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Abstract. Consider a commutative ring R with a non-zero identity 1 ̸= 0, and let M be a

non-zero unitary module over R. In this document, our goal is to present the sum-annihilating
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R(M) and its subgraph AE1
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R(M)

(resp., AE1
R(M)) is the collection of all (resp., non-zero proper) annihilating submodules of M

and two separate annihilating submodules N and K are connected anytime N+K is essential

in M . We study and investigate the basic properties of graphs AEi
R(M) (i = 0, 1) and will

present some related results. Additionally, we explore how the properties of graphs interact

with the algebraic structures they represent.
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1. Introduction

In the present paper, M is a non-zero unital module over a commutative ring R with non-
zero identity element. In the case of a ring R, the collection of whole ideals in R is represented
by I(R) and also I∗(R) = I(R) \ {0, R} is the collection of entire non-zero proper (non-trivial)
ideals in R. In addition, the collection of whole submodules of M is represented by the symbol
S(M) and S∗(M) = S(M) \ {0,M} is the collection of entire non-zero proper submodules of
M . In addition, J(R) will represente the Jacobson radical of R, and it is the intersection of
collection of maximal ideals in R and also it is the sum of all superfluous ideals in R. If R does
not have superfluous ideals, then we put J(R) = 0. If N is a submodule of M , then the residual
of N by M will represent by (N :R M). This refers to the collection of elements r in R such
that when multiplied by M , the result is contained within N i.e., rM ⊆ N . For any subset Y

of R, annM (Y ) represents as the collection of elements m in M where m multiplied by a equals
0 for every a ∈ Y . In particular, for an element x in R, annM (x) = {m ∈ M : xm = 0} is
named an annihilator submodule of M . Also, annR(M) = (0 :R M) represents the annihilator
of M . An element x in R is named a zero-divisor on M whenever there exists a non-zero
element m in M such that xm = 0, i.e., annM (x) ̸= 0. By ZR(M) (briefly, Z(M)), we express
the collection of entire zero-divisors of R on M , i.e., Z(M) = {r ∈ R : annM (r) ̸= 0}. When
R is considered as an R-module, then we use Z(R) as a substitute for ZR(R). A non-empty
subset S of R is named multiplicatively closed subset (briefly, m.c.s.) exactly when 0 ∈ S,
1 /∈ S and xy ∈ S for all x, y ∈ S. For instance, S = R − Z(M) is a m.c.s. of R. For further
information, we direct the reader to [5, 13, 14, 21].

A ring R has property (A), whenever each finitely generated ideal I contained in Z(R) has
a non-zero annihilator, i.e., annR(I) ̸= 0, see [11, 12]. In [10], the author investigated rings
with property (A) and he named them McCoy. A Noetherian ring is an instance of a McCoy
ring. A McCoy module is an R-module M such that for each finitely generated ideal I of R
where I is contained in Z(M), annM (I) ̸= 0. An R-module M is named super coprimal when
for each finite subset X in Z(M), annM (X) ̸= 0.

A prime submodule P of M is a proper submodule such that for r ∈ R and m ∈ M , in
the event that rm ∈ P gives the result that either r ∈ (P :R M) or m ∈ P . The collection
of all prime submodules of M is denoted by Spec(M). If P is a prime submodule, then
p := (P :R M) is a prime ideal of R and P is named the p-prime submodule of M , see [16].
Equivalently, for the ideal I of R and m in M , whenever Im ⊆ P , then either I ⊆ annR(M/P )

or m ∈ P . Note that when Q is a maximal submodule of M , then Q ∈ Spec(M) and also
m = (Q : M) ∈ Max(R) such that Max(R) is the set of all maximal ideals of R. In this case,
we state that Q is an m-maximal submodule of M , see [15, p. 61]. The set of all minimal
(resp., maximal) submodules of M is denoted by Min(M) (resp., Max(M)). An R-module M



Alg. Struc. Appl. Vol. XX No. X (20XX) XX-XX. 3

is named prime whenever for each non-zero submodule X of M , ann(X) = ann(M). Also, M
is a multiplication module whenever for each submodule N of M there exists an ideal I of R
where N = IM . In addition, in this case, N = (N :R M)M , refer to [7, 9].

Dually, M is referred to as a comultiplication module whenever for each submodule N of
M , there exists an ideal I of R such that N is equal to the set of elements in M that are
annihilated by I, i.e., N = (0 :M I), see [1]. For instance, M = Z2∞ as a Z-module is
comultiplication because every proper submodule of M is as (0 :M 2kZ) for k = 0, 1, . . . .

Obviously, M is comultiplication exactly when for every submodule N of M , we have the
relation annM (annR(N)) = N . The ideal I of R where N = (0 :M I) is unique when M is
comultiplication and in addition, it has the double annihilator condition (briefly, DAC) that
is, annR(annM (I)) = I for each ideal I of R. Such modules are named strong comultiplication
modules. For a positive integer n and a prime number p the Z-modules Zp∞ and Zn are
comultiplication whereas they are not strong comultiplication, refer to [2]. By [19, Theorem
1.1], when R is completely primary, then every ideal of R is the annihilator of some subset of
R exactly when R has a unique minimal ideal. In simple terms, a ring R is considered a fully
elemental annihilator ring if, for every ideal I of R, there exists an element x in R such that
I is equal to the set of all elements that annihilate x in R, i.e., I = annR(x). This is true
exactly when R is a direct sum of completely primary principal ideal rings.

A lot of research have been done to associate graphs with algebraic structures such as rings
or modules, the reader refers to [3, 4, 6, 8, 17, 18]. An ideal A of R is named an annihilating
ideal, whenever annR(A) ̸= 0. It follows that there exists a non-zero ideal B of R such that
AB = 0. The collection of all ideals with non-zero annihilators is denoted by A(R).

Recently in [17], the author introduced the annihilators comaximal graph of G∗(M). In
addition, in [18], the authors studied the comaximal colon ideal graph of C∗(M).

Motivated by [3, 4, 6, 8, 17, 18], we introduce the sum-annihilating essential submodule
graph AE0

R(M) and its subgraph AE1
R(M) as follows: The vertex set of graph AE0

R(M) (resp.,
AE1

R(M)) is the collection of all (resp., non-zero proper) annihilating submodules of M . Two
separate vertices N = annM (I) and K = annM (J) are connected whenever N +K is essential
in M . In particular, if we consider M = R as an R-module, then the annihilating submodules
of M are the same as the annihilating ideals of R. Additionally, two vertices I = annR(A)

and J = annR(B) such that A,B ∈ I(R) are adjacent in AE0
R(R) whenever I + J is essential

in R. In the case of, M = R, AE1
R(R) is the subgraph of ER generated by the collection of all

non-trivial annihilating ideals of R. In particular, if M = R is a comultiplication R-module,
then AE1

R(R) and ER are the same. This article aims to explore certain characteristics of
AEi

R(M) for i = 0, 1.
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The diameter of a graph G, represented as diam(G), is the maximum distance between each
two vertices in G. The girth of a graph G, represented as gr(G), is the length of the shortest
cycle in G when it contains a cycle, otherwise the girth of G is considered infinite. In a graph,
a clique is the largest fully connected subgraph, and the number of vertices in the largest clique
of graph G, represented as ω(G), is referred to as the clique number of G.

2. The sum-annihilating essential submodule graph

In this section, we present the sum-annihilating essential graph AE0
R(M) and its subgraph

AE1
R(M) which are simple undirected graphs, with vertices set

V(AE0
R(M)) = {N ∈ S(M) | N = annM (I), for some I ∈ I(R)},

and
V(AE1

R(M)) = {N ∈ S∗(M) | N = annM (I), for some I ∈ I∗(R)}.

Two separate vertices N and K in AEi
R(M) (i = 0, 1) are connected only when N + K is

essential in M .
We start by introducing the following definition.

Definition 2.1. Let us have a non-zero module M over a ring R. A submodule N of M is
considered an annihilating submodule of M if there is a (non-zero proper) ideal I of R such
that N equals the annihilator of M with respect to I, i.e., N = annM (I) = (0 :M I).

Clearly, annM (0) = M , annM (R) = 0M are trivial annihilating submodules of M . Particu-
larly, if R is a principal ideal domain, then for each a ∈ Z(M), annM (a) = annM (Ra) ̸= 0, is
an annihilating submodule of M .

Definition 2.2. Consider M as an R-module.

(i) The sum-annihilating essential submodule graph of M , represented as AE0
R(M) is an

undirected graph with the vertex collection of entire annihilating submodules of M

and two different vertices N = annM (I) and K = annM (J) are connected in AE0
R(M),

whenever N +K is an essential submodule of M .
(ii) The strong sum-annihilating essential submodule graph of M , denoted by AE1

R(M) is a
simple undirected graph with the vertex set of all non-trivial annihilating submodules
of M and two distinct vertices N and K are adjacent in AE1

R(M), whenever N +K is
an essential submodule of M .

Clearly, AE0
R(M) is a star graph that has universal vertex M = annM (0), because for each

annihilating submodule N of M , the sum of N and M equals M is essential in M . Moreover,
AE0

R(M) is not an empty graph, since 0 − M is an edge. Also, AE1
R(M) is a subgraph of

AE0
R(M) where does not take zero submodule and M to be vertices of AE1

R(M). If there is
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no confusion regarding the ring we will write AEi(M) instead of AEi
R(M) for i = 0, 1. In

particular, when we view R as an R-module, we use AEi(R) instead of AEi
R(R) for i = 0, 1.

We present the degrees of vertex N in AE0(M) and AE1(M), respectively by deg0(N) and
deg1(N).

Note 2.3. Let M be a non-zero R-module.

(i) For each a ∈ R, annM (a) = annM (Ra) ̸= 0 is a vertex in AE1
R(M) if and only if

a ∈ Z(M) \ {0}.
(ii) In general, Z(M) may not be an ideal of R for an R-module M . For instance, consider

M = Z2 × Z3 as a Z-module. Then one can check that Z(M) = 2Z ∪ 3Z. Of course,
in this case, since Z is a PID, M is McCoy thus, for each finitely generated ideal
I ⊆ Z(M), annM (I) ̸= 0 is a vertex of AE0

R(M).

Example 2.4. (i) For a simple R-module M , AE0
R(M) is of the form 0−M , and AE1

R(M) is
the null graph.
(i) Let us propose M = Z as an Z-module. Then (0 :Z kZ) = 0 for each ideal kZ in Z with
0 ̸= k ∈ N and for k = 0, (0 :Z 0) = Z. Therefore, Z has no non-trivial annihilating submodule
as a Z-module. Thus, AE0

Z(Z) has only two vertices 0 and Z and only an edge 0 − Z. �Also,
AE1

Z(Z) is a null graph.
(ii) Consider M = Z6 as an Z-module. Then ⟨2̄⟩ = annZ6(3Z), and ⟨3̄⟩ = annZ6(2Z) are non-
trivial annihilating submodules of Z6. Clearly, ⟨2̄⟩+ ⟨3̄⟩ = Z6 which is an essential submodule
of Z6. Therefore, AE1

Z(Z6) is the graph with only an edge ⟨2̄⟩ − ⟨3̄⟩, see Figure 1.

Figure 1. AE0
Z(Z6) AE1

Z(Z6).

In general, take M = Zp1···ps as a Z-module such that all pi’s (1 ≤ i ≤ s) are distinct prime
numbers, then ⟨p̄i⟩ = annM (p1 · · · pi−1pi+1 · · · psZ) is a non-trivial annihilating submodule of
M for every 1 ≤ i ≤ s and ⟨p̄i⟩ + ⟨p̄j⟩ = M for each 1 ≤ i ̸= j ≤ s. Hence, the subgraph
of AE1

Z(M) generated by {⟨p̄1⟩, · · · , ⟨p̄s⟩} is the maximal complete subgraph of AE1
Z(M). In

fact, AE1
Z(M) has the maximal complete subgraph isomorphic to Ks. So, ω(AE0

Z(M)) = s+1

and ω(AE1
Z(M)) = s, because the subgraph of AE0

Z(M) generated by {⟨p̄1⟩, · · · , ⟨p̄s⟩,M} is
the maximal complete subgraph. For example, we have ω(AE1

Z(Z6)) = 2 and ω(AE0
Z(Z6)) = 3.
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(iii) Consider the uniserial Z-module M = Z16. Then ⟨2̄⟩ = annZ16(8Z), ⟨4̄⟩ = annZ16(4Z),
and ⟨8̄⟩ = annZ16(2Z) are all non-trivial annihilating submodules of M . One can check that
the graphs AE0

Z(Z16) and AE1
Z(Z16) are as in Figure 2.

Figure 2. AE0
Z(Z16) AE1

Z(Z16).

Example 2.5. (i) Take M = Z12 as a Z-module. Then ⟨2̄⟩ = annM (6Z), ⟨3̄⟩ = annM (4Z),
⟨4̄⟩ = annM (3Z) and ⟨6̄⟩ = annM (2Z). One can check that the graphs AEi

Z(Z12) (i = 0, 1) are
as Figure 3.

Figure 3. AE0
Z(Z12) AE1

Z(Z12).

(ii) Take M = Z18 as a Z-module. Then ⟨2̄⟩ = annM (9Z), ⟨3̄⟩ = annM (6Z), ⟨6̄⟩ = annM (3Z)
and ⟨9̄⟩ = annM (2Z). Clearly, ⟨3̄⟩ is the only proper essential submodule of M . Also, one can
check that the graphs AEi

Z(Z18) (i = 0, 1) are as Figure 4.

Proposition 2.6. Let us see M = Z2n as a Z-module. Then we have ω(AE0
Z(M)) = n + 1

and ω(AE1
Z(M)) = n− 1.

Proof. Note that the uniserial Z-module M = Z2n is an Artinian Z-module such that M ⊃
⟨2̄⟩ ⊃ ⟨4̄⟩ ⊃ · · · ⊃ ⟨2n−1⟩ ⊃ 0 is the only chain of all its submodules. One can check that
AE0

Z(M) ∼= Kn+1 and AE1
Z(M) ∼= Kn−1, as needed.
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Figure 4. AE0
Z(Z18) AE1

Z(Z18).

Theorem 2.7. Suppose that M is a non-zero R-module. Then,

(i) An ideal I of R is a vertex of AE1
R(M) whenever I ⊆ Z(M).

(ii) In the case of M is a MacCoy R-module, then for each finitely generated ideal I of R
with I ⊆ Z(M), annM (I) is a vertex in AE1

R(M). In particular, in a finitely generated
R-module M such that R is a Noetherian ring, I ⊆ Z(M) implies that annM (I) is a
vertex in AE1

R(M).

Proof. (i) If I ⊈ Z(M), then there exists a non-zero element a ∈ I∩(R−Z(M)). Consequently,
if annM (a) = 0, it follows that annM (I) = 0. Therefore, annM (I) does not belong to the set
of vertices of AE1

R(M).
(ii) The first statement follows from definition. The second part is obtained by [13, Theorem
82], because when R is a Noetherian ring, then each finitely generated R-module M is a
MacCoy module.

Corollary 2.8. If R is a ring with property (A), then for each finitely generated ideal I ⊆ Z(R),
annR(I) is a vertex of AE0(R).

Corollary 2.9. Let M be a super coprimal R-module. Then for every finitely generated ideal
I of R with I ⊆ Z(M), annM (I) is a vertex in AE0

R(M).

Proof. The evidence is evident as each R-module that is super coprimal is also a McCoy
R-module.

Example 2.10. Consider R = Z2 × Z2. Then R is a MacCoy ring and also Z(R) =

{(0, 0), (1, 0), (0, 1)}. Note that all proper ideals of R are as follows: I1 = {(0, 0)}, I2 =

{(0, 0), (1, 0)} and I3 = {(0, 0), (0, 1)}. Also, Ii ⊆ Z(R) and annR(Ii) ̸= 0 for i = 1, 2, 3. Thus,
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R is a McCoy ring. For I2 = ⟨(1, 0)⟩ and I3 = ⟨(0, 1)⟩, we have annR(I2) = 0× Z2 = I3 ̸= 0R

and annR(I3) = Z2 × 0 = I2 ̸= 0R. Note that I2 + I3 = ⟨(1, 0), (0, 1)⟩ = R and
ann(I2 + I3) = ann(R) = 0. Thus, ann(I2 + I3) is not a vertex of AE1(R). Clearly,
ann(I2) + ann(I3) = I3 + I2 = R is essential in R. Since I2 ∩ I3 = {(0, 0)} = 0R, hence
neither I2 nor I3 is not essential ideal in R, see Figure 5.

Figure 5. AE0(Z2 × Z2) AE1(Z2 × Z2).

Proposition 2.11. Suppose M is a non-zero semisimple R-module. Then, two different
annihilating submodules N and K of M are connected in AEi

R(M) (i = 0, 1) whenever N+K =

M . Moreover, since M is comultiplication, then AEi
R(M) (i = 0, 1) has no isolated vertex.

Proof. (i) The initial portion is evident, as a semisimple module does not have any proper
essential submodule. For second part, since M is comultiplication, so V(AE0

R(M)) = S(M) and
V(AE1

R(M)) = S∗(M). Assume, N = annM (I), then there exists a submodule K = annM (J)

of M with N ⊕K = M where I and J are two separate ideals of R. By the first part, N is
adjacent to K in AEi

R(M) (i = 0, 1). It implies that for every N ∈ V(AEi
R(M)), degi(N) ≥ 1

for i = 0, 1.

Recall that a ring where every two ideals are comparable is named a chained ring. For
instance, localization of Z at each prime ideal or furthermore generally every valuation domain
is a chained ring.

Proposition 2.12. Let M be a comultiplication R-module, N ∈ Max(M). Then for every
m ∈ M \N we have,

(i) If M is not a cyclic R-module, then Rm−N is an edge of AE1
R(M).

(ii) If R is a chained ring, then Rm /∈ V(AE1
R(M)).

Proof. (i) Clearly, Rm = annM (annR(Rm)) and N = annM (annR(N)) are non-trivial sub-
modules of M . Since Rm + N = M is essential in M , so the proof is complete. Moreover,
deg1(N) ≥ |{m : m ∈ M \N}|.
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(ii) We emphasize that every comultiplication module M over a chained ring R is a compari-
able module. According to Rm ⊈ N , so N ⊆ Rm and so Rm = N +Rm = M is not a vertex
of AE1

R(M).

Theorem 2.13. Let M be a non-zero R-module and annM (I) ≤e M for some proper ideal I
of R. Then,

(i) diam(AEi
R(M)) ≤ 2 for (i = 0, 1).

(ii) Suppose M satisfies DAC. Whenever I and J are two separate comparable ideals in R,
then annM (I) and annM (J) are adjacent in AEi

R(M) (i = 0, 1). Moreover, in the case
that M is a uniserial module, then AEi

R(M) forms a complete graph for i = 0, 1.
(iii) For every summand I in R such as J , annM (J) is not a vertex of AE1

R(M).

Proof. (i) Note that annM (I) is a universal vertex in AEi
R(M) for i = 0, 1, because for every

vertex annM (J) of AEi
R(M) (i = 0, 1), annM (I) + annM (J) is an essential submodule of M .

In fact, we have
degi(annM (I)) = |V(AEi

R(M))| − 1 (i = 0, 1).

Now if N = annM (J) and K = annM (T ) are two distinct annihilating submodules of M , then
N − annM (I) − K is a path. Thus, AEi

R(M) is a connected graph and diam(AEi
R(M)) ≤ 2

for (i = 0, 1).
(ii) Let J ⊊ I, then annM (I) ⊊ annM (J). By assumption, annM (J) ≤e M . Clearly,
annM (J) ̸= 0, so annM (J) ∈ V(AE1

R(M)). Due to this annM (I) + annM (J) = annM (J),
it is essential in M , so annM (I)− annM (J) is an edge in AE0

R(M). Now if I ⊊ J (especially,
J = R) for some ideal J of R, then annM (I) + annM (J) = annM (I) is again an essential
submodule of M , as needed. The second part is clear, see Example 2.4 (iii).
(iii) Assume, R = I + J for some ideal J of R. Be careful that, annM (I) ∩ annM (J) =

annM (I + J) = 0. By assumption, annM (J) = 0 since annM (I) ≤e M . So annM (J) is not a
vertex of AE1

R(M).

Corollary 2.14. Let M be a strong comultiplication R-module under condition J(R) ̸= 0.
Then three parts of Theorem 2.13 are true.

Proof. Since J(R) ̸= 0, so R has a non-zero superfluous submodule J . Set N = annM (J).
Claim that N is a non-zero essential submodule of M only when J is a superfluous ideal of R.
Clearly, since M is strong comultiplication and J ̸= R, so N is a non-zero submodule in M .
Propose that N∩L = 0 for some submodule L of M . Based on the assumption, there is an ideal
X in R such that L = annM (X) and so N ∩ L = annM (J) ∩ annM (X) = annM (J +X) = 0.
By hypothesis, J +X = annR(annM (J +X)) = R. Since J is superfluous, hence X = R and
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so L = 0, as needed. The converse is similar. Hence, N is essential in M and the conditions
of Theorem 2.13 satisfy.

Corollary 2.15. If M is a non-zero uniform R-module, then AEi
R(M) (i = 0, 1) are complete

graphs.

Note that Corollary 2.15 is not established for comultiplication modules, refer to Example
2.4 (ii).

Corollary 2.16. Let M be a non-zero R-module. If one of the following situations holds, then
AE1

R(M) is a null graph and AE0
R(M) is the complete graph 0−M .

(i) R is a field.
(ii) M is simple.
(iii) M is a strong comultiplication R-module with J(R) = 0

Theorem 2.17. Consider M as a non-zero R-module with DAC. In addition, let there exists
an ideal I of R with card(I) ≥ 2 such that annM (I) ≤e M for some proper ideal I of R. Then
gr(AEi

R(M)) = 3.

Proof. Assume that {a, b} is a subset of I. By assumption, annM (a) and annM (b) are distinct
annihilating essential submodules in M . Let T ∩(annM (a)+annM (b)) = 0 for some submodule
T of M . Then T ∩ annM (I) = 0. By assumption, T = 0. It conclude that annM (a)− annM (b)

is an edge. Hence, annM (a)− annM (b)− annM (I)− annM (a), is a triangle, as needed.

Corollary 2.18. Let M be a strong comultiplication R-module. In addition, if there are non-
comparable ideals I and J in R such that I + J is superfluous in R, then gr(AEi

R(M)) = 3.

Proof. First let i = 0, then clearly 0−annM (I)−M−0 is a triangle in AE0
R(M), since annM (I)

is essential in M . In the case, i = 1, suppose that x ∈ I \J and y ∈ J \I. In virtue of Corollary
2.14, annM (x), annM (y) and annM (I + J) are essential submodules of M . Then the proof
results from Theorem 2.17 and Corollary 2.14, because {x, y} ⊆ I + J .

Lemma 2.19. If I ∈ I(R), then annR(M/annM (I)) = annR(IM).

Proof. Clearly, if I is a subset of annR(M), then IM = 0 and the proof is clear. Now assume
that I ⊈ annR(M) and r ∈ annR(M/annM (I)). Then, rM ⊆ annM (I) and so rIM = 0.
Hence, r ∈ annR(IM). The converse is similar.
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Theorem 2.20. If annM (I) is a prime submodule of M such that I2 ⊈ annR(M), then
annM (I) is the collection of all elements m in M where rm ∈ annR(IM)M for some r ∈
R \ annR(IM). Furthermore, annM (I) is a minimal prime submodule of M .

Proof. By assumption, annM (I) is a prime submodule of M , so p = (annM (I) :R M) =

annR(M/annM (I)) is a prime ideal of R. By Lemma 2.19, annR(IM) = p ∈ Spec(R). Let
H := {m ∈ M : rm ∈ pM for some r /∈ p} and m ∈ H. Then, there exists s ∈ R \ p such that
sm ∈ pM = annR(IM)M . This implies that sm =

∑k
i=1 simi, where si ∈ p and mi ∈ M for

1 ≤ i ≤ k. Thus, sIm =
∑k

i=1 siImi = 0 and so sm ∈ annM (I). Since s /∈ p, it follows that
m ∈ annM (I). Therefore, H ⊆ annM (I). Conversely, let m ∈ annM (I). Then, Im = 0 ⊆ pM .
If I ⊈ p, then there exists an element r in I \ p so that 0 = rm ∈ pM and so m ∈ H. Now,
if I ⊆ p = annR(IM), then I2M = 0 and so I2 ⊆ annR(M), a contradiction. Assume that
P ∈ Spec(M) and P ⊆ annM (I). Let m ∈ annM (I). Then, Im = 0 ⊆ P which implies that
I ⊆ annR(M/P ) or m ∈ P . If IM ⊆ P ⊆ annM (I), then I2 ⊆ annR(M), a contradiction. It
implies that, m ∈ P and so P = annM (I).

Theorem 2.21. Let M be an R-module. Then,

(i) Assume that for some proper non-nilpotent ideal I of R, annM (I) is essential in M .
When R is an Artinian ring or M is a Noetherian module, then AEi

R(M) (i = 0, 1)

contains a complete subgraph.
(ii) If IJ = 0 for some ideal J in I∗(R), then annM (I)− annM (J) is an edge of AEi

R(M).
(iii) If I is a finitely generated ideal of R and I is a subset of rad(annR(M)), then AEi

R(M)

(i = 0, 1) has a universal vertex.
(iv) Let a, b ∈ R. If ab /∈ rad(annR(M)) and annM (ab) is a prime submodule of M , then

annM (a) is not connected to annM (b) in AEi
R(M).

Proof. (i) Consider the descending chain I ⊇ I2 ⊇ I3 ⊇ · · · from the ideals of R such that
I ∈ I∗(R). According to assumption, there exists the smallest natural number t ∈ N such
that It = It+k for k ≥ 1. Then 0 ⊊ annM (I) ⊆ annM (I2) ⊆ · · · ⊆ annM (It) is an ascending
chain of submodules of M . By assumption, for every 1 ≤ s ≤ t, annM (Is) is an essential
submodule of M . Thus for every 1 ≤ i ̸= j ≤ t, annM (Ii)− annM (Ij) is an edge of AEi

R(M)

and so AEi
R(M) contains the complete subgraph Kt. For a Noetherian R-module M the proof

is similar.
(ii) For each I ∈ I∗(R), IM + annM (I) is essential in M . Let N be a submodule of M and
I ∈ I∗(R). Then, IN ⊆ IM ∩N ⊆ (IM + annM (I)) ∩N . If (IM + annM (I)) ∩N = 0, then
IN = 0 which implies that N ⊆ annM (I). Hence, N ⊆ (IM + annM (I)) ∩N and so N = 0.
Therefore, IM + annM (I) is essential in M . Let IJ = 0 for some ideal J of R so IJM = 0,
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thus IM ⊆ annM (J) and so IM+annM (I) ⊆ annM (J)+annM (I). This implies that annM (I)

is adjacent to annM (J) in AEi
R(M) (i = 0, 1), as needed.

(iii) By assumption, there exists the smallest number t ∈ N, such that ItM = 0, since I

is finitely generated. Thus, IM ⊆ annM (It−1) and so IM + annM (I) ⊆ annM (It−1). So,
annM (It−1) is an essential submodule of M by (ii). This implies that annM (It−1) + annM (J)

is essential in M for every annM (J) ∈ V(AEi
R(M)) (i = 0, 1), i.e., annM (It−1) is a universal

vertex of AEi
R(M), and the proof is complete.

(iv) Note that

annM (a) + annM (b) ⊆ annM (Ra ∩Rb) ⊆ annM (RaRb) = annM (ab).

By virtue of [6, Theorem 5 (iii)], annM (ab) is not an essential submodule of M and so annM (a)+

annM (b) is not an essential submodule of M , as we stated.

Corollary 2.22. Let M be a non-zero module on a ring R with DAC and N,K ∈ V(AE0
R(M)).

Then,

(i) If rad(annR(M)) is not zero, then AE0
R(M) contains a complete subgraph.

(ii) If M is comultiplication with condition |Min(M)| ≥ 3 and Min(M)∩ ess(M) ̸= ∅, then
gr(AE1(M)) = 3.

Proof. (i) Assume that a ∈ rad(annR(M)), thus there exists a smallest natural number t, such
that atM = 0, so 0 ̸= aiM ⊆ annM (at−i) for 1 ≤ i ≤ t − 1 and so annM (at−i) ∈ V(AE0(M))

for 1 ≤ i ≤ t− 1. By Theorem 2.21 (ii), annM (a) is an essential submodule of M . Now since
annM (a) ⊆ annM (ai) for 2 ≤ i ≤ t−1 so the annihilating submodules annM (ai) (2 ≤ i ≤ t−1)

are essential submodules of M . Thus, for every 1 ≤ i ̸= j ≤ t − 1, annM (ai) + annM (aj) is
an essential submodule of M and so annM (ai) − annM (aj) is an edge of AE0(M). Therefore
AE0(M) contains the complete subgraph Kt−1.
(ii) Let {K1,K2,K3} ⊆ Min(M). By [1, Theorem 3.2], Ki ∈ Min(M) if and only if there exists
mi ∈ Max(R) such that Ki = (0 :M mi) ≠ 0 for all 1 ≤ i ≤ 3. Therefore Min(M) ⊆ V(AE1(M))

and since mi ∩ mj = 0 for 1 ≤ i ̸= j ≤ 3 hence Ki + Kj = annM (mi) + annM (mj) =

annM (mi ∩mj) = M is essential in M . Therefore K1−K2−K3−K1 is a 3-cyclic in AE1(M),
as needed. Note that, if I is a non-zero ideal of R, then there is a maximal ideal m such that
I is contained in m. Thus, 0 ̸= annM (m) ⊆ annM (I) and so annM (I) is a vertex of graph
AE1(M).
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3. Conclusions

In this paper, the basic properties of sum-annihilating essential submodule graph are exam-
ined, and related results presented. Additionally, the interaction between the graph-theoretic
properties and the corresponding algebraic structures are investigated. In Definition 2.2 we
represented the sum-annihilating essential submodule graph of AE0

R(M) (resp., its subgraph
AE1

R(M)) with the vertex set of all (resp., non-zero proper) annihilating submodules of M and
two separate vertices N and K are adjacent in AEi

R(M) (i = 0, 1), whenever N + K is an
essential submodule of M .

In Examples 2.4, 2.5, 2.10, we presented some examples of such graphs. In Proposition
2.6, we expressed that for the uniserial module M = Z2n as a Z-module the clique numbers
of AE0

Z(M) and AE1
Z(M) are n + 1 and n − 1, respectively. In Theorem 2.7, we have pro-

vided conditions under which for an ideal I of R, annM (I) is a vertex of graph AE1
R(M). In

Corollaries 2.8, 2.9, we concluded that whenever either R is a ring with property (A) or M

is a super coprimal R-module, then for each finitely generated ideal I of R such that I is a
subset of Z(R), annM (I) is a vertex in AE0

R(M). In Proposition 2.11, we demonstrated that
if M is a non-zero semisimple module over R, then two distinct annihilating submodules N

and K of M are connected in AEi
R(M) (i = 0, 1) whenever N + K = M . Moreover, if M

is comultiplication, then AEi
R(M) (i = 0, 1) has no isolated vertex. In Proposition 2.12, we

expressed that if M is a comultiplication module over R and N as its maximal submodule,
then for every m ∈ M \N whenever M is not cyclic, Rm − N is an edge of AE1

R(M). Also,
if R is a chained ring, then Rm /∈ V(AE1

R(M)). Among various results, in theorem 2.13, it
was demonstrated that when M is a non-zero R-module with annM (I) essential in M for a
certain proper ideal I in R, then diam(AEi

R(M)) ≤ 2 (i = 0, 1). Three results of theorem 2.13
are Corollaries 2.14, 2.15 and 2.16 so that the last result states the conditions under which
AE1

R(M) is a null graph and AE0
R(M) is the complete graph 0 − M . In Theorem 2.17 and

Corollary 2.18 we gave some conditions on the ring R, R-module M and ideals of R such that
gr(AEi

R(M)) = 3 (i = 0, 1). In Theorem 2.20, we concluded that when annM (I) is a prime
submodule of M in such a way that I2 is not included in annR(M), then annM (I) is the set
of all elements m in M where rm ∈ annR(IM)M for some r ∈ R \ annR(IM). Additionally,
in this scenario, annM (I) is a minimal prime submodule of M .

Finally, in Theorem 2.21 among various results, we proved that if for some proper non-
nilpotent ideal I of R, annM (I) is an essential submodule of M , whenever either R is an
Artinian ring or M is a Noetherian module, then AEi

R(M) (i = 0, 1) contains a complete
subgraph. As a result of this theorem in Corollary 2.22 we concluded that if M is a non-zero
module on a ring R with DAC and N,K are vertices of AE0

R(M) with rad(annR(M)) ̸= 0,
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then AE0
R(M) contains a complete subgraph. Also, in this case, if M is comultiplication with

|Min(M)| ≥ 3 and Min(M) ∩ ess(M) ̸= ∅, then gr(AE1(M)) = 3.
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