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CLASSIFICATION OF GROUPS WHOSE VANISHING
ELEMENTS ARE CONTAINED IN EXACTLY TWO CONJUGACY

CLASSES

SAJJAD MAHMOOD ROBATI∗

Abstract. Let G be a finite group .  We say that an element g in G is a vanishing element if

there exists some irreducible character χ of G such that χ(g) = 0 . Moreover, the conjugacy

class of a vanishing element is called a vanishing conjugacy class.  In this paper ,  we classify

groups with exactly two vanishing conjugacy classes and show that such groups are either

Frobenius or quasi-Frobenius groups.

1. Introduction

Throughout this paper, G will be a finite group. Let Van(G) be the set of vanishing elements
of G, where an element x in G is vanishing if χ(x) = 0 for some irreducible character χ of
G. And, a conjugacy class contained in Van(G) is called a vanishing conjugacy class.   It is
clear that Van(G) is the union of vanishing conjugacy classes .  The well-known theorem of
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Burnside signifies that Van(G) = ∅ if and only if G is abelian .  Motivated by the results,   we in
[8]  show that groups whose set of vanishing elements is the union of at most three conjugacy
classes are solvable and in [10] assert that groups with at most six vanishing conjugacy classes
are solvable or almost simple groups. Additionally,  we classify groups whose set of vanishing
elements is exactly a conjugacy class , see [9].

In this paper, we prove that every group whose set of vanishing elements is the union of
exactly two conjugacy classes is either a Frobenius group or a quasi-Frobenius group.

We summarize our notations. Let O2′(G) denote the unique maximal normal subgroup of
G of odd order and clG(a) denote the conjugacy class of a in G.

2. Preliminaries

In this section, we provide some results which are useful tools for the investigations later in
the paper.

Theorem 2.1 ([11], Theorem 1). Let G be a finite group with a non-cyclic sub-
group of order 4 which is its own centralizer in G. Then G/O2′(G) is isomorphic to
PSL(3, 3),M11, GL(2, 3),H(q), PGL(2, q), PSL(2, q)(q odd), A7, D2n , or SD2n.

Theorem 2.2 ([11], Theorem 2). Let G be a finite group with a cyclic subgroup
of order 4 which is its own centralizer in G. Then G/O2′(G) is isomorphic to
SL(2, 3), SL(2, 5), PSL(2, 7), PSL(2, 9), PGL(2, 3), PGL(2, 5),H(9), J, A7, D8, Q2n , SD2n or
Z4.

Before stating the main section, we mention some necessary results on vanishing and non-
vanishing elements.

Theorem 2.3 ([5], Theorem B). Let G be a nilpotent group. Then each non-vanishing element
of G is central.

Lemma 2.4 ([2], Lemma 2.6). Let G ba a solvable group, and let F(G) be the Fitting subgroup
of G. If G/F(G) is abelian, then G \ F(G) ⊆ Van(G).

Theorem 2.5 ([5], Theorem D). Let x be a non-vanishing element of the solvable group G.
Then the image of x in G/F(G)� has 2-power order, and in particular, if x has odd order,
then x ∈ F(G)�. In any case, if G is not nilpotent, then x lies in the penultimate term of the
ascending Fitting series.

3. Main Theorem

It is clear that if G has at most n vanishing conjugacy classes and N ◁G, then G/N has at
most n vanishing conjugacy classes.
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Lemma 3.1 ([7], Theorem 2.1). Let G be a nilpotent group and suppose that it has at most
two non-central conjugacy classes of each size. Then G is an abelian group.

Lemma 3.2. Let G be a nilpotent group. The set of vanishing elements of G is the union of
exactly two conjugacy classes if and only if G is an abelian group.

Proof. Assume that G is a non-abelian nilpotent group. By Theorem 2.3, each non-central
element is a vanishing element of G. Thus,

G = Van(G) ∪ Z(G) = C1 ∪ C2 ∪ Z(G),

for some conjugacy classes C1 and C2 of G. It is impossible by Lemma 3.1.

Lemma 3.3. Let G be a solvable group. Then there exists some proper normal subgroup N

of G containing G′ such that G−N ⊆ Van(G).

Proof. Since G is solvable, so there exist some non-trivial linear character λ of G′ and some
irreducible character χ of G such that

[χG′ , λ] = [χ, λG] ̸= 0.

Moreover, we know that the restriction of each linear character ofG toG′ is the trivial character
of G′, therefore χG′ ̸= λ is non-linear and reducible. Now, since G/G′ is abelian, it follows
from Theorem 6.22 and Definition 6.21 of [4], there are some proper normal subgroup N of G
containing G′ and ψ ∈ Irr(N) such that χ = ψG and ψG′ ∈ Irr(G′). Hence, χ(g) = ψG(g) = 0

for every g ∈ G−N .

Lemma 3.4 ([1], Proposition 4.1). Let G be a Frobenius group and p ≤ 5 be a prime number.
If the order of every vanishing element of G is p, then the Frobenius kernel of G is abelian.

Now, we ready to prove the main theorem.

Theorem 3.5. Let G be a finite group. Then the set of vanishing elements of G is the union
of exactly two conjugacy classes of G if and only if one of the following situation occurs:

(1) G is a Frobenius group with abelian kernel G′ and complement of order 3.
(2) G/Z(G) is a Frobenius with abelian kernel (G′×Z(G))/Z(G) of odd order and comple-

ment of order 2. Moreover, |Z(G)| = 2 and G′ ∩ Z(G) = 1.

Proof. We know that G is solvable, see Theorem 2.8 of [8]. It can derived from Lemma 3.3
that there exist some conjugacy classes C1 and C2 of G contained in Van(G) such that

G = Van(G) ∪N = C1 ∪ C2 ∪N,



4 S. M. Robati

in which N is a proper normal subgroup of G containing G′. As the set of left cosets of N in
G is a partition of G and |Ci| ≤ |G′| ≤ |N | for i = 1, 2, so we break the proof into three cases.

Case (1): N = G′ and |G : N | = 3.
In this case, |C1| = |C2| = |G′| and so |CG(x)| = 3 for each x ∈ C1 ∪ C2. Additionally,

CG(x) = ⟨x⟩ and hence G is a Frobenius group with Frobenius kernel G′ and complement ⟨x⟩
of order 3, see Problem 7.1 of [4]. By Theorem 13.8 of [3], we have

Van(G) = cl(x) ∪ cl(x2) = xG′ ∪ x2G′

which implies from Lemma 3.4 that G′ is abelian.
Now, if χ ∈ Irr(G) is non-linear, we have χ = θG for some θ ∈ Irr(G′) and by Theorem 6.34

of [4], we can write that

χG′ = θ1 + θ2 + θ3

where θ1 = θ, θ2, θ3 are the distinct conjugates of θ in G. As G′ is abelian, so θi(y) for each
y ∈ G′ is an nth root of unity for n = |G′|. We can check that χG′(y) ̸= 0 because (n, 3) = 1.
Therefore, G′ ∩Van(G) ̸= ∅ as desired.

Case (2): N = G′ and |G : N | = 2.
In this case, |C1| + |C2| = |G′| and we can assume that |C1| ≥ |G′|/2 and so |CG(x)| ≤ 4

for each x ∈ C1. If |CG(x)| = p and p = 2 or 3, we conclude that CG(x) = ⟨x⟩ and G is a
Frobenius group with kernel G′ and complement ⟨x⟩ of order p. Since |G : G′| = 2, so p = 2.
Thus, by Lemma 13.3 of [3], G′ is an abelian subgroup of odd order and so G has exactly one
vanishing conjugacy class which is a contradiction. so |CG(x)| = 4 for each x ∈ C1 ∪ C2 and
|C1| = |C2| = |G′|/2.

First, we suppose that every x ∈ C1∪C2 is of order 2. Since CG(x) is an elementary abelian
2-group, we can deduce that CG(x) ≤ CG(CG(x)) ≤ CG(x) and CG(CG(x)) = CG(x). It
follows from Theorem 2.1 that G/O2′(G) is a non-abelian 2-group. It is impossible by Lemma
3.2.

Now, consider |x| = 4 for some x ∈ C1∪C2. Thus, CG(x) = ⟨x⟩ is a cyclic subgroup of order
4. By our assumption and Theorem 2.2, G/O2′(G) is isomorphic to Z4 and G ∼= O2′(G)⋊ Z4.
Furthermore, since |clG(x)| = |O2′(G)| ≤ |G′|, we have G′ = O2′(G) which is a contradiction.

Case (3): |N : G′| = 2 and |G : N | = 2.
In this case, |C1| = |C2| = |G′| and N ∩ Van(G) = ∅. Thus, |CG(x)| = 4 and |x| = 2 or 4.

Using a proof similar to the proof of Case (2), we can write that

G = O2′(G)⋊ ⟨x⟩,
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where ⟨x⟩ ∼= Z4 and G′ = O2′(G). If G is a Frobenius group, we observe that G has three
vanishing conjugacy classes cl(xi) = xiG′ for i = 1, 2, 3 which is impossible. Therefore, we can
see that N = G′⟨x2⟩, |CG(x)| > 4, and x2 is non-vanishing.

Theorem 2.5 tells us that the order of the image of each non-vanishing element of G in
G/F(G) is a power of 2. Hence, we can conclude that G/F(G) is a 2-group with at most two
vanishing conjugacy classes. As a consequent of Lemma 3.2 and Lemma 2.4, we have G/F(G)
is abelian and

G− F(G) ⊆ Van(G) = C1 ∪ C2,

which yields that N ⊆ F(G), Z(G) = ⟨x2⟩, and N = G′×Z(G). Using Problem 7.1 and Lemma
7.21 of [4], we obtain that

G/Z(G) = ((G′ × Z(G))/Z(G))⋊ Z2,

is a Frobenius group and G′ is abelian. Let λ be the non-trivial linear character of G. By
Corollary 6.17 of [4], we can get that

Irr(G) = {χ, λχ|χ ∈ Irr(G/Z(G)}.

Moreover, Theorem 13.8 of [3] guarantees that cl(xZ(G)) is the vanishing conjugacy class of
G/Z(G) and so x and x.x2 = x3 are representatives of two vanishing conjugacy classes of G.

On the other hand, if aZ(G) is a non-vanishing element of G/Z(G), we conclude from
Problem 3.12 of [4] that

0 ̸= χ(a)χ(x2) = χ(1)χ(ax2).

Consequently, χ and λχ do not vanish on a and ax2 and so the set of vanishing elements of G
is the union exactly two conjugacy classes of G. The proof is complete.

Example 3.6. Using [6], observe that D12
∼= S3 × Z2, an split central extension of S3 by Z2,

and

T12 = ⟨a, b|a6 = 1, a3 = b2, b−1ab = a−1⟩,

in which T12 is a non-split central extension of S3 by Z2 and T12/Z(T12) ∼= S3. We can easily
check that these groups satisfy Main Theorem.
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