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SPECIAL REGULAR CLEAN RINGS

SAURAV JYOTI GOGOI∗ AND HELEN K. SAIKIA

Abstract. In this paper we introduce the concepts of special regular clean elements and

regular clean decomposition in a ring R. These concepts lead us to the notion of special

regular clean ring. We prove that for a special regular clean element a = e + r ∈ R and

unit u ∈ R then au is a special regular clean if u is an inner inverse of e. We establish that

an abelian ring R is a special regular clean ring if and only if the twisted power series ring

R[[x, σ]] is a special regular clean ring. We also study various characterizations of special

clean and special regular clean rings.

1. Introduction

Throughout the discussion R means ring with unity unless otherwise specified. An element
a ∈ R is called clean if a can be written as a sum of unit and idempotent. The notion of
clean elements were first introduced in late 70s by W. K. Nicholson [16] . Since then many
authors have studied various concepts related to clean elements. In 2011 N. Ashrafi and E.
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Nasibi [3] defined regular clean rings and investigated many properties of this ring. Later
in 2013 they have shown that the concept of clean ring and regular clean ring coincides for
abelian rings [4]. Moreover, the authors have characterized regular rings using the concept of
Twisted power series rings. In 2020 Khurana et al.[12] defined special clean rings and gave
a many useful results with a different direction. Meanwhile several authors have studied the
properties of clean rings and gave many results for the readers which are available in [5], [10],
[1], [17], [15], [6] etc. It is interesting to note that a special regular clean ring is not special
clean ring. This motivates us to study this structure of ring. idem(R) denotes the set of all
idempotent elements in R. U(R) denotes the group of all units or invertible elements in R.
Mn(R) denotes the ring of all n× n square matrices over R. UTn(R) denotes the n× n upper
triangular matrix ring over R. Eij denotes the n×n matrix with all 0 except the (i, j)th place
is 1. We note that aEijbEpq = abEiq if j = p and aEijbEpq = 0 otherwise.

2. Preliminaries

In this section, we present the basic results and notations needed for our work. We also
present the definition of special regular clean decomposition and special regular clean elements
in a ring.

In 1936, von Neumann defined an element a ∈ R is a regular (sometimes Von Neumann
regular) if a = ara for some r ∈ R. A ring R is called a regular if each of its elements are
regular. The set I(a) := {r ∈ R : a = ara} is called the “inner inverses of a” according to [14].
reg(R) denotes the set of all the regular elements in R. Many properties of regular elements
and regular rings has been studied in [9]. An element a ∈ R is called a regular clean (r−clean)
if a = r + e for some r ∈ reg(R) and e ∈ idem(R) according to [3]. r − clean(R) denotes the
set of all regular clean elements in R. A ring R is called a regular clean if R = r − clean(R).
Clearly regular rings and clean rings are regular clean. But converses are not true, for example
we take Z4 which is a regular clean ring but not regular. For a regular clean ring which is not
clean we consider Example 1 in [11].

Definition 2.1. Let R be a ring. An element a ∈ R is called special regular clean or in short
sp− rclean if a = e+ r for some idempotent e and regular element r such that aR ∩ eR = 0.

In working we will often refer the equation a = e+ r with aR ∩ eR = 0 as a special regular
clean decomposition.
If in the above definition r ∈ U(R) then a is regarded as special clean element in a ring R in
the sense of [12]. So, sp− cn(R) ⊆ sp− rcn(R). But special regular clean decomposition may
not be a special clean decomposition. Also a special regular clean element may not be special
clean. For we take the following examples.
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Example 2.2. Let R = M2×2(Z). Then we notice the following decomposition

0 0

1 0

 =

1 0

1 0

+

−1 0

0 0

 .

Here, −E11 =

−1 0

0 0

 ∈ reg(R). As (−E11)(−E11)(−E11) = −E11 and1 0

1 0

 ∈ idem(R). Also

0 0

1 0

R ∩

1 0

1 0

R = {

0 0

a b

 : a, b ∈ R} ∩ {

a b

a b

 : a, b ∈

R} = 0. Therefore,

0 0

1 0

 =

1 0

1 0

+

−1 0

0 0

 is a special regular clean decomposition.

But as −E11 is not unit, the decomposition is not special clean.

The above example doesn’t conclude that a special regular clean element is not special clean.
Because if we write 0 0

1 0

 =

1 0

0 1

+

−1 0

1 −1

 .

Then we get the element is a special clean. For an element which is a special regular clean but
not a special clean we take the following example.

Example 2.3. Let K be a field with char ̸= 2, A = K[[x]] and Ã be the field of fractions of
A. Then we consider R1 [[11], Example 1] defined as R1 = {r ∈ End(AK) : ∃q ∈ Ã and n ∈
Z+ with r(a) = qa ∀a ∈ (xn)}. By [[5], Proposition 10], R1 is not clean. Consider s ∈ R1 such
that s is not clean. Again by [[11], Example 1], R1 is a regular ring. So, there exist y ∈ R1

such that sys = s. Now consider R = M2×2(Z)×R1. Then we notice the decomposition

(

0 0

1 0

 , s) = (

1 0

1 0

 , 0) + (

−1 0

0 0

 , s).

Here, (−E11, s) = (

−1 0

0 0

 , s) = (−E11, s)(−E11, y)(−E11, s) ∈ reg(R) and (

1 0

1 0

 , 0) ∈

idem(R). Then it can be easily shown that (

0 0

1 0

 , s)R ∩ (

1 0

1 0

 , 0)R = 0. Therefore,

(

0 0

1 0

 , s) is a special regular clean element. But we have A × B is clean if and only if A

and B are clean. So as s is not clean, (

0 0

1 0

 , s) is not clean. Consequently, it is not special

clean.
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If we remove the condition aR∩ eR = 0 then we get the regular clean decomposition in the
sense of [3]. So sp− rclean(R) ⊆ r − clean(R). But again the other inclusion is not true. We
take the following example.

Example 2.4. We consider the ring R = Z4 which is r − clean. So, 2 is regular clean
element. We claim that 2 is not special regular clean. For this we must show that there
doesn’t exist any e ∈ idem(R) and r ∈ reg(R) with 2 = e + r such that 2R ∩ eR = 0. Here,
reg(R) = {0, 1, 3} and idem(R) = {0, 1}. Then only possible decomposition for 2 is 2 = 1+1.
But 2R ∩ 1R = 2Z4 ∩ 1Z4 = {0, 2} ̸= 0.

So, from the above examples it is convenience to study this class of ring separately.
An idempotent e ∈ R is called left semicentral if (1 − e)Re = 0 and right semicentral if
eR(1 − e) = 0. A ring R is called abelian if all its idempotents are either left semicentral or
right semicentral. In particular in an abelian ring all idempotents commute with every element
of the ring (central).

Lemma 2.5. ([7],Proposition 3.5) Let R be an abelian ring, a ∈ R be a clean element in R
and e ∈ idem(R). Then the following holds.

(1) ae is clean.
(2) If −a is clean then a+ e is also clean.

Lemma 2.6. ([3], Theorem 10) A direct product ring R =
∏

i∈I Ri is a regular clean ring if
and only if each {Ri} is a regular clean.

It is well known that the structure of the rings can be determined by idempotents through
direct sum decompositions called Peirce decomposition [2]. So, if e ∈ R is an idempotent then
we have R = eRe⊕ eR(1− e)⊕ (1− e)Re⊕ (1− e)R(1− e). An element a ∈ R is said to be
special clean if a = e + u for some idempotent e and unit u such that aR ∩ eR = 0. cn(R)

denotes the set of all clean elements in R and sp − cn(R) denotes the set of all special clean
elements in R. A non trivial ring is called a division ring if every nonzero element is unit.

R[[x]] denotes the power series ring where elements of R commute with the indeterminate
x. Now if we remove the commutativity of R and x and define the operation as xa = σ(a)x

for all a ∈ R and some σ ∈ End(R)(Endomorphism ring of R), we get a new structure of ring
called twisted power series ring. This ring is denoted by R[[x, σ]]. A map δ : R → R is said to
be derivation if δ is additive and δ(ab) = aδ(b) + δ(a)b. Now we define the operation on R[[x]]

as xa = ax+ δ(a) for all a ∈ R we get a new structure of ring called differential power series
ring. The map δ is called inner derivation on R if there exists r ∈ R such that δ(a) = ra− ar

for every a ∈ R. For further information in this area is available in [[8],[13]].
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3. Main results

In this section we present our main results.

Proposition 3.1. Let R be a special regular clean ring and e ∈ idem(R). If e is left semicentral
then the corner ring eRe is a special regular clean ring.

Proof. Let R be a special regular clean ring. We consider eαe ∈ eRe with α ∈ R. Then there
exist f ∈ idem(R) and r ∈ reg(R) with α = f + r such that αR ∩ fR = 0. As, r ∈ reg(R)

there exist b ∈ R such that rbr = r. Now multiplying α by e both left and right side we
get eαe = efe + ere. Here (ere)(b)(ere) = er(ebe)re = erb(ere) = e(rbr)e = ere ∈ reg(eRe)

and (efe)(efe) = efe(fe) = effe = efe ∈ idem(eRe). Also eαeR ∩ efeR ⊆ αeR ∩ feR ⊆
αR ∩ fR = 0. Therefore, eRe is a special regular clean ring.

Proposition 3.2. A direct product ring R = R1 ×R2 is a special regular clean if both R1 and
R2 are special regular clean.

Proof. From Lemma 2.6 we have if R1, R2 are regular clean then R = R1×R2 is a regular clean.
Now we consider any element (a, b) ∈ R. As R1 and R2 are special regular clean we have a =

e1+r1 ∈ R1 and b = e2+r2 ∈ R2 are regular clean decomposition for some e1 ∈ idem(R1), e2 ∈
idem(R2), r1 ∈ reg(R1),r2 ∈ reg(R2) such that aR1∩e1R1 = 0 and bR2∩e2R2 = 0. Then from
fact that if for any non empty sets A∩B = 0 and C ∩D = 0 =⇒ (A×C)∩ (B×D) = 0, we
have (aR1× bR2)∩ (e1R1× e2R2) = 0 =⇒ (a, b)(R1×R2)∩ (e1, e2)(R1×R2) = 0. Therefore,
(a, b) = (e1, e2) + (r1, r2) such that (a, b)R ∩ (e1, e2)R = 0. Hence R is a special regular clean
ring.

Theorem 3.3. Let e ∈ R be both left semicentral and right semicentral. Then R is special
regular clean if eRe and fRf are both special regular clean. Where f = 1−e, the complimentary
idempotent.

Proof. We can write R = eRe ⊕ eRf ⊕ fRe ⊕ fRf . Therefore, R ∼=

eRe eRf

fRe fRf

. In this

case as e ∈ idem(R) is both left and right semicentral, so eRf = fRe = 0 and hence we get

the R ∼=

eRe 0

0 fRf

. Now it is enough to prove the diagonal representation of R is special

regular clean. We consider A ∈ R such that A =

a 0

0 b

 for a ∈ eRe and b ∈ fRf . As,

eRe and fRf are special regular clean a = e1 + r1 and b = e2 + r2 are special regular clean
decomposition. We consider r1 = r1b1r1 and r2 = r2b2r2 for some b1, b2 ∈ R. Therefore,
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A =

a 0

0 b

 =

e1 + r1 0

0 e2 + r2

 =

e1 0

0 e2

 +

r1 0

0 r2

. Here

e1 0

0 e2

 ∈ idem(R)

and

r1 0

0 r2

b1 0

0 b2

r1 0

0 r2

 =

r1b1r1 0

0 r2b2r2

 =

r1 0

0 r2

 ∈ reg(R).

Also

a 0

0 b

R ∩

e1 0

0 e2

R =

aR ∩ e1R 0

0 bR ∩ e2R

 = 0. Therefore, A has a special

regular clean decomposition and consequently R is a special regular clean ring.

Proposition 3.4. Let R be a division ring. Then R is a special clean ring if and only if R is
a special regular clean ring.

Proof. (=>) It is clear by the fact that if a ∈ R has a special clean decomposition then it is
also a special regular clean decomposition.
(<=) Let x ∈ R and x = e + r such that e2 = e and r = rbr for some b ∈ R. If r = 0 then
x = e = (2e−1)+(1−e) is a special clean by [[12],Example 2.7(B)]. If r ̸= 0,we have rbr−r =

0 =⇒ (rb− 1)r = 0 = r(br − 1). As R is a division ring we get rb = 1 = br =⇒ r ∈ U(R).
So, R is a special clean ring.

Remark 3.5. Let R = M2(Z) and A =

0 0

1 0

 =

1 0

1 0

 +

−1 0

0 0

 ∈ sp − rclean(R).

Then left multiplying A by i and keeping the idempotent same we have iA =

0 0

i 0

 =1 0

1 0

 +

 −1 0

−1 + i 0

. This is again a special regular clean decomposition in the bigger

ring R′ = M2(Z[i]).

Because,

 −1 0

−1 + i 0

−1 0

0 0

 −1 0

−1 + i 0

 =

 −1 0

−1 + i 0

 ∈ reg(R′) and clearly0 0

i 0

R′ ∩

1 0

1 0

R′ = 0. So, from a special regular clean element in a ring R we can

construct another special regular clean element in some bigger ring.

The following two results explain some methods to construct special regular clean elements
in a ring from known elements of the same type.

Theorem 3.6. Let R be a ring and α = e + r ∈ sp − rclean(R). If u ∈ I(e) then αu, uα ∈
sp− rclean(R).
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Proof. Let a = e+ r such that e2 = e and rbr = r for some b ∈ R such that aR ∩ eR = 0. We
consider the following decomposition au = eu+ru. Then since u ∈ I(e), eueu = eu ∈ idem(R).
Also (ru)(u−1b)(ru) = (rbr)u = ru ∈ reg(R). Finally we see auR ∩ euR = aR ∩ eR = 0.
Therefore, au ∈ sp− rclean(R). Similar proof for ua ∈ sp− rclean(R).

Theorem 3.7. Let R be a ring and a ∈ sp − rclean(R) such that a = gu is an unit regular
factorization for some g ∈ idem(R) and u ∈ U(R). Then b = eu−1 ∈ sp− rclean(R).

Proof. Let a = e + r such that e2 = e and ryr = r for some y ∈ R such that aR ∩ eR = 0.
Replacing a = gu we get gu = e + r =⇒ g = eu−1 + ru−1 =⇒ eu−1 = g + r(−u−1) = b.
Now we see r(−u−1)(−uy)r(−u−1) = (ryr)(−u−1) = r(−u−1) ∈ reg(R). Also, bR ∩ gR =

eu−1R ∩ au−1R = eR ∩ aR = 0. Therefore, b ∈ sp− rclean(R).

Proposition 3.8. Let R be an abelian ring. Then R is special regular clean if and only if R
is special clean.

Proof. (<=) Clear.
(=>) Let R be a special regular clean ring and a ∈ R. Consider the decomposition a = e+ r

where e ∈ idem(R) and rbr = r for some b ∈ R such that aR ∩ eR = 0. Now we consider
e = rb ∈ idem(R). As, R is an abelian ring, we see (re+(1− e))(be+(1− e)) = rebe+1− e =

rbe+1− e = 1. Again (be+(1− e))(re+1− e) = bere+1− e = bre+1− e = (br)rb+1− e =

rbrb + 1 − e = 1. So u = re + (1 − e) ∈ U(R) and eu = ere = er = rbr = r. Therefore
,u = re + f = ere + f = eue + f = eu + f is unit =⇒ −(eu + f) is unit, where f = 1 − e.
Now we have a clean decomposition −r = f +(−(eu+ f)). By Lemma 2.5 r+ e′ is clean =⇒
x is clean and consequently x is special clean.

Let f(x) ∈ R[[x, σ]] be a regular element. Then there exist g(x) ∈ R[[x, σ]] such that
f(x)g(x)f(x) = f(x). Then degree of the polynomial f(x)g(x)f(x) is obviously greater
than the degree of f(x) unless g(x)f(x) = id or, f(x)g(x) = id. But it is well known that
U(R) = U(R[[x, σ]]) which implies f(x) is a unit in R[[x, σ]]. Therefore, reg(R[[x, σ]]) = U(R).
Similarly it is easy to verify that idem(R) = idem(R[[x, σ]]).

With this observation we get the following theorem.

Theorem 3.9. Let R be an abelian ring. Then the following statements are equivalent.

(1) R is a special regular clean ring.
(2) The twisted power series ring T = R[[x, σ]] of R is a special regular clean ring for every

σ ∈ End(R).
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Proof. (=>) Let R be a special regular clean and f(x) = a0 + a1x+ a2x
2 + · · · ∈ R[[x, σ]]. By

Proposition 3.8 we find that R is special clean. So, a0 = e0+u0 is a special clean decomposition
for some e0 ∈ idem(R) and u0 ∈ U(R). Now writing f(x) = e0 + (u0 + a1x + a2x

2 + ...) we
get a clean decomposition which also turns out to be regular clean as reg(T ) = U(R) and
idem(T ) = idem(R). Finally, for f(x)T ∩ e0T = 0, if f(x) = w is unit or idempotent, we
consider f(x) = 0 + w. If not then clearly the intersection of left ideal generated by f(x) and
e0 is 0. Therefore, T is special regular clean.

Corollary 3.10. Let R be an abelian ring. Then R is special regular clean if and only if the
power series ring R[[x]] is special regular clean.

Proof. If we consider σ = id ∈ End(R) in Theorem 3.9 then we get the result.

Theorem 3.11. Let R be an abelian ring and δ be an inner derivation on R. Then the
differential polynomial ring R[[x, δ]] is special regular clean if R is special regular clean.

Proof. As δ is an inner derivation, there exist r ∈ R such that δ(a) = ra− ar for every a ∈ R.
Now we see (x − r)a = xa − ra = ax + δ(a) − ra = ax + ra − ar − ra = a(x − r) for every
a ∈ R. By taking y = x− r we get y commutes with R. Hence, R[[x, δ]] ∼= R[[y]]. Therefore,
from Corollary 3.10 we get R[[y]] is a special regular clean ring.

Theorem 3.12. Let the general upper triangular matrix ring of the form R =

A M

0 B


where A and B are any ring and M be left−A right−B bimodule. Then A and B are special
regular clean if R is special regular clean.

Proof. Let R be special regular clean and T =

a m

0 b

 =

e1 0

0 e2

 +

r1 m

0 r2

 ∈ sp −

rclean(R). We need to show a = e1 + r1 ∈ A, b = e2 + r2 ∈ B are special regular clean. As,e1 0

0 e2

 ∈ idem(R) we have e1 ∈ idem(A) and e2 ∈ idem(B) and there exist a

y1 0

0 y2

 ∈

R such that

r1 m

0 r2

y1 0

0 y2

r1 m

0 r2

 =

r1 m

0 r2

 =⇒

r1y1r1 r1y1m+my2r2

0 r2y2r2

 =r1 m

0 r2

. Therefore, r1 ∈ reg(A) and r2 ∈ reg(B). Now

a m

0 b

R∩

e1 0

0 e2

R = 0 =⇒

aA ∩ e1A = 0 and bB ∩ e2B = 0. Therefore, A and B are special regular clean.
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Corollary 3.13. If the ring R of all upper(respectively lower) triangular square matrices over
a ring S is special regular clean then S is special regular clean.

Proof. The proof follows as in Theorem 3.12.

Theorem 3.14. Consider R as a module over itself. R is special regular clean ring if and
only if R = rR⊕ eR, for some r ∈ reg(R) and e ∈ idem(R).

Proof. Let R be a regular special clean ring. Then a = e + r for some r ∈ reg(R) and
e ∈ idem(R) such that aR ∩ eR = 0. Replacing a = e + r we have (e + r)R ∩ eR = 0 =⇒
(eR + rR) ∩ eR = 0. By modular law we have, rR ∩ (eR + eR) = 0 =⇒ rR ∩ eR = 0. As
a ∈ R is arbitary we have R = rR ⊕ eR for some r ∈ reg(R) and e ∈ idem(R). Similarly, we
can prove the converse part.

4. Conclusion

We have defined the concept of special regular clean ring using the definition of special
regular clean elements. We have established several characteristics of this ring. In future we
can study these rings satisfying finiteness conditions which will open up a new area of research.
Moreover, this idea can be further extended to unit regular clean elements in a ring.
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