Algebraic Structures
and
Their Applications

Algebraic Structures and Their Applications Vol．X No．X（20XX）pp XX－XX．

Research Paper

SOME RESULTS ON THE SUM－ANNIHILATING ESSENTIAL SUBMODULE GRAPH

SAEED RAJAEE＊

Abstract

Consider a commutative ring R with a non－zero identity $1 \neq 0$ ，and let M be a non－zero unitary module over R ．In this document，our goal is to present the sum－annihilating essential submodule graph $\mathbb{A}_{R}^{0}(M)$ and its subgraph $\mathbb{A} \mathbb{E}_{R}^{1}(M)$ of a module M over a com－ mutative ring R which is described in the following way：The vertex set of graph $\mathbb{A}_{R}^{0}(M)$ （resp．， $\left.\mathbb{A}_{R}^{1}(M)\right)$ is the collection of all（resp．，non－zero proper）annihilating submodules of M and two separate annihilating submodules N and K are connected anytime $N+K$ is essential in M ．We study and investigate the basic properties of graphs $\mathbb{A}_{R}^{i}(M)(i=0,1)$ and will present some related results．Additionally，we explore how the properties of graphs interact with the algebraic structures they represent．

[^0]Received： 29 December 2023，Accepted： 02 June 2024.
＊Corresponding author

1. Introduction

In the present paper, M is a non-zero unital module over a commutative ring R with nonzero identity element. In the case of a ring R, the collection of whole ideals in R is represented by $\mathbb{I}(R)$ and also $\mathbb{I}^{*}(R)=\mathbb{I}(R) \backslash\{0, R\}$ is the collection of entire non-zero proper (non-trivial) ideals in R. In addition, the collection of whole submodules of M is represented by the symbol $\mathbb{S}(M)$ and $\mathbb{S}^{*}(M)=\mathbb{S}(M) \backslash\{0, M\}$ is the collection of entire non-zero proper submodules of M. In addition, $\mathrm{J}(R)$ will represente the Jacobson radical of R, and it is the intersection of collection of maximal ideals in R and also it is the sum of all superfluous ideals in R. If R does not have superfluous ideals, then we put $\mathrm{J}(R)=0$. If N is a submodule of M, then the residual of N by M will represent by $\left(N:_{R} M\right)$. This refers to the collection of elements r in R such that when multiplied by M, the result is contained within N i.e., $r M \subseteq N$. For any subset Y of $R, \operatorname{ann}_{M}(Y)$ represents as the collection of elements m in M where m multiplied by a equals 0 for every $a \in Y$. In particular, for an element x in $R, \operatorname{ann}_{M}(x)=\{m \in M: x m=0\}$ is named an annihilator submodule of M. Also, $\operatorname{ann}_{R}(M)=\left(0:_{R} M\right)$ represents the annihilator of M. An element x in R is named a zero-divisor on M whenever there exists a non-zero element m in M such that $x m=0$, i.e., $\operatorname{ann}_{M}(x) \neq 0$. By $\mathrm{Z}_{R}(M)$ (briefly, $\mathrm{Z}(M)$), we express the collection of entire zero-divisors of R on M, i.e., $\mathrm{Z}(M)=\left\{r \in R: \operatorname{ann}_{M}(r) \neq 0\right\}$. When R is considered as an R-module, then we use $\mathrm{Z}(R)$ as a substitute for $\mathrm{Z}_{R}(R)$. A non-empty subset S of R is named multiplicatively closed subset (briefly, m.c.s.) exactly when $0 \in S$, $1 \notin S$ and $x y \in S$ for all $x, y \in S$. For instance, $S=R-\mathrm{Z}(M)$ is a m.c.s. of R. For further information, we direct the reader to [5, 13, 14, 21].

A ring R has property (A), whenever each finitely generated ideal I contained in $\mathrm{Z}(R)$ has a non-zero annihilator, i.e., $\operatorname{ann}_{R}(I) \neq 0$, see [11, 12]. In [10], the author investigated rings with property (A) and he named them McCoy. A Noetherian ring is an instance of a McCoy ring. A McCoy module is an R-module M such that for each finitely generated ideal I of R where I is contained in $\mathrm{Z}(M), \operatorname{ann}_{M}(I) \neq 0$. An R-module M is named super coprimal when for each finite subset X in $\mathrm{Z}(M), \operatorname{ann}_{M}(X) \neq 0$.

A prime submodule P of M is a proper submodule such that for $r \in R$ and $m \in M$, in the event that $r m \in P$ gives the result that either $r \in\left(P:_{R} M\right)$ or $m \in P$. The collection of all prime submodules of M is denoted by $\operatorname{Spec}(M)$. If P is a prime submodule, then $\mathfrak{p}:=\left(P:_{R} M\right)$ is a prime ideal of R and P is named the \mathfrak{p}-prime submodule of M, see 16 . Equivalently, for the ideal I of R and m in M, whenever $I m \subseteq P$, then either $I \subseteq \operatorname{ann}_{R}(M / P)$ or $m \in P$. Note that when Q is a maximal submodule of M, then $Q \in \operatorname{Spec}(M)$ and also $\mathfrak{m}=(Q: M) \in \operatorname{Max}(R)$ such that $\operatorname{Max}(R)$ is the set of all maximal ideals of R. In this case, we state that Q is an \mathfrak{m}-maximal submodule of M, see [15, p. 61]. The set of all minimal (resp., maximal) submodules of M is denoted by $\operatorname{Min}(M)$ (resp., $\operatorname{Max}(M)$). An R-module M
is named prime whenever for each non-zero submodule X of $M, \operatorname{ann}(X)=\operatorname{ann}(M)$. Also, M is a multiplication module whenever for each submodule N of M there exists an ideal I of R where $N=I M$. In addition, in this case, $N=\left(N:_{R} M\right) M$, refer to [7, 9].

Dually, M is referred to as a comultiplication module whenever for each submodule N of M, there exists an ideal I of R such that N is equal to the set of elements in M that are annihilated by I, i.e., $N=\left(0:_{M} I\right)$, see $[1]$. For instance, $M=\mathbb{Z}_{2 \infty}$ as a \mathbb{Z}-module is comultiplication because every proper submodule of M is as $\left(0:_{M} 2^{k} \mathbb{Z}\right)$ for $k=0,1, \ldots$. Obviously, M is comultiplication exactly when for every submodule N of M, we have the relation $\operatorname{ann}_{M}\left(\operatorname{ann}_{R}(N)\right)=N$. The ideal I of R where $N=\left(0:_{M} I\right)$ is unique when M is comultiplication and in addition, it has the double annihilator condition (briefly, DAC) that is, $\operatorname{ann}_{R}\left(\operatorname{ann}_{M}(I)\right)=I$ for each ideal I of R. Such modules are named strong comultiplication modules. For a positive integer n and a prime number p the \mathbb{Z}-modules $\mathbb{Z}_{p^{\infty}}$ and \mathbb{Z}_{n} are comultiplication whereas they are not strong comultiplication, refer to [2]. By [19, Theorem 1.1], when R is completely primary, then every ideal of R is the annihilator of some subset of R exactly when R has a unique minimal ideal. In simple terms, a ring R is considered a fully elemental annihilator ring if, for every ideal I of R, there exists an element x in R such that I is equal to the set of all elements that annihilate x in R, i.e., $I=\operatorname{ann}_{R}(x)$. This is true exactly when R is a direct sum of completely primary principal ideal rings.

A lot of research have been done to associate graphs with algebraic structures such as rings or modules, the reader refers to $[3,4,6,8,17,18]$. An ideal A of R is named an annihilating ideal, whenever $\operatorname{ann}_{R}(A) \neq 0$. It follows that there exists a non-zero ideal B of R such that $A B=0$. The collection of all ideals with non-zero annihilators is denoted by $\mathbb{A}(R)$.

Recently in [17], the author introduced the annihilators comaximal graph of $G^{*}(M)$. In addition, in 18], the authors studied the comaximal colon ideal graph of $C^{*}(M)$.

Motivated by [3, 4, 6, 8, 17, 18], we introduce the sum-annihilating essential submodule graph $\mathbb{A}_{R}^{0}(M)$ and its subgraph $\mathbb{A}_{R}^{1}(M)$ as follows: The vertex set of graph $\mathbb{E}_{R}^{0}(M)$ (resp., $\mathbb{A E}_{R}^{1}(M)$) is the collection of all (resp., non-zero proper) annihilating submodules of M. Two separate vertices $N=\operatorname{ann}_{M}(I)$ and $K=\operatorname{ann}_{M}(J)$ are connected whenever $N+K$ is essential in M. In particular, if we consider $M=R$ as an R-module, then the annihilating submodules of M are the same as the annihilating ideals of R. Additionally, two vertices $I=\operatorname{ann}_{R}(A)$ and $J=\operatorname{ann}_{R}(B)$ such that $A, B \in \mathbb{I}(R)$ are adjacent in $\mathbb{A E}_{R}^{0}(R)$ whenever $I+J$ is essential in R. In the case of, $M=R, \mathbb{A}_{R}^{1}(R)$ is the subgraph of \mathcal{E}_{R} generated by the collection of all non-trivial annihilating ideals of R. In particular, if $M=R$ is a comultiplication R-module, then $\mathbb{A E}_{R}^{1}(R)$ and \mathcal{E}_{R} are the same. This article aims to explore certain characteristics of $\mathbb{A E}_{R}^{i}(M)$ for $i=0,1$.

The diameter of a graph G, represented as $\operatorname{diam}(G)$, is the maximum distance between each two vertices in G. The girth of a graph G, represented as $\operatorname{gr}(G)$, is the length of the shortest cycle in G when it contains a cycle, otherwise the girth of G is considered infinite. In a graph, a clique is the largest fully connected subgraph, and the number of vertices in the largest clique of graph G, represented as $\omega(G)$, is referred to as the clique number of G.

2. The sum-annihilating essential submodule graph

In this section, we present the sum-annihilating essential graph $\mathbb{A E}_{R}^{0}(M)$ and its subgraph $\mathbb{A E}_{R}^{1}(M)$ which are simple undirected graphs, with vertices set

$$
\mathrm{V}\left(\mathbb{A}_{R}^{0}(M)\right)=\left\{N \in \mathbb{S}(M) \mid N=\operatorname{ann}_{M}(I), \text { for some } I \in \mathbb{I}(R)\right\}
$$

and

$$
\mathrm{V}\left(\mathbb{A E}_{R}^{1}(M)\right)=\left\{N \in \mathbb{S}^{*}(M) \mid N=\operatorname{ann}_{M}(I) \text {, for some } I \in \mathbb{I}^{*}(R)\right\}
$$

Two separate vertices N and K in $\mathbb{A E}_{R}^{i}(M)(i=0,1)$ are connected only when $N+K$ is essential in M.

We start by introducing the following definition.
Definition 2.1. Let us have a non-zero module M over a ring R. A submodule N of M is considered an annihilating submodule of M if there is a (non-zero proper) ideal I of R such that N equals the annihilator of M with respect to I, i.e., $N=\operatorname{ann}_{M}(I)=\left(0:_{M} I\right)$.

Clearly, $\operatorname{ann}_{M}(0)=M, \operatorname{ann}_{M}(R)=0_{M}$ are trivial annihilating submodules of M. Particularly, if R is a principal ideal domain, then for each $a \in \mathrm{Z}(M), \operatorname{ann}_{M}(a)=\operatorname{ann}_{M}(R a) \neq 0$, is an annihilating submodule of M.

Definition 2.2. Consider M as an R-module.
(i) The sum-annihilating essential submodule graph of M, represented as $\mathbb{A}_{R}^{0}(M)$ is an undirected graph with the vertex collection of entire annihilating submodules of M and two different vertices $N=\operatorname{ann}_{M}(I)$ and $K=\operatorname{ann}_{M}(J)$ are connected in $\mathbb{A E}_{R}^{0}(M)$, whenever $N+K$ is an essential submodule of M.
(ii) The strong sum-annihilating essential submodule graph of M, denoted by $\mathbb{A E}_{R}^{1}(M)$ is a simple undirected graph with the vertex set of all non-trivial annihilating submodules of M and two distinct vertices N and K are adjacent in $\mathbb{E}_{R}^{1}(M)$, whenever $N+K$ is an essential submodule of M.

Clearly, $\mathbb{A E}_{R}^{0}(M)$ is a star graph that has universal vertex $M=\operatorname{ann}_{M}(0)$, because for each annihilating submodule N of M, the sum of N and M equals M is essential in M. Moreover, $\mathbb{A E}_{R}^{0}(M)$ is not an empty graph, since $0-M$ is an edge. Also, $\mathbb{A}_{R}^{1}(M)$ is a subgraph of $\mathbb{A} \mathbb{E}_{R}^{0}(M)$ where does not take zero submodule and M to be vertices of $\mathbb{A} \mathbb{E}_{R}^{1}(M)$. If there is
no confusion regarding the ring we will write $\mathbb{A E}^{i}(M)$ instead of $\mathbb{A E}_{R}^{i}(M)$ for $i=0,1$. In particular, when we view R as an R-module, we use $\mathbb{A}^{i}(R)$ instead of $\mathbb{A}_{R}^{i}(R)$ for $i=0,1$. We present the degrees of vertex N in $\mathbb{A}^{0}(M)$ and $\mathbb{A E}^{1}(M)$, respectively by $\operatorname{deg}_{0}(N)$ and $\operatorname{deg}_{1}(N)$.

Note 2.3. Let M be a non-zero R-module.
(i) For each $a \in R, \operatorname{ann}_{M}(a)=\operatorname{ann}_{M}(R a) \neq 0$ is a vertex in $\mathbb{A E}_{R}^{1}(M)$ if and only if $a \in \mathrm{Z}(M) \backslash\{0\}$.
(ii) In general, $\mathrm{Z}(M)$ may not be an ideal of R for an R-module M. For instance, consider $M=\mathbb{Z}_{2} \times \mathbb{Z}_{3}$ as a \mathbb{Z}-module. Then one can check that $\mathbb{Z}(M)=2 \mathbb{Z} \cup 3 \mathbb{Z}$. Of course, in this case, since \mathbb{Z} is a PID, M is $M c$ Coy thus, for each finitely generated ideal $I \subseteq \mathrm{Z}(M), \operatorname{ann}_{M}(I) \neq 0$ is a vertex of $\mathbb{A E}_{R}^{0}(M)$.

Example 2.4. (i) For a simple R-module $M, \mathbb{A E}_{R}^{0}(M)$ is of the form $0-M$, and $\mathbb{A E}_{R}^{1}(M)$ is the null graph.
(i) Let us propose $M=\mathbb{Z}$ as an \mathbb{Z}-module. Then $(0: \mathbb{Z} k \mathbb{Z})=0$ for each ideal $k \mathbb{Z}$ in \mathbb{Z} with $0 \neq k \in \mathbb{N}$ and for $k=0,(0: \mathbb{Z} 0)=\mathbb{Z}$. Therefore, \mathbb{Z} has no non-trivial annihilating submodule as a \mathbb{Z}-module. Thus, $\mathbb{A}_{\mathbb{Z}}^{0}(\mathbb{Z})$ has only two vertices 0 and \mathbb{Z} and only an edge $0-\mathbb{Z}$. Also, $\mathbb{A}_{\mathbb{Z}}^{1}(\mathbb{Z})$ is a null graph.
(ii) Consider $M=\mathbb{Z}_{6}$ as an \mathbb{Z}-module. Then $\langle\overline{2}\rangle=\operatorname{ann}_{\mathbb{Z}_{6}}(3 \mathbb{Z})$, and $\langle\overline{3}\rangle=\operatorname{ann}_{\mathbb{Z}_{6}}(2 \mathbb{Z})$ are nontrivial annihilating submodules of \mathbb{Z}_{6}. Clearly, $\langle\overline{2}\rangle+\langle\overline{3}\rangle=\mathbb{Z}_{6}$ which is an essential submodule of \mathbb{Z}_{6}. Therefore, $\mathbb{A E}_{\mathbb{Z}}^{1}\left(\mathbb{Z}_{6}\right)$ is the graph with only an edge $\langle\overline{2}\rangle-\langle\overline{3}\rangle$, see Figure 1.

Figure 1. $\mathbb{A E}_{\mathbb{Z}}^{0}\left(\mathbb{Z}_{6}\right) \quad \mathbb{A} \mathbb{E}_{\mathbb{Z}}^{1}\left(\mathbb{Z}_{6}\right)$.
In general, take $M=\mathbb{Z}_{p_{1} \cdots p_{s}}$ as a \mathbb{Z}-module such that all p_{i} 's $(1 \leq i \leq s)$ are distinct prime numbers, then $\left\langle\bar{p}_{i}\right\rangle=\operatorname{ann}_{M}\left(p_{1} \cdots p_{i-1} p_{i+1} \cdots p_{s} \mathbb{Z}\right)$ is a non-trivial annihilating submodule of M for every $1 \leq i \leq s$ and $\left\langle\bar{p}_{i}\right\rangle+\left\langle\overline{p_{j}}\right\rangle=M$ for each $1 \leq i \neq j \leq s$. Hence, the subgraph of $\mathbb{A E}_{\mathbb{Z}}^{1}(M)$ generated by $\left\{\left\langle\bar{p}_{1}\right\rangle, \cdots,\left\langle\bar{p}_{s}\right\rangle\right\}$ is the maximal complete subgraph of $\mathbb{A}_{\mathbb{Z}}^{1}(M)$. In fact, $\mathbb{A}_{\mathbb{Z}}^{1}(M)$ has the maximal complete subgraph isomorphic to K_{s}. So, $\omega\left(\mathbb{A}_{\mathbb{Z}}^{0}(M)\right)=s+1$ and $\omega\left(\mathbb{A}_{\mathbb{Z}}^{1}(M)\right)=s$, because the subgraph of $\mathbb{A}_{\mathbb{Z}}^{0}(M)$ generated by $\left\{\left\langle\overline{p_{1}}\right\rangle, \cdots,\left\langle\overline{p_{s}}\right\rangle, M\right\}$ is the maximal complete subgraph. For example, we have $\omega\left(\mathbb{A}_{\mathbb{Z}}^{1}\left(\mathbb{Z}_{6}\right)\right)=2$ and $\omega\left(\mathbb{A}_{\mathbb{Z}}^{0}\left(\mathbb{Z}_{6}\right)\right)=3$.
(iii) Consider the uniserial \mathbb{Z}-module $M=\mathbb{Z}_{16}$. Then $\langle\overline{2}\rangle=\operatorname{ann}_{\mathbb{Z}_{16}}(8 \mathbb{Z}),\langle\overline{4}\rangle=\operatorname{ann}_{\mathbb{Z}_{16}}(4 \mathbb{Z})$, and $\langle\overline{8}\rangle=\operatorname{ann}_{\mathbb{Z}_{16}}(2 \mathbb{Z})$ are all non-trivial annihilating submodules of M. One can check that the graphs $\mathbb{E}_{\mathbb{Z}}^{0}\left(\mathbb{Z}_{16}\right)$ and $\mathbb{A} \mathbb{E}_{\mathbb{Z}}^{1}\left(\mathbb{Z}_{16}\right)$ are as in Figure 2.

Figure 2. $\mathbb{A} \mathbb{E}_{\mathbb{Z}}^{0}\left(\mathbb{Z}_{16}\right) \quad \mathbb{A} \mathbb{E}_{\mathbb{Z}}^{1}\left(\mathbb{Z}_{16}\right)$.

Example 2.5. (i) Take $M=\mathbb{Z}_{12}$ as a \mathbb{Z}-module. Then $\langle\overline{2}\rangle=\operatorname{ann}_{M}(6 \mathbb{Z}),\langle\overline{3}\rangle=\operatorname{ann}_{M}(4 \mathbb{Z})$, $\langle\overline{4}\rangle=\operatorname{ann}_{M}(3 \mathbb{Z})$ and $\langle\overline{6}\rangle=\operatorname{ann}_{M}(2 \mathbb{Z})$. One can check that the graphs $\mathbb{A E}_{\mathbb{Z}}^{i}\left(\mathbb{Z}_{12}\right)(i=0,1)$ are as Figure 3 .

($\overline{3}$)

Figure 3. $\mathbb{A E}_{\mathbb{Z}}^{0}\left(\mathbb{Z}_{12}\right) \quad \mathbb{A E}_{\mathbb{Z}}^{1}\left(\mathbb{Z}_{12}\right)$.
(ii) Take $M=\mathbb{Z}_{18}$ as a \mathbb{Z}-module. Then $\langle\overline{2}\rangle=\operatorname{ann}_{M}(9 \mathbb{Z}),\langle\overline{3}\rangle=\operatorname{ann}_{M}(6 \mathbb{Z}),\langle\overline{6}\rangle=\operatorname{ann}_{M}(3 \mathbb{Z})$ and $\langle\overline{9}\rangle=\operatorname{ann}_{M}(2 \mathbb{Z})$. Clearly, $\langle\overline{3}\rangle$ is the only proper essential submodule of M. Also, one can check that the graphs $\mathbb{A E}_{\mathbb{Z}}^{i}\left(\mathbb{Z}_{18}\right)(i=0,1)$ are as Figure 4 .

Proposition 2.6. Let us see $M=\mathbb{Z}_{2^{n}}$ as a \mathbb{Z}-module. Then we have $\omega\left(\mathbb{A}_{\mathbb{Z}}^{0}(M)\right)=n+1$ and $\omega\left(\mathbb{A}_{\mathbb{Z}}^{1}(M)\right)=n-1$.

Proof. Note that the uniserial \mathbb{Z}-module $M=\mathbb{Z}_{2^{n}}$ is an Artinian \mathbb{Z}-module such that $M \supset$ $\langle\overline{2}\rangle \supset\langle\overline{4}\rangle \supset \cdots \supset\left\langle\overline{2^{n-1}}\right\rangle \supset 0$ is the only chain of all its submodules. One can check that $\mathbb{A E}_{\mathbb{Z}}^{0}(M) \cong K_{n+1}$ and $\mathbb{A E}_{\mathbb{Z}}^{1}(M) \cong K_{n-1}$, as needed.

Figure 4. $\mathbb{A}_{\mathbb{Z}}^{0}\left(\mathbb{Z}_{18}\right) \quad \mathbb{E}_{\mathbb{Z}}^{1}\left(\mathbb{Z}_{18}\right)$.
Theorem 2.7. Suppose that M is a non-zero R-module. Then,
(i) An ideal I of R is a vertex of $\mathbb{A E}_{R}^{1}(M)$ whenever $I \subseteq \mathrm{Z}(M)$.
(ii) In the case of M is a MacCoy R-module, then for each finitely generated ideal I of R with $I \subseteq \mathrm{Z}(M), \operatorname{ann}_{M}(I)$ is a vertex in $\mathbb{A}_{\mathbb{E}}^{1}(M)$. In particular, in a finitely generated R-module M such that R is a Noetherian ring, $I \subseteq \mathrm{Z}(M)$ implies that $\operatorname{ann}_{M}(I)$ is a vertex in $\mathbb{A E}_{R}^{1}(M)$.

Proof. (i) If $I \nsubseteq \mathrm{Z}(M)$, then there exists a non-zero element $a \in I \cap(R-\mathrm{Z}(M))$. Consequently, if $\operatorname{ann}_{M}(a)=0$, it follows that $\operatorname{ann}_{M}(I)=0$. Therefore, $\operatorname{ann}_{M}(I)$ does not belong to the set of vertices of $\mathbb{A E}_{R}^{1}(M)$.
(ii) The first statement follows from definition. The second part is obtained by 13, Theorem 82], because when R is a Noetherian ring, then each finitely generated R-module M is a MacCoy module.

Corollary 2.8. If R is a ring with property (A), then for each finitely generated ideal $I \subseteq \mathrm{Z}(R)$, $\operatorname{ann}_{R}(I)$ is a vertex of $\mathbb{A E}^{0}(R)$.

Corollary 2.9. Let M be a super coprimal R-module. Then for every finitely generated ideal I of R with $I \subseteq \mathrm{Z}(M), \operatorname{ann}_{M}(I)$ is a vertex in $\mathbb{A}_{R}^{0}(M)$.

Proof. The evidence is evident as each R-module that is super coprimal is also a McCoy R-module.

Example 2.10. Consider $R=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Then R is a MacCoy ring and also $\mathrm{Z}(R)=$ $\{(0,0),(1,0),(0,1)\}$. Note that all proper ideals of R are as follows: $I_{1}=\{(0,0)\}, I_{2}=$ $\{(0,0),(1,0)\}$ and $I_{3}=\{(0,0),(0,1)\}$. Also, $I_{i} \subseteq \mathrm{Z}(R)$ and $\operatorname{ann}_{R}\left(I_{i}\right) \neq 0$ for $i=1,2,3$. Thus,
R is a McCoy ring. For $I_{2}=\langle(1,0)\rangle$ and $I_{3}=\langle(0,1)\rangle$, we have $\operatorname{ann}_{R}\left(I_{2}\right)=0 \times \mathbb{Z}_{2}=I_{3} \neq 0_{R}$ and $\operatorname{ann}_{R}\left(I_{3}\right)=\mathbb{Z}_{2} \times 0=I_{2} \neq 0_{R}$. Note that $I_{2}+I_{3}=\langle(1,0),(0,1)\rangle=R$ and $\operatorname{ann}\left(I_{2}+I_{3}\right)=\operatorname{ann}(R)=0$. Thus, $\operatorname{ann}\left(I_{2}+I_{3}\right)$ is not a vertex of $\mathbb{A E}^{1}(R)$. Clearly, $\operatorname{ann}\left(I_{2}\right)+\operatorname{ann}\left(I_{3}\right)=I_{3}+I_{2}=R$ is essential in R. Since $I_{2} \cap I_{3}=\{(0,0)\}=0_{R}$, hence neither I_{2} nor I_{3} is not essential ideal in R, see Figure 5 .

Figure 5. $\mathbb{A E}^{0}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right) \quad \mathbb{A E}^{1}\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)$.

Proposition 2.11. Suppose M is a non-zero semisimple R-module. Then, two different annihilating submodules N and K of M are connected in $\mathbb{A}_{R}^{i}(M)(i=0,1)$ whenever $N+K=$ M. Moreover, since M is comultiplication, then $\mathbb{A E}_{R}^{i}(M)(i=0,1)$ has no isolated vertex.

Proof. (i) The initial portion is evident, as a semisimple module does not have any proper essential submodule. For second part, since M is comultiplication, so $\mathrm{V}\left(\mathbb{A E}_{R}^{0}(M)\right)=\mathbb{S}(M)$ and $\mathrm{V}\left(\mathbb{A E}_{R}^{1}(M)\right)=\mathbb{S}^{*}(M)$. Assume, $N=\operatorname{ann}_{M}(I)$, then there exists a submodule $K=\operatorname{ann}_{M}(J)$ of M with $N \oplus K=M$ where I and J are two separate ideals of R. By the first part, N is adjacent to K in $\mathbb{A E}_{R}^{i}(M)(i=0,1)$. It implies that for every $N \in \mathrm{~V}\left(\mathbb{A E}_{R}^{i}(M)\right), \operatorname{deg}_{i}(N) \geq 1$ for $i=0,1$.

Recall that a ring where every two ideals are comparable is named a chained ring. For instance, localization of \mathbb{Z} at each prime ideal or furthermore generally every valuation domain is a chained ring.

Proposition 2.12. Let M be a comultiplication R-module, $N \in \operatorname{Max}(M)$. Then for every $m \in M \backslash N$ we have,
(i) If M is not a cyclic R-module, then $R m-N$ is an edge of $\mathbb{A E}_{R}^{1}(M)$.
(ii) If R is a chained ring, then $R m \notin \mathrm{~V}\left(\mathbb{A E}_{R}^{1}(M)\right)$.

Proof. (i) Clearly, $R m=\operatorname{ann}_{M}\left(\operatorname{ann}_{R}(R m)\right)$ and $N=\operatorname{ann}_{M}\left(\operatorname{ann}_{R}(N)\right)$ are non-trivial submodules of M. Since $R m+N=M$ is essential in M, so the proof is complete. Moreover, $\operatorname{deg}_{1}(N) \geq|\{m: m \in M \backslash N\}|$.
(ii) We emphasize that every comultiplication module M over a chained ring R is a compariable module. According to $R m \nsubseteq N$, so $N \subseteq R m$ and so $R m=N+R m=M$ is not a vertex of $\mathbb{A E}_{R}^{1}(M)$.

Theorem 2.13. Let M be a non-zero R-module and $\operatorname{ann}_{M}(I) \leq^{e} M$ for some proper ideal I of R. Then,
(i) $\operatorname{diam}\left(\mathbb{A E}_{R}^{i}(M)\right) \leq 2$ for $(i=0,1)$.
(ii) Suppose M satisfies DAC. Whenever I and J are two separate comparable ideals in R, then $\operatorname{ann}_{M}(I)$ and $\operatorname{ann}_{M}(J)$ are adjacent in $\mathbb{A E}_{R}^{i}(M)(i=0,1)$. Moreover, in the case that M is a uniserial module, then $\mathbb{A}_{R}^{i}(M)$ forms a complete graph for $i=0,1$.
(iii) For every summand I in R such as $J, \operatorname{ann}_{M}(J)$ is not a vertex of $\mathbb{A E}_{R}^{1}(M)$.

Proof. (i) Note that $\operatorname{ann}_{M}(I)$ is a universal vertex in $\mathbb{E}_{R}^{i}(M)$ for $i=0,1$, because for every vertex $\operatorname{ann}_{M}(J)$ of $\mathbb{A E}_{R}^{i}(M)(i=0,1), \operatorname{ann}_{M}(I)+\operatorname{ann}_{M}(J)$ is an essential submodule of M. In fact, we have

$$
\operatorname{deg}_{i}\left(\operatorname{ann}_{M}(I)\right)=\left|\mathrm{V}\left(\mathbb{A E}_{R}^{i}(M)\right)\right|-1 \quad(i=0,1)
$$

Now if $N=\operatorname{ann}_{M}(J)$ and $K=\operatorname{ann}_{M}(T)$ are two distinct annihilating submodules of M, then $N-\operatorname{ann}_{M}(I)-K$ is a path. Thus, $\mathbb{A E}_{R}^{i}(M)$ is a connected graph and $\operatorname{diam}\left(\mathbb{A} \mathbb{E}_{R}^{i}(M)\right) \leq 2$ for $(i=0,1)$.
(ii) Let $J \subsetneq I$, then $\operatorname{ann}_{M}(I) \subsetneq \operatorname{ann}_{M}(J)$. By assumption, $\operatorname{ann}_{M}(J) \leq^{e} M$. Clearly, $\operatorname{ann}_{M}(J) \neq 0$, so $\operatorname{ann}_{M}(J) \in \mathrm{V}\left(\mathbb{A E}_{R}^{1}(M)\right)$. Due to this $\operatorname{ann}_{M}(I)+\operatorname{ann}_{M}(J)=\operatorname{ann}_{M}(J)$, it is essential in M, so $\operatorname{ann}_{M}(I)-\operatorname{ann}_{M}(J)$ is an edge in $\mathbb{A E}_{R}^{0}(M)$. Now if $I \subsetneq J$ (especially, $J=R$) for some ideal J of R, then $\operatorname{ann}_{M}(I)+\operatorname{ann}_{M}(J)=\operatorname{ann}_{M}(I)$ is again an essential submodule of M, as needed. The second part is clear, see Example 2.4 (iii).
(iii) Assume, $R=I+J$ for some ideal J of R. Be careful that, $\operatorname{ann}_{M}(I) \cap \operatorname{ann}_{M}(J)=$ $\operatorname{ann}_{M}(I+J)=0$. By assumption, $\operatorname{ann}_{M}(J)=0$ since $\operatorname{ann}_{M}(I) \leq^{e} M$. So $\operatorname{ann}_{M}(J)$ is not a vertex of $\mathbb{A E}_{R}^{1}(M)$.

Corollary 2.14. Let M be a strong comultiplication R-module under condition $\mathrm{J}(R) \neq 0$. Then three parts of Theorem 2.13 are true.

Proof. Since $J(R) \neq 0$, so R has a non-zero superfluous submodule J. Set $N=\operatorname{ann}_{M}(J)$. Claim that N is a non-zero essential submodule of M only when J is a superfluous ideal of R. Clearly, since M is strong comultiplication and $J \neq R$, so N is a non-zero submodule in M. Propose that $N \cap L=0$ for some submodule L of M. Based on the assumption, there is an ideal X in R such that $L=\operatorname{ann}_{M}(X)$ and so $N \cap L=\operatorname{ann}_{M}(J) \cap \operatorname{ann}_{M}(X)=\operatorname{ann}_{M}(J+X)=0$. By hypothesis, $J+X=\operatorname{ann}_{R}\left(\operatorname{ann}_{M}(J+X)\right)=R$. Since J is superfluous, hence $X=R$ and
so $L=0$, as needed. The converse is similar. Hence, N is essential in M and the conditions of Theorem 2.13 satisfy.

Corollary 2.15. If M is a non-zero uniform R-module, then $\mathbb{A}_{R}^{i}(M)(i=0,1)$ are complete graphs.

Note that Corollary 2.15 is not established for comultiplication modules, refer to Example 2.4 (ii).

Corollary 2.16. Let M be a non-zero R-module. If one of the following situations holds, then $\mathbb{A}_{R}^{1}(M)$ is a null graph and $\mathbb{A}_{R}^{0}(M)$ is the complete graph $0-M$.
(i) R is a field.
(ii) M is simple.
(iii) M is a strong comultiplication R-module with $\mathrm{J}(R)=0$

Theorem 2.17. Consider M as a non-zero R-module with DAC. In addition, let there exists an ideal I of R with $\operatorname{card}(I) \geq 2$ such that $\operatorname{ann}_{M}(I) \leq^{e} M$ for some proper ideal I of R. Then $\operatorname{gr}\left(\mathbb{A}_{R}^{i}(M)\right)=3$.

Proof. Assume that $\{a, b\}$ is a subset of I. By assumption, $\operatorname{ann}_{M}(a)$ and $\operatorname{ann}_{M}(b)$ are distinct annihilating essential submodules in M. Let $T \cap\left(\operatorname{ann}_{M}(a)+\operatorname{ann}_{M}(b)\right)=0$ for some submodule T of M. Then $T \cap \operatorname{ann}_{M}(I)=0$. By assumption, $T=0$. It conclude that $\operatorname{ann}_{M}(a)-\operatorname{ann}_{M}(b)$ is an edge. Hence, $\operatorname{ann}_{M}(a)-\operatorname{ann}_{M}(b)-\operatorname{ann}_{M}(I)-\operatorname{ann}_{M}(a)$, is a triangle, as needed.

Corollary 2.18. Let M be a strong comultiplication R-module. In addition, if there are noncomparable ideals I and J in R such that $I+J$ is superfluous in R, then $\operatorname{gr}\left(\mathbb{A E}_{R}^{i}(M)\right)=3$.

Proof. First let $i=0$, then clearly $0-\operatorname{ann}_{M}(I)-M-0$ is a triangle in $\mathbb{A E}_{R}^{0}(M)$, since $\operatorname{ann}_{M}(I)$ is essential in M. In the case, $i=1$, suppose that $x \in I \backslash J$ and $y \in J \backslash I$. In virtue of Corollary 2.14, $\operatorname{ann}_{M}(x), \operatorname{ann}_{M}(y)$ and $\operatorname{ann}_{M}(I+J)$ are essential submodules of M. Then the proof results from Theorem 2.17 and Corollary 2.14, because $\{x, y\} \subseteq I+J$. \square

Lemma 2.19. If $I \in \mathbb{I}(R)$, then $\operatorname{ann}_{R}\left(M / \operatorname{ann}_{M}(I)\right)=\operatorname{ann}_{R}(I M)$.
Proof. Clearly, if I is a subset of $\operatorname{ann}_{R}(M)$, then $I M=0$ and the proof is clear. Now assume that $I \nsubseteq \operatorname{ann}_{R}(M)$ and $r \in \operatorname{ann}_{R}\left(M / \operatorname{ann}_{M}(I)\right)$. Then, $r M \subseteq \operatorname{ann}_{M}(I)$ and so $r I M=0$. Hence, $r \in \operatorname{ann}_{R}(I M)$. The converse is similar.

Theorem 2.20. If $\operatorname{ann}_{M}(I)$ is a prime submodule of M such that $I^{2} \nsubseteq \operatorname{ann}_{R}(M)$, then $\operatorname{ann}_{M}(I)$ is the collection of all elements m in M where $r m \in \operatorname{ann}_{R}(I M) M$ for some $r \in$ $R \backslash \operatorname{ann}_{R}(I M)$. Furthermore, $\operatorname{ann}_{M}(I)$ is a minimal prime submodule of M.

Proof. By assumption, $\operatorname{ann}_{M}(I)$ is a prime submodule of M, so $\mathfrak{p}=\left(\operatorname{ann}_{M}(I):_{R} M\right)=$ $\operatorname{ann}_{R}\left(M / \operatorname{ann}_{M}(I)\right)$ is a prime ideal of R. By Lemma 2.19, $\operatorname{ann}_{R}(I M)=\mathfrak{p} \in \operatorname{Spec}(R)$. Let $H:=\{m \in M: r m \in \mathfrak{p} M$ for some $r \notin \mathfrak{p}\}$ and $m \in H$. Then, there exists $s \in R \backslash \mathfrak{p}$ such that $s m \in \mathfrak{p} M=\operatorname{ann}_{R}(I M) M$. This implies that $s m=\sum_{i=1}^{k} s_{i} m_{i}$, where $s_{i} \in \mathfrak{p}$ and $m_{i} \in M$ for $1 \leq i \leq k$. Thus, $s I m=\sum_{i=1}^{k} s_{i} \operatorname{Im}_{i}=0$ and so $s m \in \operatorname{ann}_{M}(I)$. Since $s \notin \mathfrak{p}$, it follows that $m \in \operatorname{ann}_{M}(I)$. Therefore, $H \subseteq \operatorname{ann}_{M}(I)$. Conversely, let $m \in \operatorname{ann}_{M}(I)$. Then, $I m=0 \subseteq \mathfrak{p} M$. If $I \nsubseteq \mathfrak{p}$, then there exists an element r in $I \backslash \mathfrak{p}$ so that $0=r m \in \mathfrak{p} M$ and so $m \in H$. Now, if $I \subseteq \mathfrak{p}=\operatorname{ann}_{R}(I M)$, then $I^{2} M=0$ and so $I^{2} \subseteq \operatorname{ann}_{R}(M)$, a contradiction. Assume that $P \in \operatorname{Spec}(M)$ and $P \subseteq \operatorname{ann}_{M}(I)$. Let $m \in \operatorname{ann}_{M}(I)$. Then, $I m=0 \subseteq P$ which implies that $I \subseteq \operatorname{ann}_{R}(M / P)$ or $m \in P$. If $I M \subseteq P \subseteq \operatorname{ann}_{M}(I)$, then $I^{2} \subseteq \operatorname{ann}_{R}(M)$, a contradiction. It implies that, $m \in P$ and so $P=\operatorname{ann}_{M}(I)$.

Theorem 2.21. Let M be an R-module. Then,
(i) Assume that for some proper non-nilpotent ideal I of $R, \operatorname{ann}_{M}(I)$ is essential in M. When R is an Artinian ring or M is a Noetherian module, then $\mathbb{A E}_{R}^{i}(M)(i=0,1)$ contains a complete subgraph.
(ii) If $I J=0$ for some ideal J in $\mathbb{I}^{*}(R)$, then $\operatorname{ann}_{M}(I)-\operatorname{ann}_{M}(J)$ is an edge of $\mathbb{A E}_{R}^{i}(M)$.
(iii) If I is a finitely generated ideal of R and I is a subset of $\operatorname{rad}\left(\operatorname{ann}_{R}(M)\right)$, then $\mathbb{A}_{R}^{i}(M)$ $(i=0,1)$ has a universal vertex.
(iv) Let $a, b \in R$. If $a b \notin \operatorname{rad}\left(\operatorname{ann}_{R}(M)\right)$ and $\operatorname{ann}_{M}(a b)$ is a prime submodule of M, then $\operatorname{ann}_{M}(a)$ is not connected to $\operatorname{ann}_{M}(b)$ in $\mathbb{A E}_{R}^{i}(M)$.

Proof. (i) Consider the descending chain $I \supseteq I^{2} \supseteq I^{3} \supseteq \cdots$ from the ideals of R such that $I \in \mathbb{I}^{*}(R)$. According to assumption, there exists the smallest natural number $t \in \mathbb{N}$ such that $I^{t}=I^{t+k}$ for $k \geq 1$. Then $0 \subsetneq \operatorname{ann}_{M}(I) \subseteq \operatorname{ann}_{M}\left(I^{2}\right) \subseteq \cdots \subseteq \operatorname{ann}_{M}\left(I^{t}\right)$ is an ascending chain of submodules of M. By assumption, for every $1 \leq s \leq t, \operatorname{ann}_{M}\left(I^{s}\right)$ is an essential submodule of M. Thus for every $1 \leq i \neq j \leq t, \operatorname{ann}_{M}\left(I^{i}\right)-\operatorname{ann}_{M}\left(I^{j}\right)$ is an edge of $\mathbb{A} \mathbb{E}_{R}^{i}(M)$ and so $\mathbb{A E}_{R}^{i}(M)$ contains the complete subgraph K_{t}. For a Noetherian R-module M the proof is similar.
(ii) For each $I \in \mathbb{I}^{*}(R), I M+\operatorname{ann}_{M}(I)$ is essential in M. Let N be a submodule of M and $I \in \mathbb{I}^{*}(R)$. Then, $I N \subseteq I M \cap N \subseteq\left(I M+\operatorname{ann}_{M}(I)\right) \cap N$. If $\left(I M+\operatorname{ann}_{M}(I)\right) \cap N=0$, then $I N=0$ which implies that $N \subseteq \operatorname{ann}_{M}(I)$. Hence, $N \subseteq\left(I M+\operatorname{ann}_{M}(I)\right) \cap N$ and so $N=0$. Therefore, $I M+\operatorname{ann}_{M}(I)$ is essential in M. Let $I J=0$ for some ideal J of R so $I J M=0$,
thus $I M \subseteq \operatorname{ann}_{M}(J)$ and so $I M+\operatorname{ann}_{M}(I) \subseteq \operatorname{ann}_{M}(J)+\operatorname{ann}_{M}(I)$. This implies that $\operatorname{ann}_{M}(I)$ is adjacent to $\operatorname{ann}_{M}(J)$ in $\mathbb{A E}_{R}^{i}(M)(i=0,1)$, as needed.
(iii) By assumption, there exists the smallest number $t \in \mathbb{N}$, such that $I^{t} M=0$, since I is finitely generated. Thus, $I M \subseteq \operatorname{ann}_{M}\left(I^{t-1}\right)$ and so $I M+\operatorname{ann}_{M}(I) \subseteq \operatorname{ann}_{M}\left(I^{t-1}\right)$. So, $\operatorname{ann}_{M}\left(I^{t-1}\right)$ is an essential submodule of M by (ii). This implies that $\operatorname{ann}_{M}\left(I^{t-1}\right)+\operatorname{ann}_{M}(J)$ is essential in M for every $\operatorname{ann}_{M}(J) \in \mathrm{V}\left(\mathbb{A}_{R}^{i}(M)\right)(i=0,1)$, i.e., $\operatorname{ann}_{M}\left(I^{t-1}\right)$ is a universal vertex of $\mathbb{A E}_{R}^{i}(M)$, and the proof is complete.
(iv) Note that

$$
\operatorname{ann}_{M}(a)+\operatorname{ann}_{M}(b) \subseteq \operatorname{ann}_{M}(R a \cap R b) \subseteq \operatorname{ann}_{M}(R a R b)=\operatorname{ann}_{M}(a b) .
$$

By virtue of [6, Theorem 5 (iii)], $\operatorname{ann}_{M}(a b)$ is not an essential submodule of M and so $\operatorname{ann}_{M}(a)+$ $\operatorname{ann}_{M}(b)$ is not an essential submodule of M, as we stated.

Corollary 2.22. Let M be a non-zero module on a ring R with $D A C$ and $N, K \in \mathrm{~V}\left(\mathbb{A E}_{R}^{0}(M)\right)$. Then,
(i) If $\operatorname{rad}\left(\operatorname{ann}_{R}(M)\right)$ is not zero, then $\mathbb{A E}_{R}^{0}(M)$ contains a complete subgraph.
(ii) If M is comultiplication with condition $|\operatorname{Min}(M)| \geq 3$ and $\operatorname{Min}(M) \cap \operatorname{ess}(M) \neq \emptyset$, then $\operatorname{gr}\left(\mathbb{A E}^{1}(M)\right)=3$.

Proof. (i) Assume that $a \in \operatorname{rad}\left(\operatorname{ann}_{R}(M)\right)$, thus there exists a smallest natural number t, such that $a^{t} M=0$, so $0 \neq a^{i} M \subseteq \operatorname{ann}_{M}\left(a^{t-i}\right)$ for $1 \leq i \leq t-1$ and so $\operatorname{ann}_{M}\left(a^{t-i}\right) \in \mathrm{V}\left(\mathbb{A}^{0}(M)\right)$ for $1 \leq i \leq t-1$. By Theorem 2.21 (ii), $\operatorname{ann}_{M}(a)$ is an essential submodule of M. Now since $\operatorname{ann}_{M}(a) \subseteq \operatorname{ann}_{M}\left(a^{i}\right)$ for $2 \leq i \leq t-1$ so the annihilating submodules $\operatorname{ann}_{M}\left(a^{i}\right)(2 \leq i \leq t-1)$ are essential submodules of M. Thus, for every $1 \leq i \neq j \leq t-1, \operatorname{ann}_{M}\left(a^{i}\right)+\operatorname{ann}_{M}\left(a^{j}\right)$ is an essential submodule of M and so $\operatorname{ann}_{M}\left(a^{i}\right)-\operatorname{ann}_{M}\left(a^{j}\right)$ is an edge of $\mathbb{A E}^{0}(M)$. Therefore $\mathbb{A E}^{0}(M)$ contains the complete subgraph K_{t-1}.
(ii) Let $\left\{K_{1}, K_{2}, K_{3}\right\} \subseteq \operatorname{Min}(M)$. By [1], Theorem 3.2], $K_{i} \in \operatorname{Min}(M)$ if and only if there exists $\mathfrak{m}_{i} \in \operatorname{Max}(R)$ such that $K_{i}=\left(0:_{M} \mathfrak{m}_{i}\right) \neq 0$ for all $1 \leq i \leq 3$. Therefore $\operatorname{Min}(M) \subseteq \mathrm{V}\left(\mathbb{A}^{1}(M)\right)$ and since $\mathfrak{m}_{i} \cap \mathfrak{m}_{j}=0$ for $1 \leq i \neq j \leq 3$ hence $K_{i}+K_{j}=\operatorname{ann}_{M}\left(\mathfrak{m}_{i}\right)+\operatorname{ann}_{M}\left(\mathfrak{m}_{j}\right)=$ $\operatorname{ann}_{M}\left(\mathfrak{m}_{i} \cap \mathfrak{m}_{j}\right)=M$ is essential in M. Therefore $K_{1}-K_{2}-K_{3}-K_{1}$ is a 3 -cyclic in $\mathbb{A E}^{1}(M)$, as needed. Note that, if I is a non-zero ideal of R, then there is a maximal ideal \mathfrak{m} such that I is contained in \mathfrak{m}. Thus, $0 \neq \operatorname{ann}_{M}(\mathfrak{m}) \subseteq \operatorname{ann}_{M}(I)$ and so $\operatorname{ann}_{M}(I)$ is a vertex of graph $\mathbb{A E}^{1}(M)$.

3. Conclusions

In this paper, the basic properties of sum-annihilating essential submodule graph are examined, and related results presented. Additionally, the interaction between the graph-theoretic properties and the corresponding algebraic structures are investigated. In Definition 2.2 we represented the sum-annihilating essential submodule graph of $\mathbb{A E}_{\mathbb{R}}^{0}(M)$ (resp., its subgraph $\mathbb{A} \mathbb{E}_{\mathbb{R}}^{1}(M)$) with the vertex set of all (resp., non-zero proper) annihilating submodules of M and two separate vertices N and K are adjacent in $\mathbb{A}_{R}^{i}(M)(i=0,1)$, whenever $N+K$ is an essential submodule of M.

In Examples 2.4, 2.5, 2.10, we presented some examples of such graphs. In Proposition 2.6, we expressed that for the uniserial module $M=\mathbb{Z}_{2^{n}}$ as a \mathbb{Z}-module the clique numbers of $\mathbb{A E}_{\mathbb{Z}}^{0}(M)$ and $\mathbb{E}_{\mathbb{Z}}^{1}(M)$ are $n+1$ and $n-1$, respectively. In Theorem 2.7, we have provided conditions under which for an ideal I of $R, \operatorname{ann}_{M}(I)$ is a vertex of graph $\mathbb{A}_{R}^{1}(M)$. In Corollaries 2.8, 2.9, we concluded that whenever either R is a ring with property (A) or M is a super coprimal R-module, then for each finitely generated ideal I of R such that I is a subset of $Z(R), \operatorname{ann}_{M}(I)$ is a vertex in $\mathbb{A E}_{R}^{0}(M)$. In Proposition 2.11, we demonstrated that if M is a non-zero semisimple module over R, then two distinct annihilating submodules N and K of M are connected in $\mathbb{E}_{R}^{i}(M)(i=0,1)$ whenever $N+K=M$. Moreover, if M is comultiplication, then $\mathbb{A}_{R}^{i}(M)(i=0,1)$ has no isolated vertex. In Proposition 2.12, we expressed that if M is a comultiplication module over R and N as its maximal submodule, then for every $m \in M \backslash N$ whenever M is not cyclic, $R m-N$ is an edge of $\mathbb{A}_{R}^{1}(M)$. Also, if R is a chained ring, then $R m \notin \mathrm{~V}\left(\mathbb{A E}_{R}^{1}(M)\right)$. Among various results, in theorem 2.13, it was demonstrated that when M is a non-zero R-module with $\operatorname{ann}_{M}(I)$ essential in M for a certain proper ideal I in R, then $\operatorname{diam}\left(\mathbb{A}_{R}^{i}(M)\right) \leq 2(i=0,1)$. Three results of theorem 2.13 are Corollaries 2.14, 2.15 and 2.16 so that the last result states the conditions under which $\mathbb{A}_{R}^{1}(M)$ is a null graph and $\mathbb{E}_{R}^{0}(M)$ is the complete graph $0-M$. In Theorem 2.17 and Corollary 2.18 we gave some conditions on the ring R, R-module M and ideals of R such that $\operatorname{gr}\left(\mathbb{A}_{R}^{i}(M)\right)=3(i=0,1)$. In Theorem 2.20, we concluded that when $\operatorname{ann}_{M}(I)$ is a prime submodule of M in such a way that I^{2} is not included in $\operatorname{ann}_{R}(M)$, then $\operatorname{ann}_{M}(I)$ is the set of all elements m in M where $r m \in \operatorname{ann}_{R}(I M) M$ for some $r \in R \backslash \operatorname{ann}_{R}(I M)$. Additionally, in this scenario, $\operatorname{ann}_{M}(I)$ is a minimal prime submodule of M.

Finally, in Theorem 2.21 among various results, we proved that if for some proper nonnilpotent ideal I of $R, \operatorname{ann}_{M}(I)$ is an essential submodule of M, whenever either R is an Artinian ring or M is a Noetherian module, then $\mathbb{A}_{R}^{i}(M)(i=0,1)$ contains a complete subgraph. As a result of this theorem in Corollary 2.22 we concluded that if M is a non-zero module on a ring R with DAC and N, K are vertices of $\mathbb{A E}_{R}^{0}(M)$ with $\operatorname{rad}\left(\operatorname{ann}_{R}(M)\right) \neq 0$,
then $\mathbb{E}_{R}^{0}(M)$ contains a complete subgraph. Also, in this case, if M is comultiplication with $|\operatorname{Min}(M)| \geq 3$ and $\operatorname{Min}(M) \cap$ ess $(M) \neq \emptyset$, then $\operatorname{gr}\left(\mathbb{A E}^{1}(M)\right)=3$.

Acknowledgments

The author is deeply grateful to the referee for careful reading of the manuscript and helpful comments and for her/his valuable suggestions which led to some improvements in the quality of this paper.

References

[1] H. Ansari-Toroghy and F. Farshadifar, On comultiplication modules, Korean Ann. Math., (2008) 1-10.
[2] H. Ansari-Toroghy and F. Farshadifar, Strong comultiplication modules, CMU. J. Nat. Sci., 8 No. 1 (2009) 105-113.
[3] A. Alilou and J. Amjadi, The sum-annihilating essential ideal graph of a commutative ring, Commun. Comb. Optim., 1 No. 2 (2016) 117-135.
[4] J. Amjadi, The essential ideal graph of a commutative ring, Asian-Eur. J. Math., 11 No. 4 (2018) 1850058.
[5] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, 1969.
[6] S. Babaei, Sh. Payrovi and E. Sengelen Sevim, On the annihilator submodules and the annihilator essential graph, Acta Math. Vietnam., 44 (2019) 905-914.
[7] A. Barnard, Multiplication modules, J. Algebra, 71 No. 1 (1981) 174-178.
[8] M. Behboodi and Z. Rakeei, The annihilating-ideal graph of commutative rings I, J. Algebra Appl., 10 No. 4 (2011) 727-739.
[9] Z. A. El-Bast and P. F. Smith, Multiplication modules, Comm. Algebra, 16 No. 4 (1988) 755-779.
[10] C. Faith, Annihilator ideals, associated primes and Kasch-McCoy commutative rings, Comm. Algebra, 19 No. 7 (1991) 1867-1892.
[11] G. Hinkle and J. Huckaba, The generalized Kronecker function and the ring $R(X)$, J. reine angew. Math., 292 (1977) 25-36.
[12] C. Y. Hong, N. K. Kim, Y. Lee and S. J. Ryu, Rings with property (A) and their extensions, J. Algebra, 315 No. 2 (2007) 612-628.
[13] I. Kaplansky, Commutative Rings, University of Chicago Press, Chicago and London, 1974.
[14] T. Y. Lam, Lectures on Modules and Rings, Springer, 1999.
[15] C. P. Lu, Prime submodules of modules, Comment. Math. Univ. St. Pauli., 33 No. 1 (1984) 61-69.
[16] R. L. McCasland and M. E. Moore, Prime submodules, Comm. Algebra, 20 No. 6 (1992) 1803-1817.
[17] S. Rajaee, The annihilators comaximal graph, Asian-Eur. J. Math., 15 No. 8 (2022) 2250153.
[18] S. Rajaee and A. Abbasi, Some results on the comaximal colon ideal graph, J. Math. Ext., 16 No. 11 (2022) (8)1-19.
[19] E. Snapper, Completely Primary Rings. IV, Ann. of Math., 55 (1952) 46-64.
[20] A. Tuganbaev, Rings Close to Regular, Kluwer Academic, 2002.
[21] F. Wang and H. Kim, Foundations of Commutative Rings and Their Modules, Springer Singapore, 2016.

Saeed Rajaee

Department of Mathematics, Faculty of Science,
University of Payame Noor (PNU),
P.O. Box 19395-3697, Tehran, Iran.
saeed_rajaee@pnu.ac.ir

[^0]: DOI：10．22034／as．2024．21047．1697
 MSC（2010）：Primary：13C13，13C99，05C75，16D80．
 Keywords：Annihilating submodule，Essential submodule，Graphs of submodules．

