume that G is not essential in L. Let G' be a complement of *G* in *L*; so $G \wedge G' \leq L$ by Lemma 2.3. It follows that $G \subseteq K \subseteq G \wedge G'$, and by modularity $K = K \cap (G \wedge G') = G \wedge (K \cap G')$ which implies that *K* is semisimple; thus $K \subseteq \text{Soc}(L)$ and so we have equality.

(2) One side is clear by (1). To prove the other side, assume to the contrary, that *G* is not essential in *L*. Then there exists a filter *H* of *L* such that $G \cap H = \{1\}$. By Lemma 2.1, there is a simple filter *S* of *L* such that $S \subseteq H$. So we have $S \cap G \subseteq H \cap G = \{1\}$ which implies that $S \nsubseteq G$, a contradiction. Thus $G \trianglelefteq L$.

(3) This is straightforward. \Box

Lemma 3.3. *Assume that* $S(L) = \{S_i\}_{i \in \Lambda}$ *and let I be a nonempty proper finite subset of* Λ *, where* $|\Lambda| > 1$ *. Then* $\bigwedge_{i \in I} S_i$ *is a nonessential filter of L.*

Proof. Suppose to the contrary, that $\bigwedge_{i\in I} S_i \subseteq L$. Since each $S_j \neq \{1\}$, so $(\bigwedge_{i\in I} S_i) \cap S_j \neq \{1\}$ for $j \notin I$ which implies that $S_j \subseteq \bigwedge_{i \in I} S_i$. If $1 \neq x \in S_j$, then $x = \bigwedge_{i \in I} s_i$ for some $s_i \in S_i$ $(i \in I)$. Then there is an element $t \in I$ such that $s_t \neq 1$, as $x \neq 1$. Now S_j is a filter gives s_t ∈ S_j ∩ S_t = {1} by Lemma 2.1, a contradiction. This completes the proof. □

Lemma 3.4. *If S is a simple filter of L and* F , *G are two filters such that* $S \subseteq F \wedge G$ *, then* $either S \subseteq F \text{ or } S \subseteq G.$

Proof. If $1 \neq s \in S$, then $s = a \wedge b$ for some $a \in F$ and $b \in G$. Now S is a filter gives $a, b \in S$ by Lemma 2.1 (so either $a \neq 1$ or $b \neq 1$). Without loss of generality, we can assume that *a* \neq 1. It follows that *F* ∩ *S* \neq {1} which gives *S* ⊆ *F*. □

Henceforth we will assume that all considered lattices L are Artinian. We recall that $\mathcal{S}(L) \neq$ *∅* and *L* contains only a finite number of simple filters by Lemma 3.1.

Proposition 3.5. MG(*L*) *is a null graph if and only if L has exactly one simple filter.*

Proof. One side is clear. To prove the other side, suppose that *L* has exactly one simple filter *S* (so $\text{Soc}(L) = S \leq L$ by Lemma 2.1). Let *G* be a nontrivial filter of *L*. If *H* is a non-trivial filter of *L*, then Lemma 3.1 shows that $S \subseteq H \cap G$; so *G* is essential in *L*. Thus every nontivial filter of *L* is essential in *L*; hence $MG(L)$ is a null graph. \Box

Example 3.6. (1) Let $L = \{0, a, b, c, 1\}$ be a lattice with $0 \le a \le c \le 1, 0 \le b \le c \le 1$, $a \vee b = c$ and $a \wedge b = 0$. An inspection will show that the nontrivial filters of *L* are $S_1 = \{1, a, c\}$, $S_2 = \{1, b, c\}$ and $S_3 = \{1, c\}$ with S_3 is a simple filter of *L* and S_1, S_2 are essential in *L*. Thus $MG(L)$ is a null graph by Proposition 3.5.

(2) Assume that *R* is a discrete valuation ring with unique maximal ideal $P = Rp$ and let $E = E(R/P)$, the *R*-injective hull of R/P . For each positive integer *n*, set $A_n = (0 : E P^n)$. Then by [[5](#page-12-12)] Lemma 2.6, every non-zero proper submodule of E is equal to A_m for some m with a strictly increasing sequence of submodules $A_1 \subset A_2 \subset \cdots \subset A_n \subset A_{n+1} \subset \cdots$. The collection of submodules of *E* form a complete lattice which is a chain under set inclusion which we shall denote by $L(E)$ with respect to the following definitions: $A_n \vee A_m = A_n + A_m$ and $A_n \wedge A_m = A_n \cap A_m$ for all submodules A_n and A_m of *E*. Then by [\[8\]](#page-12-9) Example 2.3 (b), we have

(i) Every proper filter of $L(E)$ is of the form $[A_n, E] = \{X \in L(E) : A_n \subseteq X \subseteq E\}$ for some *n*. For each positive integer *n*, set $F_n = [A_n, E]$. Then $F_1 \supsetneq F_2 \supsetneq \cdots F_n \supsetneq F_{n+1} \cdots$ gives *L* is not Artinian.

(ii) $\mathcal{S}(L(E)) = \emptyset$ and $F_n \leq L(E)$ for each $n \in \mathbb{N}$; so $\mathcal{V}(\mathbb{MG}(L) = \emptyset)$. Thus $\mathbb{MG}(L)$ is a null graph by Proposition 3.5.

Theorem 3.7. MG(*L*) *is an empty graph if and only if L has exactly two simple filters which are the only nonessential filters of L.*

Proof. Let $M\mathbb{G}(L)$ be an empty graph. If $|\mathcal{S}(L)| = 1$, then $M\mathbb{G}(L)$ is a null graph by Proposition 3.5 which is impossible. Suppose that $|\mathcal{S}(L)| \geq 3$ and let S_1, S_2 and S_3 be simple filters of *L*. Then S_1 and S_2 are adjacent in MG(*L*) by Lemma 3.3 which is a contradiction. So we may assume that $\mathcal{S}(L) = \{S_1, S_2\}$ with $S_1 \neq S_2$ (so S_1 and S_2 are nonessential filters of *L*). If $G \neq \{1\}$ is a nonessential filter of *L* with $G \neq S_1, S_2$, then either $S_1 \subseteq G$ or $S_2 \subseteq G$ by Lemma 3.1. Without loss of generality, we can assume that $S_1 \subseteq G$. This gives $G = G \wedge S_1$ is not essential in *L*; hence S_1 and *G* adjacent in $M\mathbb{G}(L)$ which is impossible. Thus S_1 and *S*² are the only non-essental filters of *L*. To prove the other side, we consider *L* has exactely two simple filters which are the only nonessential filters of *L*. Thus $S_1 \wedge S_2 = \text{Soc}(L) \leq L$ by Lemma 3.1. Hence $M\mathbb{G}(L)$ is an empty graph. \Box

Example 3.8. Let $L = \{0, a, b, c, d, 1\}$ be a lattice with $0 \le d \le c \le a \le 1, 0 \le d \le c \le b \le 1$, *a*∨*b* = 1 and *a*∧*b* = *c*. An inspection will show that the nontrivial filters of *L* are *S*₁ = {1*, a*}, $S_2 = \{1, b\}, S_3 = \{1, a, b, c\}$ and $S_4 = \{1, a, b, c, d\}$ with S_1, S_2 are the only nonessential simple filter of *L* and S_3 , S_4 are essential in *L*. Thus $MG(L)$ is an empty graph by Theorem 3.7.

Theorem 3.9. *For the lattice L, the following conditions are equivalent:*

- (1) MG(*L*) *is not connected*;
- (2) $|\mathcal{S}(L)| = 2;$

(3) There exist two disjoint complete subgraphs H_1, H_2 *of* $MG(L)$ *such that* $MG(L)$ = *H*₁ ∪ *H*₂*.*

Proof. (1) \Rightarrow (2) Assume that *H*₁ and *H*₂ are two components of MG(*L*) and let *F*, *G* be filters of *L* such that $F \in V(H_1)$ and $G \in V(H_2)$ (so *F* and *G* are not essential in *L*). There are simple filters S_1 and S_2 such that $S_1 \subseteq F$ and $S_2 \subseteq G$ by Lemma 3.1. If $S_1 = S_2$, then $F \backsim S_1 \backsim G$ is a path in $\mathbb{MG}(L)$, a contradiction. So we may assume that $S_1 \neq S_2$. If $|\mathcal{S}(L)| \geq 3$, then *S*₁ ∧ *S*₂ is not essential in *L* by Lemma 3.3 which gives $F \nightharpoonup S_1 \nightharpoonup S_2 \nightharpoonup G$ is a path in MG(*L*), a contradiction. Thus $|\mathcal{S}(L)| = 2$.

 $(2) \Rightarrow (3)$ Let $|\mathcal{S}(L)| = 2$. Then $Soc(L) = S_1 \wedge S_2$, where S_1, S_2 are simple filters of *L*. Let $H_1 = \{F \in \mathbb{F}(L) : S_1 \subseteq F \text{ and } F \text{ is not essential in } L\}$ and

 $H_2 = \{F \in \mathbb{F}(L) : S_2 \subseteq F \text{ and } F \text{ is not essential in } L\}.$

Let $F, G \in \mathcal{V}(H_1)$. If *F* and *G* are not adjacent in MG(*L*), then $G \wedge F \subseteq L$ which gives S_2 ⊆ Soc(*L*) ⊆ *G* \land *F* by Lemma 3.2. So either S_2 ⊆ *F* or S_2 ⊆ *G* by Lemma 3.4, a contradiction because in that case either F is essential or G is essential. Thus H_1 is a complete subgraph of $MG(L)$. Similarly, H_2 is a complete subgraph of $MG(L)$. It remains to show that there is no path between H_1 and H_2 . Assume to the contrary, that there exist $F \in \mathcal{V}(H_1)$ and $G \in \mathcal{V}(H_2)$ such that *F* and *G* are adjacent in MG(*L*) (note that each vertex in MG(*L*)

is contained in $V(H_1)$ or $V(H_2)$). Since $Soc(L) = S_1 \wedge S_2 \subseteq F \wedge G$, we have $F \wedge G$ is essential in *L* by Lemma 3.2 which is impossible. This completes the proof.

The implication $(3) \Rightarrow (1)$ is clear. \Box

Note that the condition "*L* is an Artinian lattice" is necessary in Theorem 3.9 by Example 3.6 (2).

Theorem 3.10. *For the lattice L, the following statements hold:*

- *(1)* If $MG(L)$ *is a connected graph, then* diam $(MG(L)) \leq 2$ *.*
- (2) If $MG(L)$ *contains a cycle, then* $gr(MG(L)) = 3$ *.*

Proof. (1) By Theorem 3.9, $MG(L)$ is a connected graph. Let F and G be nonessential filters of *L* such that $G \wedge F \subseteq L$. Then there exist simple filters S_1 and S_2 such that $S_1 \subseteq F$ and *S*₂ \subseteq *G* by Lemma 3.1. If *F* \land *S*₂ is not essential in *L*, then *F* ∽ *S*₂ ∽ *G* is a path in MG(*L*) with $d(F, G) = 2$. Similarly, if $G \wedge S_1$ is not essential in *L*, then $d(G, F) = 2$. So we may assume that $F \wedge S_2 \subseteq L$ and $G \wedge S_1 \subseteq L$. As $\mathbb{MG}(L)$ is connected, $|\mathcal{S}(L)| \geq 3$ by Theorem 2.9. Let S_3 be a simple filter of *L* such that $S_1 \neq S_3$ and $S_2 \neq S_3$. Since $G \wedge F \leq L$, we have *S*₃ \subseteq Soc(*L*) \subseteq *G* \land *F* by Lemma 3.2 which gives either *S*₃ \subseteq *F* or *S*₃ \subseteq *G*. We can assume that $S_3 \subseteq F$. Then $F = F \wedge S_3$ is nonessential in *L*. We claim that $S_3 \wedge G$ is nonessential in *L*. If $S_3 \wedge G \leq L$, then $S_1 \subseteq \text{Soc}(L) \subseteq S_3 \wedge G$ gives $S_1 \subseteq G$; hence $S_1 \wedge G = G$ is nonessential in *L*, a contradiction. Thus $F \backsim S_3 \backsim G$ is a path in MG(*L*) with $d(G, F) = 2$.

(2) If $|\mathcal{S}(L)| = 2$ and $\mathbb{MG}(L)$ contains a cycle, then $gr(\mathbb{MG}(L)) = 3$ by Theorem 3.9. So we may assume that $|\mathcal{S}(L)| \geq 3$. Let S_1 , S_2 and S_3 be three distinct simple filters of *L*. Then by Lemma 3.3, $S_1 \wedge S_2$, $S_2 \wedge S_3$ and $S_3 \wedge S_1$ are nonessential in *L*; so $S_1 \neg S_2 \neg S_3 \neg S_1$ is a cycle in $\mathbb{MG}(L)$ which implies that $gr(\mathbb{MG}(L)) = 3.$

Theorem 3.11. *If* $M\mathbb{G}(L)$ *is a connected graph, then* $M\mathbb{G}(L)$ *has no cut vertex.*

Proof. Assume to the contrary, that $MG(L)$ has a cut vertex *S* (so $MG(L) \setminus \{S\}$ is not connected). Then there are vertices *G* and *H* such that *S* lies on every path from *H* to *G*. Thus *G* ∽ *S* ∽ *H* is a path between *G* and *H* by Theorem 3.10 (1). It follows that $G \wedge S$ is not essential in $L, G \wedge H \leq L$ and $S \wedge H$ is not essential in *L*. Let $K \subsetneq S$ for any filter *K* of *L*. By Lemma 2.3, *S* is not essential in *L* gives *K* is not essential in *L*. As $G \wedge K \subseteq G \wedge S$, we get that $G \wedge K$ is not essential in *L*. Similarly, $H \wedge K$ is not essential in *L*. So $G \wedge K \wedge H$ is a path in $MG(L) \setminus S$ which is impossible. Thus S is a simple filter of L. We claim that there is a simple filter $S_i \neq S$ of *L* such that $S_i \nsubseteq G$. Otherwise, $\bigwedge_{S \neq S_i} S_i \subseteq G$ which gives $\operatorname{Soc}(L) = S \wedge \bigwedge_{S \neq S_i} S_i \subseteq S \wedge G$, a contradictin to the fact that $S \wedge G$ is not essential. Similarly, there is a simple filter $S_i \neq S$ of *L* such that $S_i \nsubseteq H$. Since $G \wedge H \subseteq L$, we have

 $S_i \subseteq \text{Soc}(L) \subseteq G \wedge H$ for each $S_i \in \mathcal{S}(L)$ which gives either $S_i \subseteq G$ or $S_i \subseteq H$. So for each $S_i \in \mathcal{S}(L)$, we have either $S_i \subseteq G$ or $S_i \subseteq H$. As MG(*L*) is a connected graph, Theorem 3.8 gives $|S(L)| \geq 3$. Let S_i and S_j be simple filters of L such that $S_i \neq S$, $S_j \neq S$, $S_i \nsubseteq G$ and $S_j \nsubseteq H$. It follows that $S_i \subseteq H$ and $S_j \subseteq G$. Thus $G \backsim S_j \backsim S_i \backsim H$ is a path in MG(*L*) which is a contradiction. So $MG(L)$ has no cut vertex. \Box

Theorem 3.12. *For a positive integer r,* MG(*L*) *is not a complete r-partite graph.*

Proof. Assume to the contrary, that $M\mathbb{G}(L)$ is a complete *r*-partite graph with parts V_1, \dots, V_r . Since two distinct simple filters are always adjacent by Lemma 3.3, so each *Vⁱ* contains at most one simple filter of L. Therefore by Pigeon hole principle we have $|\mathcal{S}(L)| \leq r$. We claim that $|\mathcal{S}(L)| = r$. Let $\mathcal{S}(L) = \{S_1, \dots, S_k\}$, where $k < r$. If $S_i \in V_i$ for $1 \leq i \leq k$, then V_{k+1} contains no simple filter. As the number of simple filters is finite, $\bigwedge_{j\neq i} S_j$ is not essential in *L* by Lemma 3.3. Since $(\bigwedge_{j\neq i}S_j) \wedge S_i = \text{Soc}(L) \leq L$ by Lemma 3.2, so $\bigwedge_{j\neq i}S_j$ and S_i are not adjacent. Thus $\bigwedge_{j\neq i}S_j\in V_i$, as $S_i\in V_i$. Assume that G is a vertex in V_{s+1} and let $S_m\subseteq G$ for some simple filter S_m of *L*. So *G* is adjacent to all elements of V_m . It follows that *G* is adjacent to $\bigwedge_{j\neq m} S_j$ which is impossible, as $Soc(L) \subseteq G \wedge (\bigwedge_{j\neq m} S_j)$ and $Soc(L) \subseteq L$. Hence $k = r$. Consider the filter $H = \bigwedge_{i=3}^{r} S_i$ (so *H* is not essential in *L* by Lemma 3.3). Since $H \wedge S_1 = \bigwedge_{i \neq 2} S_i$ is not essential in *L*, we obtain that *H* and S_1 are adjacent. Similarly, *H* and S_2 are adjacent. So $H \notin V_1$ and $H \notin V_2$. It is clear that $H \wedge S_i = H$ is not essential in *L* for each $3 \leq i \leq r$. Hence *H* is adjacent to all simple filters S_i of L ; so $H \in V_i$ for each $1 \leq i \leq r$ which is impossible, as required. \Box

Theorem 3.13. *For the Lattice L, the following conditions hold:*

- *(1)* MG(*L*) *has no a universal vertex;*
- *(2)* MG(*L*) *is not a complete graph.*

Proof. (1) Set $\mathcal{S}(L) = \{S_1, \dots, S_n\}$ by Lemma 3.1. Assume to the contrary, that $\mathbb{MG}(L)$ has a universal vertex *G*. Then there is a simple filter S_j such that $S_j \subseteq G$. By Lemma 3.3, $H = \bigwedge_{i \neq j} S_i$ is not essential in *L* (so *H* is a vertex of MG(*L*)). Since *G* is a universal vertex, *G* and *H* are adjacent in $MG(L)$; hence $H \wedge G$ is not essential in *L*. But $Soc(L) = S_j \wedge H \subseteq H \wedge G$ gives $H \wedge G \subseteq L$ which is impossible. So there is no vertex in MG(*L*) which is adjacent to every other vertex.

(2) By an argument like that (1), $MG(L)$ cannot be a complete graph. \Box

Theorem 3.14. MG(*L*) *contains a vertex with degree one if and only if* MG(*L*) = $H_1 \cup H_2$, *where* H_1, H_2 *are two disjoint complete subgraphs of* $MG(L)$ *and* $|V(H_i)| = 2$ *for some* $i = 1, 2$ *.*

Proof. Let *G* be a vertex of $M(G(L))$ with $deg(G) = 1$. By Proposition 3.5, $|S(L)| > 1$. Suppose that $|\mathcal{S}(L)| \geq 3$. By Lemma 3.3, for each simple filter S_i of L, S_i is adjacent to every other simple filter of *L*; so $deg(S_i) \geq 2$. It follows that *G* is not a simple filter of *L*. Without loss of generality, let $S_1 \subseteq G$. Then *G* and S_1 are adjacent in MG(*L*). Since $deg(G) = 1$, so the only vertex adjacent to *G* is S_1 and $S_k \nsubseteq G$ for $k \neq 1$; hence *G* and S_2 are not adjacent. Thus $S_2 \wedge G \leq L$ which implies that $S_j \subseteq \text{Soc}(L) \subseteq G \wedge S_2$ for $j \neq 1,2$; hence $S_j \subseteq G$ for $j \neq 1,2$, a contradiction. Therefore $|S(L)| = 2$. Now by theorem 3.9, $\mathbb{MG}(L) = H_1 \cup H_2$, where H_1, H_2 are two disjoint complete subgraphs of $MG(L)$. Without loss of generality, suppose $G \in H_1$. As H_1 is a complete subgraph and $\deg(G) = 1$, we get that $|\mathcal{V}(H_1)| = 2$. This completes the proof. \Box

Corollary 3.15. For the lattice L , $\mathbb{MG}(L)$ is not a star graph.

Proof. Assume to the contrary, that $MG(L)$ is a star graph. Then $MG(L)$ has a vertex with degree one. Thus $|S(L)| = 2$ by Theorem 3.14; so $MG(L)$ is not connected by Theorem 3.9 which is impossible. Therefore $MG(L)$ cannot be a star graph \Box

Theorem 3.16. *If* $MG(L)$ *is a k-regular graph, then* $|V(MG(L))| = 2k + 2$ *.*

Proof. At first we show that if *F* and *G* are vertices of $MGL(L)$ with $F \subseteq G$, then $deg(G) \le$ deg(*F*). If *K* is a vertex adjacent to *G*, then $K \wedge G$ is not essential in *L* gives $K \wedge F$ is not essenial in *L* By Lemma 2.3; hence $\deg(G) \leq \deg(F)$. Let $M\mathbb{G}(L)$ be a *k*-regular graph. Then for each simple filter S_i of L , $\deg(S_i) = k$. Let $\mathcal{S}(L) = \{S_1, \dots, S_n\}$, where $n \geq 3$. By Lemma 3.3, $H = \bigwedge_{i \neq 2} S_i$ is not essential in *L*. It is clearly that *H* is adjacent to S_1 but *H* is not adjacent to $S_1 \wedge S_2$ since $H \wedge (S_1 \wedge S_2 = \text{Soc}(L) \leq L$ by Lemma 3.1; hence $\deg(S_1 \wedge S_2) \leq \deg(S_1)$. It follows that $\deg(S_1 \wedge S_2) < k$ which is impossible. Thus $|S(L)| \leq 2$. Since $\mathbb{MG}(L)$ is not a null graph, we have $|\mathcal{S}(L)| \neq 1$. Therefore $\mathcal{S}(L) = \{S_1, S_2\}$. Thus by Theorem 3.9, There exist two disjoint complete subgraphs H_1, H_2 of $MG(L)$ such that $MG(L) = H_1 \cup H_2$. We can assume that *S*₁ ∈ *H*₁ and *S*₂ ∈ *H*₂. Since deg(*S*₁) = *k*, we have $|H_1| = k + 1$. Similarly, $|H_2| = k + 1$. Hence $|\mathcal{V}(\mathbb{MG}(L))|=2k+2.$ \Box

We say that filters *F* and *G* of *L* are strongly disjoint if for any elements $1 \neq f \in F$ and $1 \neq g \in G$, $(1 :_L f) \neq (1 :_L g)$.

Theorem 3.17. If $M\mathbb{G}(L)$ *is not an empty graph and is a tree, then the following conditions are hold:*

 (1) If F and G are elements of \mathcal{V} ($\mathbb{MG}(L)$) with $G \wedge F$ is not essential in L, then G and F *are strongly disjoint.*

 (2) *If* F and G are elements of V ($\mathbb{MG}(L)$) with $G \wedge F$ *is not essential in* L *, then one of* F *and G is a simple filter.*

Proof. (1) Since $MG(L)$ is a tree, so it is a triangle-free graph. Let *F*, *G* be elements of *V* $(\Gamma_P(L))$ such that $G \wedge F$ is not essential in *L*. At first we show that $G \cap F = \{1\}$ and if S is a subfilter of $G \wedge F$ with $S \neq \{1\}$, then $S \cap F \neq \{1\}$ or $S \cap G \neq \{1\}$. Assume that $K = F \cap G \neq \{1\}$ and let *S'* be a simple filter of *L* such that $S' \subseteq K$. Then F, S', G would form a triangle. This is impossible, so $K = \{1\}$. Let *S* be a subfilter of $F \wedge G$ with $S \neq \{1\}$ (so *S* is not essential in *L*). If $\{1\} \subsetneq H \subsetneq S$, the $H, S, F \wedge G$ would form a triangle, a contradiction. Thus *S* is a simple filter with $S \subseteq F \wedge G$ which implies that either $S \subseteq F$ or $S \subseteq G$ by Lemma 3.4. Assume to contrary, that there are elements $a \in F$ and $b \in G$ such that $(1:_{L} a) = (1:_{L} b)$. Then $\{1\} \neq T(\{a,b\}) \subseteq G \wedge F$ gives either $F \cap T(\{a,b\}) \neq \{1\}$ or $G \cap T({a,b}) \neq \{1\}$. Without loss of generality, we can assume that $F \cap T({a,b}) \neq \{1\}$. Then there exists $x \in F$ such that $a \wedge b \leq x$ which implies that $x = (x \vee b) \wedge (x \vee a) \in F$. Now *F* is a filter gives $x \vee b \in F \cap G = \{1\}$; so $x \in (1 :_L a) = (1 :_L b)$. It follows that $x = 1$ which is a contradiction. Thus *F* and *G* are strongly disjoint.

(2) Let $\{1\} \neq S_1 \subsetneq G$ and $\{1\} \neq S_2 \subsetneq F$. Since every tree is a bipartite graph, we have a cycle $S_1 \backsim G \backsim F \backsim S_2 \backsim S_1$ in a tree which is impossible. Thus one of *F* and *G* is a simple filter and so (2) holds. \Box

Theorem 3.18. *For the lattice L, the following conditions are equivalent:*

- *(1) Every vertex of* MG(*L*) *is of finite degree;*
- *(2) The graph* MG(*L*) *is finite.*

Proof. (1) \Rightarrow (2) Let every vertex of MG(*L*) is of finite degree. By Lemma 3.1, $G \cap \text{Soc}(L) \neq$ *{*1*}* for every nontrivial filter *G* of *L* and Soc(*L*) contains only finitely many subfilters. Assume that *K* is any non-trivial subfilter of $Soc(L)$ and let $\mathcal{A}_K = \{G \in \mathbb{F}(L) : G \cap Soc(L) =$ *K*}. At first we show that $V(\mathbb{MG}(L)) = \bigcup_{K \subsetneq \text{Soc}(L)} \mathcal{A}_K$. Since the inclusion $V(\mathbb{MG}(L)) \subseteq$ $\bigcup_{K \subsetneq \text{Soc}(L)} \mathcal{A}_K$ is clear, we will prove the reverse inclusion. Suppose that $H \in \bigcup_{K \subsetneq \text{Soc}(L)} \mathcal{A}_K$. Then there is a proper subfilter *G* of Soc(*L*) such that $H \cap \text{Soc}(L) = G$. Then *G* is not essential gives *H* is not essential; hence $H \in V(\mathbb{MG}(L))$ and so we have equality. Now it is enough to show that \mathcal{A}_K is a finite set for every proper subfilter K of Soc (L) . Let S_K be a simple filter of *L* such that $S_K \subseteq K$. Let $U \in \mathcal{A}_K$ (so *U* is not essential in *L*). Then $S_K = S_K \cap K = S_K \cap (U \cap \text{Soc}(L)) = S_K \cap U$ gives $S_K \subseteq U$; hence S_K is adjacent to any $U \in \mathcal{A}_K$. As S_K is of finite degree, we obtain that \mathcal{A}_K is finite. This completes the proof. \Box

4. Clique number, independence number and domination number

Let us begin this section with the following theorem:

Theorem 4.1. *For the lattice L, the following statements hold:*

(1) If $\mathbb{MG}(L)$ *is a non-empty graph, then* $\omega(\mathbb{MG}(L)) \geq |\mathcal{S}(L)|$;

(2) If $\mathbb{MG}(L)$ *is an empty graph, then* $\omega(\mathbb{MG}(L)) = 1$ *if and only if* $\mathcal{S}(L) = \{S_1, S_2\}$ *, where*

 S_1 *, and* S_2 *are the only nonessential distinct simple filters of* L *;*

(3) If $\omega(\mathbb{MG}(L))$ *is finite, then* $\omega(\mathbb{MG}(L)) \geq 2^{|S(L)|-1} - 1$.

Proof. (1) Since any two simple distinct filters of *L* are adjacent by Lemma 3.3, the subgraph of $\mathbb{MG}(L)$ with the vertex set of $\{S_i\}_{S_i \in \mathcal{S}(L)}$ is a complete subgraph of $\mathbb{MG}(L)$. Thus $\omega(\mathbb{MG}(L)) \ge$ $|\mathcal{S}(L)|$.

(2) This is a direct consequence of Theorem 3.7.

(3) Let $\mathcal{S}(L) = \{S_1, \dots, S_n\}$. Also for each $1 \leq i \leq n$, set

$$
A_i = \{S_1, \cdots S_{i-1}, S_{i+1}, \cdots, S_n\}.
$$

For each *i* $(1 \le i \le n)$, Let $P(A_i)$ be the power set of A_i and set $B_X = \bigwedge_{F_i \in X} F_i$ for each $\emptyset \neq X \in P(A_i)$. Then the subgraph of MG(*L*) with the vertex set ${B_X}_{X \in P(A_i) \setminus \{\emptyset\}}$ is a complete subgraph of MG(*L*) by Lemma 3.3. Clearly, $|\{B_X\}_{X \in P(A_i) \setminus \{\emptyset\}}| = 2^{|S(L)|-1} - 1$. $Hence \omega(\mathbb{MG}(L)) \geq 2^{|\mathcal{S}(L)|-1} - 1.$

Theorem 4.2. For the lattice L , $\alpha(\mathbb{MG}(L)) = |\mathcal{S}(L)|$.

Proof. Let $\mathcal{S}(L) = \{S_1, \dots, S_n\}$. Since $\Omega = \{\bigwedge_{j=1, i \neq j}^n S_j\}_{i=1}^n$ is an independent set in $\mathbb{MG}(L)$, we have $n \le \alpha(\mathbb{MG}(L))$ (note that if $C, D \in \Omega$, then $C \wedge D = \text{Soc}(L) \le L$, and so C is not adjacent to *D* by Lmma 3.2). Assume that $\alpha(\mathbb{MG}(L)) = t$ and let $A = \{F_1, \dots, F_t\}$ be a maximal independent set in $MG(L)$. Then for each $F \in A$, *F* is not essential in *L* (so Soc(*L*) \nsubseteq *F* by Lemma 3.2); hence *S* \nsubseteq *G* for some simple filter *S* of *L*. If $t > n$, then by Pigeon hole principal, there exist $1 \leq i, j \leq n$ and $S \in \mathcal{S}(L)$ such that $S \nsubseteq F_i$ and $S \nsubseteq F_j$; so $S \nsubseteq F_i \wedge F_j$ by Lemma 3.4. Since A is an independent set in MG(*L*), F_i and F_j are not adjacent, and so $F_i \wedge F_j \leq L$. It follows that $S \subseteq \text{Soc}(L) \subseteq F_i \wedge F_j$ which is impossible. If $\alpha(\text{MG}(L)) = \infty$, then by a similar argument as above, we have a contradiction. This proves that $\alpha(\mathbb{MG}(L)) = |\mathcal{S}(L)|$.

Theorem 4.3. *For the lattice* L *,* $\gamma(\mathbb{MG}(L)) = 2$ *.*

Proof. Note that $|S(L)| \geq 2$, as $MGL(L)$ is a non-null graph. Set $A = \{S_1, S_2\}$, where S_1, S_2 are distinct simple filters of *L*. Let *G* be a vertex of $M\mathbb{G}(L)$. If either $S_1 \subseteq G$ or $S_2 \subseteq G$,

the $S_1 \wedge G = G$ or $S_2 \wedge G = G$ is non-essential in *L*. Then *G* is adjacent to S_1 or S_2 . So we may assume that $S_1 \nsubseteq G$ and $S_2 \nsubseteq G$. Without loss of generality, we can assume that *G* is not adjacent to S_1 (so $G \wedge S_1 \leq L$). Then $S_2 \subseteq \text{Soc}(L) \subseteq S_1 \wedge G$ by Lemma 3.2. It follows that $S_2 \subseteq G$ by Lemma 3.4 which is impossible. Thus *G* is adjacent to S_1 . Similarly, *G* is adjacent to S_2 . Hence $\gamma(M\mathbb{G}(L)) \leq 2$. By Theorem 3.13, MG(*L*) has no a universal vertex; so $\gamma(\mathbb{MG}(L)) \neq 1$. Thus $\gamma(\mathbb{MG}(L)) = 2$.

REFERENCES

- [1] D. F. Anderson and P. S. Livingston, *The zero-divisor graph of a commutative rings*, J. Algebra, **217** (1999) 434-447.
- [2] I. Beck, *Coloring of commutative rings*, J. Algebra, **116** (1988) 208-226.
- [3] B. Barman and K. K. Rajkhowa, *Non-essential sum graph of an Artinian ring*, Arab J. Math. Sci., **28** No. 1 (2021) 37-43.
- [4] G. C*a*˘lug*a*˘reanu, *Lattice Concepts of Module Theory*, Kluwer Academic Publishers, 2000.
- [5] S. Ebrahimi-Atani, *On secondary modules over Dedekind domains*, Southeast Asian Bull. Math., **25** No. 1 (2001) 1-6.
- [6] S. Ebrahimi Atani and M. Chenari, *Supplemented property in the lattices*, Serdica Math. J., **46** No. 1 (2020) 73-88.
- [7] S. Ebrahimi Atani and M. Sedghi Shanbeh Bazari, *On* 2*-absorbing filters of lattices*, Discuss. Math. Gen. Algebra Appl., **36** (2016) 157-168.
- [8] S. Ebrahimi Atani and M. Sedghi Shanbeh Bazari, *Decomposable filters of lattices*, Kragujevac J. Math., **43** No. 1 (2019) 59-73.
- [9] S. Ebrahimi Atani, S. Dolati Pish Hesari and M. Khoramdel, *A graph associated to proper non-small ideals of a commutative ring*, Comment. Math. Univ. Carolin, **58** No. 1 (2017) 1-12.
- [10] S. Ebrahimi Atani, S. Dolati Pish Hesari, M. Khoramdel and M. Sedghi Shanbeh Bazari, *A simiprime filter-based identity-summand graph of a lattice*, Le Matematiche, **73** No. 2 (2018) 297-318.
- [11] S. Ebrahimi Atani, M. Khoramdel, S. Dolati Pish Hesari and M. Nikmard Rostam Alipour, *Semisimple lattices with respect to filter theory*, J. of Algebra and related topics, **10** No. 2 (2022) 131-143.
- [12] J. Matczuk and A. Majidinya, *Sum-essential graphs of modules*, J. Algebra Appl., **20** No. 11 (2021) 2150211.
- [13] D. B. West, *Introduction to Graph Theory*, Second edition, Prentice Hall, USA, 2001.

Shahabaddin Ebrahimi Atani

Department of Mathematics,

Faculty of Mathematical Sciences,

Guilan University, Guilan, Iran.

ebrahimi@guilan.ac.ir