Spectrum and energies of commuting conjugacy class graph of a finite group

Document Type : Research Paper

Authors

1 Department of Mathematics, Cachar College, Silchar-788001, Assam, India.

2 Department of Mathematical Sciences, Tezpur University, Napaam-784028, Sonitpur, As sam, India.

Abstract

In this paper we compute spectrum, Laplacian spectrum, signless Laplacian spectrum and their corresponding energies of commuting conjugacy class graph of the group $G(p, m, n) = \langle x, y : x^{p^m} = y^{p^n} = [x, y]^p = 1, [x, [x, y]] = [y, [x, y]] = 1\rangle$, where $p$ is any prime, $m \geq 1$ and $n \geq 1$. We derive some consequences along with the fact that commuting conjugacy class graph of $G(p, m, n)$ is super integral. We also compare various energies and determine whether commuting conjugacy class graph of $G(p, m, n)$ is hyperenergetic, L-hyperenergetic or Q-hyperenergetic.

Keywords


[1] P. Bhowal and R. K. Nath, Spectral aspects of commuting conjugacy class graph of finite groups, Alg. Struc. Appl., 8 No. 2 (2021) 67-118.
[2] P. Bhowal and R. K. Nath, Genus of commuting conjugacy class graph of certain finite groups, Alg. Struc. Appl., 9 No. 1 (2022) 93-108.
[3] R. Brauer and K. A. Fowler, On groups of even order, Ann. of Math., 62 No. 2 (1955) 565-583.
[4] P. Dutta, B. Bagchi and R. K. Nath, Various energies of commuting graphs of finite nonabelian groups, Khayyam J. Math., 6 No. 1 (2020) 27-45.
[5] J. Dutta and R. K. Nath, Laplacian and signless Laplacian spectrum of commuting graphs of finite groups, Khayyam J. Math., 4 No. 1 (2018) 77-87.
[6] W. N. T. Fasfous, R. K. Nath and R. Sharafdini, Various spectra and energies of commuting graphs of finite rings, Hacet. J. Math. Stat., 49 No. 6 (2020) 1915-1925.
[7] S. C. Gong, X. Li, G. H. Xu, I. Gutman and B. Furtula, Borderenergetic graphs, MATCH Commun. Math. Comput. Chem., 74 No. 2 (2015) 321-332.
[8] I. Gutman, Hyperenergetic molecular graphs, J. Serb. Chem. Soc., 64 No. 3 (1999) 199-205.
[9] I. Gutman, N. M. M. Abreu, C. T. M. Vinagre, A. S. Bonifácioa and S. Radenković, Relation between energy and Laplacian energy, MATCH Commun. Math. Comput. Chem., 59 No. 2 (2008) 343-354.
[10] F. Harary and A. J. Schwenk, Which graphs have integral spectra?, In Graphs and Combin.: Proceedings of the Capital Conference on Graph Theory and Combinatorics at the George Washington University, Springer Berlin Heidelberg, 406 (1974) 45-51.
[11] M. Herzog, M. Longobardi and M. Maj, On a commuting graph on conjugacy classes of groups, Comm. Algebra, 37 No. 10 (2009) 3369-3387.
[12] A. Mohammadian, A. Erfanian, D. G. M. Farrokhi and B. Wilkens, Triangle-free commuting conjugacy class graphs, J. Group Theory, 19 No. 6 (2016) 1049-1061.
[13] M. A. Salahshour and A. R. Ashrafi, Commuting conjugacy class graph of finite CA-groups, Khayyam J. Math., 6 No. 1 (2020) 108-118.
[14] F. Tura, L-borderenergetic graphs, MATCH Commun. Math. Comput. Chem., 77 No. 1 (2017) 37-44.
[15] H. B. Walikar, H. S. Ramane and P. R. Hampiholi, On the energy of a graph, Graph Connections, Allied Publishers, New Delhi, 120-123, 1999.