
Algebraic Structures and Their Applications Vol. X No. X (20XX) pp XX-XX.

Research Paper

ON COMMUTING AUTOMORPHISMS AND COMMUTATOR
POLYGROUPS

GHOLAM HOSSIEN AGHABOZORGI∗

Abstract. We introduce the notions of commuting automorphism and commutator poly-

groups. The basic question that can be arose about the set of all commuting automorphisms

is that for the assumed polygroup (P, ·), under what conditions the set of all commuting auto-

morphism A(P ) is a subgroup of Aut(P ). In this paper basically the answer to this question

is investigated for the class of polygroups.

1. Introduction

Hyperstructure theory was born in 1934 at the 8th congress of Scandinavian Mathemati-
cians, where Marty [18] introduced the hypergroup notion as a generalization of groups. Sur-
veys of the theory can be found in the books of Corsini [4], Davvaz and Leoreanu-Fotea [7]
and Davvaz [6]. Polygroups or quasi-canonical hypergroups were introduced by P. Corsini and
later, they were studied by P. Bonansinga and Ch.G. Massouros. They satisfy all the conditions
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of canonical hypergroups, except the commutativity. Later, S.D. Comer introduced this class
of hypergroups independently, using the name of polygroups. He emphasized the importance
of polygroups, by analyzing them in connections to graphs, relations, Boolean and cylindric
algebras. Another connection between polygroups and artificial intelligence was considered
and analyzed by G. Ligozat. The double cosets hypergroups are particular quasi-canonical
hypergroups and they were analyzed by K. Drbohlav, D.K. Harrison and S.D. Comer.
Bettina Eick in [12] describes a new algorithm for computing automorphism groups and check-
ing isomorphism of nilpotent finite dimensional associative algebras over a finite field. The
algorithm can also be applied to modular group algebras and thus yields a new approach for
checking the modular isomorphism problem. They report on its application to the groups of
order dividing 28 and 36. In this paper we investigate a generalization of notion commuting
automorphism for the class of polygroups which is introduced by M. Deaconescu et.al for the
class of groups [8]. Using the notion of commuting automorphism we introduce the notion of
commutator polygroups and a characterization of commutator polygroups extended by groups
has been investigated.

We recall here some basic notions of hypergroup theory.
Let H be a non-empty set and P ∗(H) be the set of all non-empty subsets of H. Let · be

a hyperoperation (or join operation) on H that · is a function from H × H into P ∗(H). If
(a, b) ∈ H ×H, its image under · in P ∗(H) is denoted by a · b. The join operation is extended
to subsets of H in a natural way that is for non-empty subsets A,B of H, A ·B =

∪
a∈A,b∈B

a · b.

The notation a · A is used for {a} · A and A · a for A · {a}. Generally, the singleton {a} is
identified with its member a. The structure (H, ·) is called a semihypergroup if a·(b·c) = (a·b)·c
for all a, b, c ∈ H, which means that

∪
u∈a·b

u · c =
∪

v∈b·c
a · v,

A semihypergroup is a hypergroup if a ·H = H · a = H for all a ∈ H. A function f : H → H ′

is called a homomorphism if f(a · b) ⊆ f(a) ◦ f(b) for all a and b in H. We say that f is a
good homomorphism if for all a and b in H, f(a · b) = f(a) ◦ f(b). If (H, ·) is a hypergroup and
ρ ⊆ H ×H is an equivalent relation, then for all non-empty subsets A,B of H we set

A
=
ρ B ⇔ aρb, for all a ∈ A, b ∈ B.

The relation ρ is called strongly regular on the left ( on the right) if xρy ⇒ a · x
=
ρ a · y (

xρy ⇒ x · a
=
ρ y · a, respectively), for all (x, y, a) ∈ H3. Moreover, ρ is called strongly regular

if it is strongly regular on the right and on the left.



Alg. Struc. Appl. Vol. XX No. X (20XX) XX-XX. 3

Theorem 1.1. (Theorem 31, [4]). If (H, ·) is a semihypergroup (hypergroup) and ρ is a strongly
regular relation on H, then the quotient H/ρ is a semigroup (group) under the operation:

ρ(x)⊗ ρ(y) = ρ(z), for all z ∈ x · y.

We denote ρ(x) by x̄ and instead of x̄⊗ ȳ we write x̄ȳ. For all n > 1, we define the relation
βn on a semihypergroup H, as follows:

aβnb⇔ ∃(x1, . . . , xn) ∈ Hn : {a, b} ⊆
n∏

i=1
xi,

and β =
n∪

i=1
βn, where β1 = {(x, x) | x ∈ H} is the diagonal relation on H. This relation was

introduced by Koskas [16] and studied mainly by Corsini [4]. Suppose that β∗ is the transitive
closure of β. The relation β∗ is a strongly regular relation [4]. Also, we have:

Theorem 1.2. (Freni, [14]). If H is hypergroup then β = β∗.

Note that, in general, for a semihypergroup may be β ̸= β∗. The relation β∗ is the least
equivalent relation on a hypergroup H, such that the quotient H/β∗ is a group. The heart ωH

of a hypergroup H is the set of all elements x of H, for which the equivalence class β∗(x) is
the identity of the group H/β∗.

Remark 1.3. If G is a group then ωG is the identity of G. Moreover β∗(x) = {x}, for all
x ∈ G.

We say that A is a complete part of H if for any nonzero natural number n and for all
a1, . . . , an of H, the following implication holds:

A ∩
n∏

i=1
ai ̸= ∅ ⇒

n∏
i=1

ai ⊆ A.

Let A be a nonempty part of H. The intersection of the parts of H which are complete and
contain A is called the complete closure of A in H, it will be denoted by C(A).

Proposition 1.4. Let H be a hypergroup and A =
n∏

i=1
ai be a subset of H. Then we have:

ωH ·A = A · ωH = a · ωH = ωH · a,

for all a ∈ A.

Proof. Let a ∈ A, we know C(a) = a, thus A ∩ C(a) ̸= ∅ and C(a) is complete, therfore
A ⊆ C(a), we have A · ωH ⊆ C(a) · ωH = a · ωH . On the other hand, Let a ∈ A, thus
a · ωH ⊆ A · ωH , therfore A · ωH = a · ωH .

A hypergroup (P, ·) is called polygroup if the following conditions hold:
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(1) P has a scalar identity e (i.e., e · x = x · e = x, for every x ∈ P );
(2) every element x of P has a unique inverse x−1 in P ;
(3) x ∈ y · z implies y ∈ x · z−1 and z ∈ y−1 · x.

A non-empty subset K of a polygroup (P, ·) is a subpolygroup of P if x, y ∈ K implies x ·y ∈ K,
and x ∈ K implies x−1 ∈ K.

Example 1.5. The set P = {e, a, b, c} under hyperoperation ∗ is a polygroup.

Table 1.

∗ e a b c

e e a b c

a a e, b a, c b

b b a, c e, b a

c c b a e

Example 1.6. (Double coset algebra) Suppose that H is a subgroup of a group G. Define a
system

G//H = ⟨{HxH|x ∈ G}, ∗,H,−I⟩,

where (HxH)−I = Hx−1H and (HxH) ∗ (HyH) = {HxhyH|h ∈ H}. The algebra of double
cosets G//H is a polygroup introduced by Dresher and Ore [11].

Example 1.7. ([9]) Suppose (G, ·) is a group and G is a set of all G conjugate classes. Both
members ci, cj from G hyperoperation ∗ as follows consider. ci ∗ cj = {ck:ck ⊆ ci · cj} In this
case, (G, ∗) is a polygroup, which was first proposed by Campaigne in [2]. In the special case,
suppose G binary group D4 as D4 = {r0 = 1, r, r2 = s, r3 = t, h, hr = d, hr2 = v, hr3 = f}.
In this case, because this group has five conjugation classes, c1 = {1}, c2 = {s}, c3 = { r, t}, c4 =
{d, f}, c5 = {h, v} the table of the group. (D4, ∗) is as follows.

Table 2.

∗ c1 c2 c3 c4 c5

c1 c1 c2 c3 c4 c5

c2 c2 c1, c2 c3 c4 c5

c3 c3 c3 c1, c2 c5 c4

c4 c4 c4 c5 c1, c2 c3

c5 c5 c5 c4 c3 c1, c2
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Proposition 1.8. ([15]) In each category of the following groups we have:
a) non-abelian p-groups G that G

Z(G) ≤ p3,

b) p-groups that have a cyclic maximal subgroup in which p is the prime odd number,
c) the category of groups that has a non-abelian minimal subgroup.

In the following, we introduce the class of (PG,n,⊙), the polygroups which can be considered
the extension of each classes groups mentioned.

Proposition 1.9. ([21]) Suppose G is a group, and n is a natural number, in which case
G ∩ {a1, a2,· · ·,an} = ∅, then PG,n = G ∪ {a1, a2,· · ·,an}. The hyperoperation ⊙ is as follows:

a) ai⊙ai = {e, ai+1,· · ·,an} and an⊙an = {e}, for every 1≤i≤n−1. Also ai⊙aj = aj⊙ai = ai

for every 1≤i < j≤n,
b) e⊙ x = x⊙ e = x, for every x ∈ PG,n,
c) ai ⊙ x = x⊙ ai = x, for every 1≤i≤n and x ∈ PG,n − {e, a1, a2,· · ·,an},
d) x⊙ y = xy, for every x, y ∈ G that x−1 ̸= y,
e) x⊙ x−1 = {e, a1, a2, · · · , an}, for every x ∈ PG,n − {e, a1, a2, · · · an}.

Then the hyperstructure (PG,n,⊙) is a polygroup which is named a polygroup extended of group
G.

Example 1.10. Suppose G is a binary group D4. Considering the assumptions of Example
2.3 the table of the polygroup extended PD4,1 as follows:

Table 3.

⊙ 1 r s t   h d v f a1

1 1 r s t h d v f a1

r r s t 1, a1 f h d v r

s s t 1, a1 r v f h d s

t t 1, a1 r s d v f h t

h h d v f 1, a1 r s t h

d d v f h t 1, a1 r s d

v v f h d s t 1, a1 r v

f f h d v r s t 1, a1 f

a1 a1 r s t h d v f 1
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2. Commuting automorphism and commutator polygroups

In this section, we investigate a generalization of notion commuting automorphism for the
class of polygroups and we introduce the notion of commutator polygroups and also a charac-
terization of commutator polygroups extended by groups has been investigated.

Definition 2.1. Suppose (P, ·) is a polygroup and α corresponds one to one from P to P .
α is called an automorphism whenever in the condition α(xy) = α(x)α(y) holds true. We
display all automorphisms of (P, ·) with the symbol Aut(P ) and the automorphism α is called
a commuting automorphism whenever the following condition holds:

∀x ∈ P, xα(x)∩α(x)x ̸= ∅.

We will display the set of all commuting automorphisms with the symbol A(P ). It is clear
that the set A(P ) is closed relative to inverse. In other words, α ∈ A(P ) if and only if
α−1 ∈ A(P ).

Example 2.2. Suppose (P, ∗) is a four-member polygroup of Example 1.5. In this case
Aut(P ) = {iP }. Because if α is an automorphism then we have: α(e) = x results in α(e ∗ e) =
α(e) ∗ α(e) then x = e or c. Also α(c) = y results that x = α(c ∗ c) = α(c) ∗ α(c). Therefore
y = c, x = e. Similarly, α(a) = a and α(b) = b. In this example we have Aut(P ) = A(P ) =

{iP }.

The basic question that can be arose about the set of all commuting automorphisms is that
for the assumed polygroup (P, ·), under what conditions A(P ) is a subgroup of Aut(P ). The
answer to this question has been considered by researchers for the class of groups, which can
be referred to the references [8, 13, 10, 17, 19]. In the following we investigate this question
for the class of polygroups.

Definition 2.3. ([1]) Suppose (P, ·) is a polygroup. For the pair (x, y) ∈ P 2, the left and right
commutator are defined as follows:

a) [x, y]l = {h : xy∩hyx ̸= ∅},
b) [x, y]r = {h : xy∩yxh ̸= ∅},
c) [x, y] = [x, y]r ∪ [x, y]l.

Proposition 2.4. Suppose (P, ·) is a polygroup. In this case the automorphism α is a com-
muting automorphism if and only if for every x ∈ P we have:

e ∈ [x, α(x)].

Proof. The proof is straightforward.
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Proposition 2.5. If (P, ·) is a polygroup then for every x, y ∈ P and for every commuting
automorphism α we have

a) [x, α(x)]l ⊆ ωP ,
b) [x, α(x)]r ⊆ ωP ,
c) [x, α(y)]l · ωP = [α(x), y]l · ωP ,
d) [x, α(y)]r · ωP = [α(x), y]r · ωP .

Proof. Suppose (P, ·) is a polygroup and x ∈ P and α is a commuting automorphism. Since
ωP is a subpolygroup, we conclude from Proposition 1.4 and Proposition 2.4 [x, α(x)]r · ωP =

e·ωP = ωP and as a result [x, α(x)]r ⊆ ωP . In a similar way [x, α(x)]l ⊆ ωP . Now suppose that
x, y ∈ P and α be a commuting automorphism. In this case we have xyα(xy)∩α(xy)xy ̸= ∅.
According to Proposition 1.4, we conclude that xyα(xy) · ωP = α(xy)xy · ωP . The following
results are also obtained:

xyα(x)α(y) · ωP = α(x)α(y)xy · ωP .

Because H
β∗ is a group we have:

x y α(x) α(y) = α(x) α(y) x y.

As a result, the following equation is obtained.

y α(x) α(y) y−1 = x−1α(x) α(y) x.

But because α(y) y−1 = y−1 α(y) and α(x) x−1 = x−1 α(x) we have

y α(x) y−1 α(y) = α(x) x−1 α(y) x,

α(x)
−1
y α(x) y−1 = x−1 α(y) x α(y)

−1
.

Therefore
[x, α(y)]l = [α(x), y]l , [x, α(y)]r = [α(x), y]r.

And we have [x, α(y)]l · ωP = [α(x), y]l · ωP , [x, α(y)]r · ωP = [α(x), y]r · ωP .

Proposition 2.6. If (P, ·) is a polygroup and α, ∂ ∈ Aut(P ), then we have α∂−1 ∈ A(P ) if
and only if e ∈ [ ∂(x), α(x)] ⊆ ωP , for every x of P .

Proof. Suppose α, ∂ ∈ Aut(P ) such that α∂−1 ∈ A(P ) and x ∈ P . In this case, for every y of
P we have e ∈ [y, α∂−1(y)]r ∩ [y, α∂−1(y)]l. Now assume y = ∂(x). We get e ∈ [∂(x), α(x)].
So e ∈ [∂(x), α(x)] ⊆ ωP . Conversely, e ∈ [∂(x), α(x)] ⊆ ωP . for every x of P . By putting
∂−1(x) instead of x, we conclude that

e ∈ [x, α∂−1(x)].
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So we have α∂−1 ∈ A(P ).

Symbolization. Suppose (P, ·) is a polygroup. In this case, for every α ∈ Aut(P ) we define
a map α : P

β∗ −→ P
β∗ with rule α(x) = α(x). Prove that α is an automorphism for the group

P
β∗ . In addition, we set for every B subset of Aut(P ):

B = {α:α ∈ A(P )}.

Theorem 2.7. α is a commuting automorphism if and only if α is also a commuting auto-
morphism.

Proof. (=⇒) Suppose (P, ·) is a polygroup, α ∈ A(P ) and x, y ∈ P
β∗ . If x = y

then (h1, h2 , · · ·, hn) in Pn exists so that {x, y} ⊆ h1h2· · ·hn therefore {α(x), α(y)} ⊆
α(h1)α(h2)· · ·α(hn) and so on α(x) = α(y) and thus α(x) = α(y). In addition for z ∈ xy we
have:

α(x y) = α(z) = α(z) = α(xy) = α(x) α(y) = α(x)α(y).

So α is an automorphism for the group P
β∗ . Moreover, we have:

∀x ∈ P, xα(x)∩α(x)x ̸= ∅.

Then for every x ∈ P
β∗ , x α(x) = α(x)x. Thus α ∈ A( P

β∗ ).
(⇐=) Let α ∈ A( P

β∗ ) and for every x̄ ∈ P
β∗ , x α(x) = α(x)x. Then

∀x ∈ P, xα(x)∩α(x)x ̸= ∅.

Definition 2.8. Let’s say the polygroup (P, ·) applies to the cover condition whenever for
every φ of A( P

β∗ ) and any x of P
β∗ element α exists in A(P ) such that φ(x) = α(x).

Theorem 2.9. Suppose the polygroup (P, ·) applies in the cover condition. In this case, if
A(P ) is a subgroup of Aut(P ) then A( P

β∗ ) is a subgroup of Aut( P
β∗ ).

Proof. Suppose φ,ψ ∈ A( P
β∗ ). Because the inverse of each member of A( P

β∗ ) is in itself. It
is enough to prove that φψ ∈ A( P

β∗ ). If x ∈ P
β∗ then elements α and µ are in A(P ) so that

α(ψ(x)) = φ(ψ(x)), µ(x) = ψ(x). Since A(P ) is a subgroup of Aut(P ), we conclude that
A(P ) also is subgroup of Aut( P

β∗ ), so we have:

xφψ(x) = x α(ψ(x)) = x α(µ(x)) = α(µ(x))x = α(ψ(x))x = φ(ψ(x))x = φψ(x)x.
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Example 2.10. Suppose (P, ∗) is the polygroup of Example 1.5. In this case Aut(P ) =

A(P ) = {ip}. We have (P/β∗) isomorphism is by Z2 therefore Aut(P/β∗) = A(P/β∗) =

{ip/β∗}.

Definition 2.11. Suppose (P, ·) is a polygroup and x ∈ P . Then
a) the element x is called central whenever for y from P , xy = yx,
b) display the centralizer x with C( x) , which is C( x) = {y ∈ P : xy = yx},
c) we represent the weak centralizer x with Cw(x), which is Cw(x) = {y ∈ P : xy∩ yx ̸= ∅},
d) the non-central element x is called the commutator when C(x) is a commutative sub-

polygroup. We also call the non-central element x is called the weak commutator when Cw(x)

is commutative weak subpolygroup. That is, for every a, b from the subpolygroup Cw(x), the
condition ab ∩ ba ̸= ∅ holds.

Example 2.12. Suppose G is a binary group S3 = {a0 = e, a, a2 = b, c, ac = d, a2c = fg}.
The table of the polygroup extended Ps3,1 as follows:

Table 4.

∗ e a b c d f h

e e a b c d f h

a a b e, h d f c a

b b e, h a f c d b

c c f d e, h b a c

d d c f a e, h b d

f f d c b a e, h f

h h a b c d f e

(i) the element e is called central,
(ii) display the centralizer a with C(a) , which is C(a) = {e, a, b, h}, Cw(b) = {e, a, b, h},
(iii) we have C(a) = {e, a, b, h}, C(b) = {e, a, b, h}, C(c) = {e, c, h}, C(d) = {e, d, h},

C(f) = {e, f, h}, Therefore a, b, c, d, f are elements commutator in Ps3,1.

Definition 2.13. A polygroup is called a commutator polygroup ( resp. weak commutator
polygroup) when any of its non-central elements are commutator ( resp. weak commutator
polygroup).

Example 2.14. Suppose Ps3,1 is polygroup of Example 2.12 then is a commutator polygroup
and also weak commutator polygroup.

Theorem 2.15. If G is a commutator group then A(G) is a subgroup of Aut(G).
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Proof. See lemma 2.3 of [13].

Theorem 2.16. If (P, ·) is a weak commutator polygroup then A(P ) is a subgroup of Aut(P ).

Proof. Let x ∈ P and φ,ψ ∈ A(P ). It is enough to prove xφψ(x)∩φψ(x)x ̸= ∅ or equivalent

φ−1(x)ψ(x)∩ψ(x)φ−1(x) ̸= ∅.

We consider two cases. If x is a central element, then φ−1(x) is also central, so in this case
the claim clearly holds. But if x is not a central element, since the weak centralizer x is
commutative subpolygroup and {φ−1(x), ψ(x)} ⊆ Cw(x) we have:

φ−1(x)ψ(x)∩ψ(x)φ−1(x) ̸= ∅.

Therefore, in this case the sentence valids.

Proposition 2.17. Suppose G is a group and (PG,n,⊙) be polygroup extended of group G, in
this case:

a) Z(PG,n) = Z(G) ∪ {a1, a2, · · · , an}, where Z(PG,n)is the set of central elements of PG,n.
b) The set of non-central elements PG,n and the set of non-central elements of G are equal.

Proof. a) According to the hyperoperation ⊙ every element of the set {a1, a2, · · · , an} is a
central element. Now according to (d) we can conclude that Z(PG,n) = Z(G)∪{a1, a2, · · · , an}.
Part (b) with respect to (a) is clearly established.

Theorem 2.18. If G is a commutator group then A(PG,n) is a subgroup of Aut(PG,n).

Proof. It is enough to show that (PG,n.,⊙) is a weak commutator polygroup. For this suppose
x ∈ PG,n and x is not central. Prove that Cw(x) is a weak commutative subpolygroup of PG,n.
Using the Proposition 2.17 Z(PG,n) = Z(G) ∪ {a1, a2,· · ·,an}. Also non-central elements PG,n

and the non-central elements of G are equal. Now because x is not central, then x ∈ G and

Cw(x) = CG(x) ∪ {a1, a2,· · ·,an},

where CG(x) is the centralizer of x in G. Therefore Cw(x) is a commutative subpolygroup.
Thus (PG,n,⊙) is a weak commutator polygroup.

Proposition 2.19. Let G be a group and polygroup (PG,n,⊙) be the extended group of G.
Then for every φ of Aut(PG,n) and every x ∈ {a1, a2, · · · , an} , φ(x) = x valid.
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Proof. Suppose ai ∈ {a1, a2, · · · , an}. If φ(ai) = x then e = φ(e) = φ(aiai) = φ(ai)φ(ai) = xx

consequently x ∈ {a1, a2, · · · , an}. Now suppose k is the largest number that φ(ak) ̸= ak. So
φ(ak) = ai, where i<k. On the other hand φ(aj) = ak, where j<k. Therefore we have:

ak = φ(aj) = φ(akaj) = φ(ak)φ(aj) = aiak = ai,

which is a contradiction.

Corollary 2.20. If φ ∈ Aut(PG,n) then α ∈ Aut(G) exists such that for every x ∈ PG,n:

φ(x) =

 α(x), x ∈ G,

x, x ∈ {a1, a2, · · · , an}.

Corollary 2.21. A(PG,n) is a subgroup of Aut(PG,n) if and only if A(G) is a subgroup of
Aut(G).

3. Conclusion

We investigate a generalization of notion commuting automorphism for the class of poly-
groups which is introduced by M. Deaconescu et.al for the class of groups [8]. Using the notion
of commuting automorphism we introduce the notion of commutator polygroups and a charac-
terization of commutator polygroups extended by groups has been investigated. Researchers
who would like to work on this field can apply my paper similar to the work done by Bettina
Eick in [12].

References

[1] H. Aghabozorgi, B. Davvaz and M. Jafarpour, Solvable Polygroups and Derived Subpolygroups, Comm.

Algebra, 41 No. 8 (2013) 3098-3107.

[2] H. Campaigne, Partition hypergroups, Amer. J. Math., 6 No. 1 (1940) 599-612.

[3] S. D. Comer, Polygroups derived from cogroups. J. Algebra, 89 No. 2 (1984) 397-405.

[4] P. Corsini, Prolegomena of Hypergroups Theory, Aviani Editore, 1993.

[5] P. Corsini and V. Leoreanu, Applications of Hyperstructure Theory, In: Advances in Mathematics, Kluwer

Academic Publishers, Dordrecht, 2003.

[6] B. Davvaz, Polygroup Theory and Related Systems, World Scientific Publishing Co. Pte. Ltd., Hackensack,

NJ, 2013.

[7] B. Davvaz and V. Leoreanu-Fotea, Hyperring Theory and Applications, International Academic Press, Palm

Harbor, Fla, USA, 2007.

[8] M. Deaconescu, G. Silberberg and G. L. Walls, On commuting automorphisms of groups, Arch. Math., 79

(2002) 423-429.

[9] A. P. Dietzman, On the multigroups of complete conjugate sets of elements of a group, In C. R. (Doklady)

Acad. Sci. URSS (N.S.), 49 (1946) 315-317.



12 G. H. Aghabozorgi

[10] N. Divinsky, On commuting automorphisms of rings, Trans. Roy. Soc. Canada. Sect. III. 49 No. 3 (1955)

19-22.

[11] M. Dresher and O. Ore, �Theory of multigroups, Amer. J. Math., 60 No. 3 (1938) 705-733.

[12] B. Eick, Computing automorphism groups and testing isomorphisms for modular group algebras, J. Algebra,

320 No. 11 (2008) 3895-3910.

[13] S. Fouladi and R. Orfi, Commuting automorphisms of some finie groups, Glasinik Mathematika, 48 No.

8(2013) 91-96.

[14] D. Freni, A note on the core of a hypergroup and the transitive closure β∗ of β, Riv. Mat. Pura Appl., 8

(1991) 153-156.

[15] F. Jantani, M. Jafarpour, S. Sh. Mousavi, and V. Leoreanu, On order of elements in hypergroups and

p-Sylow subhypergroups, Commun. Algebra, 45 No. 12 (2017) 5092-5102

[16] M. Koskas, Groupoides, demi-hypergroupes et hypergroupes, J. Math. Pures Appl., 49 No. 9 (1970) 155-192.

[17] J. Luh, A note on commuting automorphisms of rings, Amer. Math. Monthly, 77 No. 1 (1970) 61-62.

[18] F. Marty, Sur une generalization de la notion de groupe, 8th Congress Math. Scandenaves, Stockholm,

Sweden, (1934) 45-49.

[19] P. Schmid, Normal p-subgroups in the group of outer automorphisms of a finite p-group, Math. Z., 147

(1976) 271-277.

Gholam Hossien Aghabozorgi

Department of Mathematics,

Vali-e-Asr University of Rafsanjan,

Rafsanjan, Iran.

h.aghabozorgi@vru.ac.ir


	1. Introduction
	2.  Commuting automorphism and commutator polygroups
	3.  Conclusion
	References

