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ON INTERSECTION MINIMAL IDEAL GRAPH OF A RING

BIKASH BARMAN AND KUKIL KALPA RAJKHOWA∗

Abstract. For a ring R, the intersection minimal ideal graph, denoted by ∧(R), is a simple

undirected graph whose vertices are proper non-zero (right) ideals of R and any two distinct

vertices I1 and I2 are adjacent if and only if I1 ∩ I2 is a minimal ideal of R. In this article,

we explore connectedness, clique number, split character, planarity, independence number,

domination number of ∧(R).

1. Introduction

The interdisciplinary study of graph associated with the algebraic structure ring has been
studied by many authors. This enchanting perception was started by Istvan Beck [7]. After
that introduction of Beck, many researchers have studied such types of interdisciplinary as-
pects. Some of them can be found in [1, 2, 3, 4, 8, 9, 18, 19, 20]. In [1], F. H. Abdulquadr
introduced and studied the notion of maximal ideal graph of a commutative ring R, where the
vertex set contains all the non-trivial ideals of R, and any two distinct vertices are adjacent
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if their sum is a maximal ideal of R. In this article, we discuss the intersection minimal ideal
graph of a ring R which is denoted by ∧(R). The vertex set of ∧(R) contains all non-trivial
(right) ideals of R, and any two distinct vertices are adjacent if and only if their intersection
is a minimal ideal of R. We characterize the rings for which the intersection minimal ideal
graphs are connected, complete bipartite, star. The concepts of planarity, clique number,
independence number, domination number and split character are also studied. Most of the
results in this article are observed in Artinian rings.

Now we recollect some definitions and notations which are needed in this sequel.
Let G be a simple undirected graph with vertex set V (G) and edge set E(G). If G does not

contain any edge, then G is empty. The neighborhood of p ∈ V (G) is denoted by n(p). By
Kn, we mean the complete graph with n vertices. If the vertices of G can be partitioned into
two disjoint sets W1 and W2 with every vertex of W1 is adjacent to any vertex of W2 and no
two vertices belonging to same set are adjacent, then G is called a complete bipartite graph.
If |W1| = m, |W2| = n, then the complete bipartite graph is denoted by Km,n. If one of the
partite sets contains exactly one element, then the graph becomes a star graph. If G graph
does not have K5 or K3,3 as its subgraph, then G is planar [8]. The girth of G, denoted by
girth(G), is the length of the smallest cycle in G . If there exists a path between any two
distinct vertices, then G is connected. If P and Q are two distinct vertices of G, then d(P,Q)

is the length of the shortest path from P to Q and d(P,Q) = ∞, if there does not exist a
path between P and Q. The maximum distance among all the distances between every pair of
vertices of G is called the diameter of G, denoted by diam(G). A clique is a complete subgraph
in G. The number of vertices in the largest clique of G is called the clique number of G and
is denoted by ω(G). A subset S of V (G) is said to be an independent set if no two vertices of
S are adjacent. The cardinality of the largest independent set is called independence number
and is denoted by α(G). If V (G) can be partitioned in an independent set and a clique then
G is said to be split. A set D ⊂ V (G) is said to be a dominating set if every vertex not in S

is adjacent to at least one of the members of S. The cardinality of smallest dominating set is
the domination number of the graph G and is denoted by γ(G).

Let R be a ring with unity. The collection of all minimal ideals of R is denoted by min(R)

and the collection of all maximal ideals of R is denoted by max(R), respectively. The sum of
all minimal ideals of R is called the socle of R which is denoted by Soc(R). An ideal E of R
is said to be essential if intersection of E with any non-zero ideal of R is non-zero. The socle
of R is always contained in any essential ideal of R. For any two ideals I and J of R, we have
I+J
I

∼= J
I∩J . If no infinite strictly descending chain of ideals of R exist, then R is an Artinian

ring. In an Artinian ring, every ideal contains a minimal ideal. Any undefined terminology
can be found in [5, 6, 10, 11, 12, 13, 14, 15, 16, 17].
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Unless otherwise specified, R is a ring with unity.

2. Connectedness of ∧(R)

Lemma 2.1. The following hold in ∧(R):
(i) Every non-minimal ideal of R is adjacent to at least one of the minimal ideals of R.
(ii) If Soc(R) ̸= R, then every member of min(R) is adjacent to Soc(R).

Remark 2.2. If m,n ∈ min(R), then it is easy to observe that m and n are not adjacent in
∧(R). Thus the subgraph induced by the minimal ideals of R is empty.

Proposition 2.3. If P,Q, n are distinct vertices in ∧(R) with n ∈ min(R) and P ∩ Q ̸= n,
then the following hold:
(i) n ∈ n(P ∩Q) if and only if n ∈ n(P ) ∩ n(Q) .
(ii) If Soc(R) ⫋ P , then n ∈ n(P ).
(iii) If P /∈ min(R) and P ⫋ Q, then P /∈ n(Q).

Proof. (i) If n ∈ n(P ) ∩ n(Q), then n ∩ P = n = n ∩Q. Clearly, n ⫋ P ∩Q, which infers that
n ∈ n(P ∩Q). In the same way, the opposite direction can be proved.
(ii) Since n ⊂ Soc(R) and Soc(R) ⫋ P , so n ⫋ P . This gives that n∩P = n. Hence n ∈ n(P ).
(iii) If P ⫋ Q, then P ∩Q = P . Since P /∈ min(R), we get P /∈ n(Q).

Proposition 2.4. If M,N /∈ min(R) and {M,N} ∈ E(∧(R)), then there exists a unique
m ∈ min(R) with n ∈ n(M) ∩ n(N).

Proof. If {M,N} ∈ E(∧(R)), then M ∩N ∈ min(R). Clearly, M ∩N is adjacent to both M

and N . If possible, assume that there exists an n ∈ min(R) with n ̸= M ∩N and n is adjacent
to both M and N . By Proposition 2.3, it is clear that n ∈ n(M ∩ N). So, n ⫋ M,N . This
gives n ⊂ M ∩N . Since M ∩N is minimal, n = M ∩N . This completes the proof.

Proposition 2.5. Every non-zero proper ideal of R is minimal if and only if ∧(R) is empty.

Proof. Assume that every non-zero proper ideal of R is minimal. Consider two vertices M

and N in ∧(R). Clearly, M ∩N = 0. So, M and N are not adjacent in ∧(R). Since M and
N are arbitrary, we assert that ∧(R) is empty. Conversely, assume that ∧(R) is empty and
S ∈ V (∧(R)). Suppose that S /∈ min(R). Since R is Artinian, there exists some s ∈ min(R)

with s ⫋ S. This gives that s and S are adjacent, a contradiction to the empty character of
∧(R). Thus every ideal of R is minimal. Hence the proposition.
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Proposition 2.6. The graph ∧(R) is connected if and only if the sum of any two distinct
minimal ideals of R is not R, or |min(R)| = 1.

Proof. If |min(R)| = 1, then it is obvious that ∧(R) is connected. Suppose that |min(R)| ̸= 1,
and the sum of any two distinct minimal ideals of R is not R. Consider two vertices I and J

of ∧(R). If {I, J} ∈ E(∧(R)), then I − J is a path. Suppose {I, J} /∈ E(∧(R)). Then either
m ⫋ I ∩J for some m ∈ min(R), or I ∩J = 0. If m ⫋ I ∩J , then I −m−J is a path in ∧(R).
If I ∩ J = 0, then following three cases arise.
Case 1: Suppose I and J are both minimal. Then I − (I + J)− J is a path in ∧(R).
Case 2: If exactly one of I and J is minimal, then without loss of generality, assume that
I ∈ min(R) and J /∈ min(R). Since R is Artinian, there exists some m ∈ min(R) such that
m ⫋ J . Thus, we get the path I − (m+ I)−m− J .
Case 3: If both I and J are not minimal, then there exist m1,m2 ∈ min(R) such that m1 ⫋ I

and m2 ⫋ J , respectively. If m1 = m2, then I − m1 − J is a path. If m1 ̸= m2, then
I −m1 − (m1 +m2)−m2 − J is a path. Hence we conclude that ∧(R) is connected.

Conversely, consider that ∧(R) is connected. If possible, assume that there exist two minimal
ideals m1 and m2 such that m1 + m2 = R. Clearly, R = m1

⊕
m2. Also, R

m1

∼= m2 and
R
m2

∼= m1. Since R is a commutative Artinian ring, m1 and m2 are minimal as well as maximal
ideals of R. Assume that m1 is adjacent to some K ∈ V (∧(R)). Then m1 ∩K = m1, which
implies that m1 ⫋ K. Since m1 is maximal, we get m1 = K. This asserts that m1 is an
isolated vertex, a contradiction. This completes the proof.

Proposition 2.7. If ∧(R) is a connnected graph, then diam(∧(R)) ≤ 4.

Proof. Consider that ∧(R) is connnected. If min(R) = 1, then obviously diam(∧(R)) = 2.
Assume that |min(R)| ̸= 1. Suppose {S, T} /∈ E(∧(R)). Then either m ⫋ S ∩ T for some
m ∈ min(R) or S ∩ T = 0. Similarly, as in Proposition 2.6, we can also establish that
d(S, T ) = 2 or 4. Hence diam(∧(R)) ≤ 4.

Proposition 2.8. If F = F1 × F2 × ... × Fn, then diam(∧(F )) = 2, where Fi is a field, for
i = 1, 2, ..., n.

Proof. Let F = F1 × F2 × ... × Fn, where Fi is a field, for i = 1, 2, ..., n. Any ideal of F

is of the form A =
n∏

i=1
Gi, where Gi = 0 or Fi, and the minimal ideals of F is of the form

mk =
n∏

i=1
Gi, where Gi = 0 for i ̸= k and Gk = Fk. Thus F has n minimal ideals. Consider

two non adjacent vertices L and M in ∧(F ). If L and M both contain a same minimal ideal,
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then d(M,N) = 2. If not, then there exist mi and mj with mi ⊂ L, mj ⊂ M , mi ̸⊂ M and
mj ̸⊂ L. Now we consider the ideal X =

n∏
l=1

Gl, where Gl = Fl, for l = i, j and 0 otherwise.

This gives the path L−X −M . Therefore, diam(∧(F )) = 2.

Proposition 2.9. If Soc(R) ̸= R, then girth(∧(R)) = 3, 4 whenever ∧(R) contains a cycle.

Proof. Let Soc(R) ̸= R. Suppose that {S, T} ∈ E(∧(R)). Clearly, at least one of S or T does
not belong to min(R). If S, T /∈ min(R), then S − S ∩ T − T − S is a cycle. In this case,
girth(∧(R)) = 3. Assume that one of S or T is minimal. Without loss of generality, take
S ∈ min(R) and T /∈ min(R). Then there exists some p ∈ min(R) such that p ⫋ T . Thus we
get the cycle S − T − p−Soc(R)−S. In this case, girth(∧(R)) = 4. The proof is complete.

Proposition 2.10. If F = F1 × F2 × ... × Fn, where Fi is a field, for i = 1, 2, ..., n, then
girth(∧(R)) = 3.

Proof. Since F = F1×F2× ...×Fn, where Fi is a field, for i = 1, 2, ..., n, any ideal of F is of the
form A =

n∏
i=1

Gi, where Gi = 0 or Fi. Let us consider the ideal X =
n∏

i=1
Gi, where Gi = Fi, for

i = 1, 2 and otherwise Gi = 0; Y =
n∏

i=1
Gi, where Gi = Fi, for i = 1, 3 and otherwise Gi = 0;

Z =
n∏

i=1
Gi, where Gi = Fi, for i = 2, 3 and otherwise Gi = 0. Also, every minimal ideal of

F is of the form mk =
n∏

i=1
Gi, where Gi = 0, for i ̸= k and Gk = Fk. So, F has n minimal

ideals. Since X ∩Y = m1, Y ∩Z = m3 and X ∩Z = m2, thus we get the cycle X−Y −Z−X.
This concludes that girth(∧(R)) = 3.

Proposition 2.11. If ∧(R) is complete, then R is a ring with |min(R)| = 1.

Proof. Suppose ∧(R) is complete. If p, q ∈ min(R) and p ̸= q, then p ∩ q = 0. This implies
that |min(R)| = 1.

Remark 2.12. We observe that Zpn has exactly one minimal ideal, but ∧(Zpn) is not complete.
Hence the converse of Proposition 2.11 does not hold.

Proposition 2.13. If a chain is formed by the ideals of R, then ∧(R) is star.

Proof. If a chain is formed by the ideals of R, then there exists a p ∈ min(R) such that
{p,Q} ∈ E(∧(R)), for every Q ∈ V (∧(R)). If S, T ∈ V (∧(R)) and S ̸= p, T ̸= p, then it is
clear that S and T are not adjacent. Hence ∧(R) is star.
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Proposition 2.14. Let Soc(R) ̸= R. Then ∧(R) is compete bipartite if and only if every ideal
of R is either essential or minimal.

Proof. Let V1 and V2 be the set of minimal ideals and essential ideals of R, respectively. If
p, q ∈ V1, then p∩ q = 0. Thus any two vertices of V1 are not adjacent. Also, if S, T ∈ V2, then
Soc(R) ⊂ S ∩ T . So any two vertices of V2 are also not adjacent. Again, using Proposition
2.3, we get that every vertex in V1 is adjacent to each vertex in V2. Thus ∧(R) is a complete
bipartite graph. For the opposite direction, assume that ∧(R) is a complete bipartite graph.
It is easy to prove that the vertex set V (∧(R)) can be partitioned into the two disjoint subsets
min(R) and {P ∈ V (∧(R)) : Soc(R) ⊂ P}. This completes the proof.

Proposition 2.15. If the sum of any two distinct minimal ideals of R is not R, and K is a
cut vertex of ∧(R), then K = S + T , for some S, T ∈ min(R).

Proof. If K ∈ min(R), then the result is obvious. Let K /∈ min(R). Suppose P and Q are two
vertices in the distinct components C1 and C2 of V (∧(R) \ {K}, respectively. We have the
following cases:
Case 1: If P,Q ∈ min(R), then P +Q ∈ n(P )∩n(Q). Thus K = P +Q, as K is a cut vertex.
Case 2: If P ∈ min(R) and Q /∈ min(R), then there exists some S ∈ min(R) with S ⫋ Q.
Thus S and Q belong to the same component C2. As S+P ∈ n(S)∩n(P ), and each of S and
P belongs to two different components, so K = P + S.
Case 3: If P,Q /∈ min(R), then there exist some S, T ∈ min(R) with S ⫋ P and T ⫋ Q.
Here, P and S belong to the component C1 and Q and T belong to the other component C2.
As S + T ∈ n(S) ∩ n(T ), and S, T belong to C2, therefore K = S + T . The proof is complete.

3. Clique number, independence number, planarity of ∧(R)

Proposition 3.1. In ∧(R), a clique is contained in the subgraph induced by {P ∈ V (∧(R)) :

Q ⊂ P}, for some Q ∈ min(R).

Proof. Assume that C is a clique in ∧(R). As no two distinct minimal ideals are adjacent in
∧(R), so C has at most one minimal ideal. The completeness of C and Proposition 2.4 give
that there exists a unique Q ∈ min(R) such that C is a subgraph induced by {P ∈ V (∧(R)) :

Q ⊂ P}. Hence the proposition.

Proposition 3.2. If ∧(R) is not empty and V (∧(R)) = min(R)∪max(R), then ∧(R) is split.
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Proof. Consider the subgraph induced by max(R) of ∧(R). Let P,Q ∈ max(R) with P ̸= Q.
If possible, assume that P ∩ Q = 0. Then R

P
∼= Q and R

Q
∼= P . This implies that P and Q

are simple rings [16] and so P and Q are minimal. By Proposition 2.5, ∧(R) is non-empty, a
contradiction. Thus P ∩Q ̸= 0. It is clear that P ∩Q /∈ max(R). Therefore P ∩Q ∈ min(R).
From this, the subgraph induced by max(R) is complete. Again, by Remark 2.2, the subgraph
induced by min(R) is empty. Hence ∧(R) is split.

Proposition 3.3. If V (∧(R)) = min(R) ∪max(R) and |max(R)| ≤ 3, then ∧(R) is planar.

Proof. If V (∧(R)) = min(R) ∪ max(R), then, as in Proposition 3.2, ∧(R) is a split graph.
Since |max(R)| ≤ 3, any subgraph induced by five vertices is not complete. Therefore, K5

is not contained in ∧(R). If possible, assume that K3,3 is contained in ∧(R) with partite
sets W1 = {P1, P2, P3} and W1 = {Q1, Q2, Q3}. It is clear that either W1 ⊂ min(R) or
W2 ⊂ min(R). If we take W1 ⊂ min(R), then W2 ⊂ max(R), a contradiction to the fact that
any two maximal ideals are adjacent. Hence, ∧(R) is a planar graph.

Proposition 3.4. If |min(R)| is finite for an Artinian ring R, then α(∧(R)) = |min(R)|.

Proof. Suppose min(R) = {m1,m2, ...,mn}. Clearly, min(R) is an independent set, by Remark
2.2. Therefore, n ≤ α(∧(R)). Suppose S = {p1, p2, ..., pl} is a maximal independent set. So,
α(∧(R)) = l. For each I ∈ S, there exists some mi ∈ min(R) such that mi ⊂ I. If l > n, then
by Pigeonhole principle, there exist at least two vertices pi, pj ∈ S which contain the same
minimal ideal. This implies that pi and pj are adjacent, a contradiction to the fact that S is
an independent set. Therefore l = n, that is α(∧(R)) = n.

Proposition 3.5. If R1 and R2 are two Artinian rings with unique minimal ideals, then
γ(∧(R1 ×R2)) = 2.

Proof. Any ideal of R1×R2 is of the form K1×K2, where K1 and K2 are ideals of R1 and R2,
respectively. If the minimal ideals of R1 and R2 are p1 and p2, respectively, then the minimal
ideals of R1 ×R2 are p1 × (0) and (0)× p2. So, any vertex of the graph is adjacent to at least
one of the elements of the set {p1 × (0), (0)× p2}. This implies that γ(∧(R1 ×R2)) = 2.

Proposition 3.6. If R is an Artinian ring with a unique minimal ideal and F is a field, then
γ(∧(R× F ) = 1.

Proof. It is clear.
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Proposition 3.7. Let F1 and F2 be two fields, then γ(∧(F1 × F2)) = 2.

Proof. It is clear.

Proposition 3.8. Let F = F1 × F2 × ... × Fn, then γ(∧(F ) ≤ n, where Fi is a field for
i = 1, 2, ..., n.

Proof. Let F = F1 × F2 × ... × Fn, where Fi is a field for i = 1, 2, ..., n. Any ideal of F

is of the form A =
n∏

i=1
Gi, where Gi = 0 or Fi, and a minimal ideal of F is of the form

mk =
n∏

i=1
Gi, where Gi = 0 for i ̸= k and Gk = Fk. So, F has n minimal ideals. Consider

the set S = {mi : i = 1, 2, ..., n}. The set S dominates all the vertices of the graph. So,
γ(∧(R× F ) ≤ n.

Example 3.9. If F = F1 × F2 × F3, where Fi is a field for i = 1, 2, ..., n, then V (∧(F )) =

{F1 × 0 × 0, F1 × F2 × 0, 0 × F2 × 0, 0 × F2 × F3, F1 × 0 × F3, 0 × 0 × F3}. Now consider
the set S = {F1 × F2 × 0, 0× F2 × F3}. Every vertex of ∧(F ) is adjacent at least one of the
vertices of S. Hence γ(∧(F )) = 2(< 3).

This example provides that the equality does not hold necessarily in Proposition 3.8.
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