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1. INTRODUCTION

Extensions of prime and primary ideals to the context of ¢-prime and ¢-primary ideals were
studied in [7, 12]. Afterwards, Khaksari in [20] and Badawi et al. in [J] introduced ¢-2-prime
and ¢-2-primary ideals, respectively. Let R be a commutative ring. Suppose that ¢ is a
function from Z(R) to Z(R) U {¢} where Z(R) is the set of ideals of R. A proper ideal I of R
is said to be a ¢-2-absorbing ideal if whenever z,y,z € R, with xyz € I — ¢(I) implies that
xy € lorxz € I oryz € I. Also, A proper ideal I of R is called a ¢-2-absorbing primary ideal
if for every z,y,z € R, xyz € I — ¢(I) implies that xy € I or xz € r(I) or yz € r(I).

Hyperstructures are algebraic structures equipped with at least one multi-valued operation,
called a hyperoperation. A hyperoperation on a non-empty set is a mapping from to the
nonempty power set. Hundreds of papers and several books have been written on this topic
(for more details see [2, 10, 11, 13, 17, 21, 26, B0, B2, B3, B4]). An n-ary extension of algebraic
structures is the most natural method for deeper understanding of their fundamental prop-
erties. Mirvakili and Davvaz in [2§] introduced (m,n)-hyperrings and gave several results in
this respect. They defined and described a generalization of the notion of a hypergroup and
a generalization of an n-ary group, which is called n-ary hypergroup [14]. Some review of the
n-ary structures can be found in in [22, 23, 24, 25, B1]. One important class of hyperrings,
where the addition is a hyperoperation, while the multiplication is an ordinary binary oper-
ation, is Krasner hyperring. An extension of the Krasner hyperrings, which is a subclass of
(m,n)-hyperrings, was presented by Mirvakili and Davvaz [27], which is called Krasner (m,n)-
hyperring. Some important hyperideals namely Jacobson radical, nilradical, n-ary prime and
primary hyperideals and n-ary multiplicative subsets of Krasner (m, n)-hyperrings were defined
by Ameri and Norouzi in [I]. Afterward, the concept of (k,n)-absorbing (primary) hyperideals
was studied by Hila et al. [1§]. Norouzi et al. gave a new definition for normal hyperideals
in Krasner (m,n)-hyperrings, with respect to that one given in [27] and they showed that
these hyperideals correspond to strongly regular relations [29]. Direct limit of a direct system
was defined and analysed by Asadi and Ameri in the category of Krasner (m,n)-hyperrigs [8].
The notion of J-primary hyperideals in Krasner (m,n)-hyperrings, which unifies the prime
and primary hyperideals under one frame, was presented in [4]. Recently, Davvaz et al. in-
troduced new expansion classes, namely weakly (k,n)-absorbing (primary) hyperideals in a
Krasner (m, n)-hyperring [16].

In this paper, we introduce and study the notions of ¢-(k,n)-absorbing and ¢-(k,n)-
absorbing primary hyperideals in a commutative Krasner (m,n)-hyperring. A number of main
results are given to explain the general framework of these structures. Among many results in
this paper, it is shown (Theorem @) that if @ is a ¢-(k,n)-absorbing hyperideal of R, then @
is a ¢-(s,n)-absorbing hyperideal for all s > k. Although every ¢-(k, n)-absorbing of a Krasner



Alg. Struc. Appl. Vol. XX No. X (20XX) XX-XX. 3

(m,n)-hyperring is ¢-(k, n)-absorbing primary, Example @ shows that the converse may not
be always true. It is shown (Theorem ) that @ is a ¢-(k,n)-absorbing primary hyperideal
of R if and only if Q/¢(Q) is a weakly (k,n)-absorbing primary hyperideal of R/¢(Q). In
Theorem , we show that if @ is a ¢-(k, n)-absorbing primary hyperideal of R but is not a
(k,n)-absorbing primary, then g(Q*"—1+1) C $(Q). As a result of the theorem we conclude
that if @ is a ¢-(k, n)-absorbing primary hyperideal of R that is not a (k, n)-absorbing primary
hyperideal of R, then (™™ (Q) = (™™ (4(Q)).

2. KRASNER (m,n)-HYPERRINGS

In this section, we summarize the preliminary definitions which are related to Krasner
(m,n)-hyperrings.

Let A be a non-empty set and P*(A) the set of all the non-empty subsets of A. An n-
ary hyperoperation on A is a map f : A" — P*(A) and the couple (A4, f) is called an
n-ary hypergroupoid. The notation ag will denote the sequence a;, a;y1,...,a; for j > ¢ and
it is the empty symbol for j < i. If Gy,...,G, are non-empty subsets of A, then we define
F(GY) = f(Gi,...,Gn) = U{f(a}) | ai € Gi,1 < i < n}. If by = ... = bj = b, we write
f(at, bi.+17 fi1) = f(at,bU=9), cji1). If fis an n-ary hyperoperation, then t-ary hyperopera-

tion f(;) is given by

Foyla" ™V = f<f<..., F(f(at), a7t ), ai&’il;();_ﬂm),
where t =1(n — 1) + 1.

Definition 2.1. [27] (R, f,g), or simply R, is defined as a Krasner (m,n)-hyperring if the
following statements hold:

(1) (R, f) is a canonical m-ary hypergroup;

(2) (R, g) is a n-ary semigroup;

(3) The n-ary operation g is distributive with respect to the m-ary hyperoperation f , i.e., for

every all_l,a?+1,x{” € R, and1<1i<n,

o st at ) = (ol o). e ) )
(4) 0 is a zero element of the n-ary operation g, i.e., for each a} € R , g(ail_l, 0,a},,) =0.

Throughout this paper, R denotes a commutative Krasner (m,n)-hyperring with the scalar
identity 1.

A non-empty subset T of R is called a subhyperring of R if (T, f, g) is a Krasner (m,n)-
hyperring. The non-empty subset I of R is a hyperideal if (I, f) is an m-ary subhypergroup
of (R, f) and g(xifl,l,x;ﬁrl) C I, foreach 27 € Rand 1 <i < n.
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Definition 2.2. [1] Let I be a proper hyperideal of R. I refers to a prime hyperideal if for
hyperideals I7" of R, g(I) C P implies I; C I for some 1 <1i <mn.

Lemma 4.5 in [[] shows that the proper hyperideal I of R is prime if for all a} € R, g(a}) € I

implies a; € I for some 1 <17 < n.

Definition 2.3. [1] The radical of a proper hyperideal I of R, denoted by r(™™(I) is the
intersection of all prime hyperideals of R containing I. If the set of all prime hyperideals which

contain I is empty, then (™™ (I) = R.

It was shown (Theorem 4.23 in [1]) that if a € 7™ (I) then there exists s € N with
g(al®), 1%_8)) €I for s <n, or g(l)(a(s)) e€lfors=In—1)+1

Definition 2.4. [I] A proper hyperideal I of R is primary if g(a}) € I for af € R implies

a; €I or g(ai_l, lg,af, ) € r(m™)(I) for some 1 < i < n.
Theorem 4.28 in [l] shows that the radical of a primary hyperideal of R is prime.

Definition 2.5. [18] Let I be a proper hyperideal of R. I refers to an
(1) (k,n)-absorbing hyperideal if for 7" %1 € R g(ri"=*+1) € I implies that there exist
(k —1)n — k 4 2 of the r;s whose g-product is in I. In this case, if £ = 1, then I is an
n-ary prime hyperideal of R. If n = 2 and k = 1, then [ is a classic prime hyperideal

of R.
(2) (k,n)-absorbing primary hyperideal if for v "1 ¢ R, g(ri"7%*1) ¢ I implies that
g(r%kil)n*kw) € I or a g-product of (k —1)n — k + 2 of the r}s, except g(r%kil)n*kﬂ),

is in »(™™)(T).

3. ¢-(k,n)-ABSORBING HYPERIDEALS

In his paper [16], Davvaz et al. introduced a generalization of the n-ary prime hyperideals
in a Krasner (k,n)-hyperring, which they defined as weakly (k,n)-absorbing hyperideals. In

this section, we generalize this notion to the context of ¢-(k,n)-absorbing hyperideals.

Definition 3.1. Assume that HZ(R) is the set of hyperideals of R and ¢ : HZ(R) —
HZ(R) U {p} is a function. Let k be a positive integer. A proper hyperideal @) of R is said
to be ¢-(k,n)-absorbing provided that for r" %1 ¢ R g(r* 1) € Q — $(Q) implies that
there are (k — 1)n — k + 2 of the 7}s whose g-product is in Q.

Example 3.2. Consider the Krasner (2,2)-hyperring R = {0,1,z} with the hyperaddition
and multiplication defined by
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+(0]1 T 01|z
001 x 00|00
11| R 1 11101z
z|xz|1l]|{0,z} z|0]z]|0

Assume that ¢ is a function from HZ(R) to HZ(R) U {¢} defined ¢(I) = g(I?) for I €
HZ(R). Then the hyperideal @Q = {0,z} is a ¢-(2,2)-absorbing hyperideal of R.

Example 3.3. Let t > 4. Consider Krasner (4,3)-hyperring (Zgs:, +,-) where + and - are
usual addition and multiplication. Defined ¢(I) = I® for I € HI(Zsst). Then I = (5') is not
a (2, 3)-absorbing hyperideal of Zgs: since 5.5.5.5.5'=% € I — ¢(I) but 5.5.5,5.5.5!=% ¢ I.

Let ¢ : HZ(R) — HZ(R) U {¢} be a function. Clearly, every (k,n)-absorbing hyperideal
in a Krasner (m,n)-hyperring is a ¢-(k, n)-absorbing hyperideal. But, the following example

shows that the converse does not necessarily hold.

Example 3.4. Assume that R is the Krasner (2,4)-hyperring given in Example 4.7 in [1]. In
[16], it was shown that (0) is not a (1,4)-absorbing hyperideal of R. Now, defined ¢(I) = g(I®)
for I € HZ(R). In this hyperring, (0) is a ¢-(1,4)-absorbing hyperideal of R.

Theorem 3.5. Let ¢1,¢2 : HI(R) — HI(R) U {p} be two functions such that for all
I € HI(R), ¢1(I) C ¢o(I). If Q is a ¢1-(k,n)-absorbing hyperideal of R, then Q is a ¢a-
(k,n)-absorbing hyperideal.

Proof. Suppose that g(r]f”_kﬂ) € Q— ¢2(Q) for rlf”_kH € R. From ¢1(Q) C ¢2(Q), it follows
that g(rlfnfl”l) € Q — $1(Q). Since Q is a ¢1-(k,n)-absorbing hyperideal of R, we conclude
that there are (k — 1)n — k + 2 of the 7}s whose g-product is in @, as needed. g

Theorem 3.6. Let ¢ : HZ(R) — HZ(R) U {p} be a function. If Q is a ¢-(k,n)-absorbing
hyperideal of R, then Q is a ¢-(s,n)-absorbing hyperideal for all s > k.

Proof. Let us use the induction on k that if @ is ¢-(k, n)-absorbing hyperideal of R, then @ is ¢-
(k+1,n)-absorbing. Assume that @ is ¢-(2, n)-absorbing and g(r%"_z, g(r%ﬁ:%)) € Q—9¢(Q) for
some 3" € R. Since Q is ¢-(2, n)-absorbing, then there are n of the ;s except g(ry"~%) whose
g-product is in ) and so there are 2n —1 of the 7}s whose g-product is in ). This shows that @
is ¢-(3,n)-absorbing. Assume that @ is ¢-(k, n)-absorbing and g(g(r%nd),rgfill)nf(kﬂ)ﬂ) €
Q — ¢(Q) for some r%kﬂ)n_(kﬂ)ﬂ € R. Since @ is ¢-(k,n)-absorbing, we conclude that
991" V) ran 1o B T n (k1)) € Q forsome 2(n—1) < i < (k+1)n—(k+1)+1

or g(réﬁill)nf(kﬂ)“) € Q. The former case shows that @ is ¢-(k + 1,n)-absorbing. In the



6 M. Anbarloei

latter case, we obtain g(r ™", réﬁtll)n_(kﬂ)ﬂ) € @ since g(rf(n_l)) € Q. Thus Q is ¢-(k+1,n)-

absorbing.

Recall from [15] that if (R1, f1,91) and (Ra, f2, g2) are two Krasner (m,n)-hyperrings such
that 15, and 1g, are scalar identities of Ry and Ra, respectively, then (R X Ra, f1 X fa,91 X g2)

is a Krasner (m,n)-hyperring where

f = fl X f2((a17b1)7 U 7(am’bm)) = {(avb) | ae€ fl(agn%b € f2(b§n)}7
g = g1 xg(x,y1), (@ yn)) = (91(27), 92(y7)),

for all ai*, 27 € Ry and b7", 97" € Rs.

Theorem 3.7. Let (R;, fi,gi) be a commutative Krasner (m,n)-hyperring for each 1 < i <
kn —k+1 and ¢; : HL(R;) — HI(R;) U{p} be a function. Let Q; be a hyperideal of R;
foreachl1 <i<kn—k+1and ¢ = ¢1 X -+ X ¢ppp—ir1- If Q = Q1 X -+ X Qrn—k+1 1S @
¢-(k + 1,n)-absorbing hyperideal of R = Ry X -+ X Rgp_k+1, then Q; is a ¢;-(k,n)-absorbing
hyperideal of R; and Q; # R; for all1 <i<kn—k+ 1.

Proof. Let ri"=**1 ¢ R; such that g(r™~**1) € Q; — ¢;(Q;). Suppose by contradiction that
Q; is not a ¢;-(k, n)-absorbing hyperideal of R;. Define

ay = (1R17"' a]-Ri_lvT‘l)lRH_p"' alen,k+1)a
az = (1R17"' alRi_laT271Ri+17"' alen7k+1)a
Okn—k+1 = (1R17 Ty ]-Ri,1 » Tkn—k+1, 1Rz‘+17 Ty 1Rkn—k+1)7
An—k = (1R17 R ]-Ri,la ]-Ri? 1Ri+17 R 1Rkn—k+1)7
a(k+1)nf(k+l)+1 - (07 T 707 1Ri7 07 o 70)

Hence g(agkﬂ)n_(kﬂ)ﬂ)) € Q — #(Q) but g(a?™*1) ¢ Q. Since Q is a ¢-(k + 1,n)-
absorbing hyperideal of R, we conclude that one of g-productions of kn — k + 1 of as except
g(agkﬂ)n*(kﬂ)ﬂ) is in Q. This implies that there exist (k —1)n —k+2 of ;s whose g-product

is in @; which is a contradiction. Consequently, @Q; is a ¢;-(k,n)-absorbing hyperideal of R;.

Assume that (Rq, f1,91) and (Ra, f2,g2) are two Krasner (m,n)-hyperrings. Recall from
[27] that a mapping h : Ry — Ry is called a homomorphism if for all a]* € R; and b} € R;
we have (1)h(fi(ai,...,am)) = fa(h(ar),...,h(am)), (2)h(g1(b1,....,bn)) = ga(h(b1), ..., h(by)).
Moreover, recall from [19] that a function ¢ : HZ(R) — HZ(R) U {¢} is called a reduction
function of HZ(R) if ¢(P) C P and P C @ implies that ¢(P) C ¢(Q) for all P,Q € HZ(R).
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Now, assume that R; and Ry are two Krasner (m,n)-hyperring such that h: Ry — Ra is a
homomorphism. Suppose that ¢; and ¢, are two reduction functions of HZ(R;) and HI(Rz),
respectively. If ¢1(h=(I2)) = h™1(#a(I2)) for all Iy € HI(R2), then we say h is a ¢1-po-
homomorphism. Let h be a ¢1-¢2-epimorphism from R; to Ry and let I1 be a hyperideal of
Ry with Ker(h) C I;. It is easy to see that ¢a(h(11)) = h(¢1(11)).

Example 3.8. Let Ry and Ry be two Krasner (m, n)-hyperrings and ¢; and ¢3 be two empty
reduction functions of HZ(R;1) and HZ(Rz), respectively. Then every homorphism h from R;

to Ra is a ¢1-¢po-homomorphism.

Theorem 3.9. Let h : Ry — Rs be a ¢1-¢2-homomorphism, where ¢1 and ¢2 are two
reduction functions of HZ(Ry) and HZ(Rz), respectively. Then
(1) If Q2 is a ¢pa-(k,n)-absorbing hyperideal of Rz, then h='(Q2) is a ¢1-(k,n)-absorbing
of Ry.
(2) If h is surjective and Q1 s a ¢1-(k,n)-absorbing hyperideal of Ry with Ker(h) C Q1,
then h(Q1) is a ¢a-(k,n)-absorbing hyperideal of Ra.

Proof. (1) Let Q2 be a ¢o-(k,n)-absorbing hyperideal of Ry and g(r¥" %) ¢ h=1(Q2) —
¢1(h~1(Q2)) for some i **1 € Ry, Then we get h(g(ri™ 1)) = g(h(r1),- -, h(rkn_k+1)) €
Q2 — $2(Q2). Since Q3 is a ¢o-(k,n)-absorbing hyperideal of Ry, we conclude that the image
of h of (k—1)n —k + 2 of r;s whose g-product is in Q2. Then there exist (kK — 1)n — k + 2 of
r:s whose g-product is in h=1(Q2). Thus h™1(Q2) is a ¢1-(k, n)-absorbing of Ry.

(2) Suppose that @i is a ¢1-(k,n)-absorbing hyperideal of R; with Ker(h) C @; and
h is surjective. Let g(s®" %) € h(Q1) — ¢o(h(Q1)) for some s5""**1 ¢ Ry Then there
exists 7; € Ry for every 1 < i < kn — k + 1 such that h(r;) = s;. Hence we get
h(g(r¥ =y = g(h(r1), -, h(Ten—rs1)) = g(s5"7F1) € h(Qy). Since Ker(h) € Qp and h is
a ¢1-¢o-epimorphism, we have g(r’fn_kH) € Q1 — ¢1(Q1). Since @y is a ¢1-(k, n)-absorbing
hyperideal of Ry, there are (k —1)n — k + 2 of r)s whose g-product is in Q1. Now, since h is a

homomorphism, we are done.

Let P be a hyperideal of R. Then the set R/P = {f(a’ !, P, aity) | ai_l,aﬁl € R}
with m-ary hyperoperation f and n-operation g is the quotient Krasner (m,n)-hyperring of
R by P. Theorem 3.2 in [l] shows that the projection map 7 from R to R/P, defined by
7(r) = f(r, P,00™=2)  is homomorphism. Let P be a hyperideal of R and ¢ be a reduction
function of HZ(R). Then the function ¢, from HZ(R/P) to HZ(R/P) U {¢} defined by
¢q(I/P) = ¢(I)/P is a reduction function. Now, we have the following theorem as a result of

Theorem @ that is easily verified, and hence we omit the proof.
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Theorem 3.10. Let Q@ and P be two hyperideals of R and ¢ be a reduction function of
HZ(R) such that P C ¢(Q) C Q. If Q is a ¢-(k,n)-absorbing hyperideal of R, then Q/P is a
¢q-(k,n)-absorbing hyperideal of R/P.

4. ¢-(k,n)-ABSORBING PRIMARY HYPERIDEALS

Definition 4.1. Suppose that HZ(R) is the set of hyperideals of R and ¢ : HZ(R) —
HZ(R) U {¢} is a function. Let k be a positive integer. A proper hyperideal @ of R is

called ¢-(k,n)-absorbing primary if g(ri"=**1) ¢ Q — ¢(Q) for ¥~ *1 ¢ R implies that

g(r%k_l)n_kw) € Q or a g-product of (k — 1)n — k + 2 of 7s ,except g(rgc_l)n_k“), is in

P (Q),

Example 4.2. Every ¢-(k,n)-absorbing of a Krasner (m,n)-hyperring is ¢-(k,n)-absorbing

primary.
The converse may not be always true as it is shown in the following example.

Example 4.3. Consider the Krasner (2, 2)-hyperring R = [0, 1] with the 2-ary hyperoperation
defined by

{max{a,b}}, ifa#b,
[0, al, ifa =0,

ad®b=

and multiplication is the usual multiplication on real numbers. Suppose that ¢ is a function
from HZ(R) to HZ(R) U {p} defined ¢(I) = N2, g(I?) for I € HI(R).Then the hyperideal
Q@ = [0,0.5] is a ¢-(2,2)-absorbing primary hyperideal of R but it is not ¢-(2,2)-absorbing.

The next theorem provides us how to determine ¢-(k,n)-absorbing primary hyperideal to

be (k,n)-absorbing primary.

Theorem 4.4. Assume that Q) is a hyperideal of R and ¢ : HI(R) — HI(R) U {p} is a
reduction function such that ¢(Q) is a (k,n)-absorbing primary huperideal of R. If Q is a
¢-(k,n)-absorbing primary hyperideal of R, then Q is a (k,n)-absorbing primary hyperideal of
R.

Proof. Let r¥" "1 ¢ R such that g(ri"**1) ¢ @ and g(r%kil)n*kﬁ) ¢ Q. Assume
that g(r®" ") € $(Q). Since ¢(Q) is a (k,n)-absorbing primary hyperideal of R and
g(r%k_l)n_kw) ¢ #(Q), we conclude that a g-product of (k — 1)n — k + 2 of the r}s, except
g(r%k_l)n_k—u) is in (™™ (4(Q)) € r™™(Q), as needed. Suppose that g(rF" 1) ¢ $(Q).

Since @ is a ¢-(k,n)-absorbing primary hyperideal of R, we are done.
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In the following, the relationship between a ¢-(k, n)-absorbing primary hyperideal of R and

its radical is considered.

Theorem 4.5. Let Q be a hyperideal of R and ¢ : HI(R) — HZ(R) U {p} be a function
such that r™™ ($(Q)) = ¢(r™™(Q)). If Q is a ¢-(k,n)-absorbing primary hyperideal of R,
then (™™ (Q) is a ¢-(k,n)-absorbing hyperideal of R.

Proof. Let "1 ¢ R such that g(r™**1) ¢ Q) — #(r™™(Q)).  As-

k—1)n—k+2
(k=1)n— %) are

sume that all products of (kK — 1)n — k + 2 of the s except g(r)
not in r™M(Q). Since g(r¥ ) € r(mn(Q), then there exists s € Z* with
g(g(r’f”_kﬂ)(s),l(” S)) € @, for s < n or g(l)(g(r]fn_k+1)(s)) € Q, for s > n, s =

[(n —1) 4+ 1. In the former case, we get g(g(rl)(s),g(rg)(s) e g(Thn— kH)(s) (n— s)) e Q. If

9(g(r)®, g(ra)®, -+ g(rkn—111),179) € ¢(Q), we obtain g(ri" 1) € (M (4(Q)) =
o(rmm(Q ( )), a contradiction. Since @ is a ¢-(k,n)-absorbing primary hyperideal of R, then
9(g(r)®, g(r) .- grg1yn42)®), 107) = g(g(r{* "), 1079y € @ which

means g(ryC Dn= k+2) € r(m")(Q). For the other case, we have a similar argument. Con-

sequently, 7(™™)(Q) is a ¢-(k, n)-absorbing hyperideal of R.

Example 4.6. Assume that H = Z3[X,Y, Z] and Q = (X3Y3Z3). Then R = H/Q is a Kras-
ner (m, n)-hyperring with ordinary addition and ordinary multiplication. Defined ¢(I/Q) = Ogr
for I/Q € HZ(R). In the hyperring, Q/Q is a ¢-(1, 3)-absorbing primary hyperideal of R and
™) (6(Q/Q)) # o(r™™(Q/Q)). Note that ™™ (Q/Q) is not a ¢-(1,3)-absorbing hyper-
ideal of R because 2XYZ +Q = 2X + Q)(Y + Q)(Z + Q) € ™M (Q/Q) — (™™ (Q/Q))
but none of the elements (2X + Q), (Y + Q) and (Z + Q) are not in ™™ (Q/Q)).

Theorem 4.7. Assume that ¢ : HI(R) — HI(R) U {p} is a function. If Q is a ¢-(k,n)-
absorbing primary hyperideal of R, then Q is a ¢-(s,n)-absorbing primary hyperideal for all
s> k.

Proof. Let @ be a ¢-(k,n)-absorbing primary hyperideal of R. Suppose that
g(g(r ?H) r(k+1)n_(k+1)+1) € Q — ¢(Q) for some rgkﬂ)n_(kﬂ)ﬂ € R. Put g(r ”+2) = aj.

»'n43
Then we conclude that g(a1, -, 7kt 1)n—(kt1)4+1) € Q or a g-product of kn — k + 1 of the
78, except g(ar,  , T(ky1)n—(k+1)+1) 1S in ™) (Q) as Q is a ¢-(k,n)-absorbing primary

hyperideal of R. Since r(m*")(Q) is a hyperideal of R and r”+2 € R, we conclude that

9(r1, a3, - 7T(k+1)n—(k+1)+1) € T(m’n)(Q) or --- or g(Tni2,Tni3, 77“(k+1)n—(k+1)+1) €
(™) (Q) and so Q is (k + 1,n)-absorbing primary.
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Theorem 4.8. Let ¢1,¢2 : HI(R) — HI(R) U {p} be two functions such that for all
I € HI(R), p1(I) C ¢2(I). If Q is a ¢1-(k,n)-absorbing primary hyperideal of R, then Q is a
¢2-(k,n)-absorbing primary hyperideal.

Proof. It is proved in a similar way to Theorem @ 0

Theorem 4.9. Let ¢ : HZ(R) — HZ(R) U {p} be a function. If Q is a ¢-(1,n)-absorbing
primary hyperideal of R, then Q is a ¢-(2,n)-absorbing primary hyperideal.

Proof. Let @ be a ¢-(1,n)-absorbing primary hyperideal and g(g(r}), - ,ron—1) € Q — ¢(Q)
for some 77"~! € R. Then we get g(r}') € Q or g(riﬁ_ll) e r(m™)(Q). By definition of hyper-
ideal, we conclude that g(r1,7n41, - ,T2n—1) € T(m’”)(Q) or -+ or g(r1, 41, ", 2n—1) €

7™ (Q) since 77 € R. Consequently, Q is a ¢-(2,n)-absorbing primary hyperideal of R.

Let @ be a proper hyperideal of R and ¢ : HZ(R) — HZ(R) U {¢} be a function. @ refers
to a strongly ¢-(k,n)-absorbing primary hyperideal of R if g(Q]f"*kH) C Q@ — ¢(Q) for some
hyperideals Q’f”_kH of R implies that g(Q; (k=L)n— k+2) C Q or a g-product of (k—1)n—k+2
of Q}s, except g(ng Ln— k+2), is a subset of (™™ (Q). In the sequel, we assume that all ¢-
(k,n)-absorbing primary hyperideals of R are strongly ¢-(k,n)-absorbing primary hyperideal.
Recall from [16] that a proper hyperideal @ of R is called weakly (k,n)-absorbing primary
if 0 # g(ry hn— k+1) € Q for rk” k+1 ¢ R implies that g(rq (k=1)n— k+2) € @ or a g-product of

(k—1)n —k+ 2 of r)s ,except g(ry (k=1)n— k+2) is in 7™ (Q).

Theorem 4.10. Suppose that Q is a proper hyperideal of a commutative Krasner (m,2)-
hyperring R and ¢ : HZ(R) — HZI(R)U{} is a function. Then the followings are equivalent:
(1) Q is a $-(2,2)-absorbing primary hyperideal of R.
(2) Q/o(Q) is a weakly (2,2)-absorbing primary hyperideal of R/¢(Q).

Proof. (1) = (2) Let Q be ¢-(2,2)-absorbing primary and for alf*, a3, a37* € R,

0(Q) # g(farl V. 0(Q).all ), Flaxi ™, 6(Q) ). flazy V), 6(Q), a3 1))
= fle(). 9@, 6(Q). g<a1§211§>, < gadm)
€ Q/(Q).
Then
Fla(@), 9@l 1), 0,0 T), - gladm)
= g(F(ar ™0, a1t 1), flagy Y, 0,a30,)), Fladi ™, 0,037, 1))

€Q—9(Q).
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Since @ is a ¢-(2,2)-absorbing primary hyperideal of R, we get
9(f(ary",0,aift ), flaz " o, m )

= f(g(ai}),- -,g( ) (

9(f(a 25 - ;0,0 %?ZH)) f(agg ) 07 gTﬂ )

= f(g(a31),- 79( ) (

or
Q(f(a1( - ,0,a %?ZH)) f(aggi Y ,0,a 3?2?1)))
= flg(a}), - 9@l 1)), 0,9(as(i i), g(ati) € v (Q).
It implies that
Flo(adh), - g(@ii 1), 6(Q).g(ali ).+ L g(a?m))

= g(f(a)y ", 8(Q)alf ), Fla3i ™V, 6(Q), a3 1)) € Q/6(Q),

f(g(ad)), g(aiﬁ”i) 6(Q),glasiiy): - gladm)
=g(f(a 21 1),¢>(Q) az z-l—l)) f(aglil)a(ﬁ(Q)vag?;ﬂ)))
e r™m(Q)/$(Q) = r™M(Q/9(Q)),

Flg(ail), - g(a?&i*;) $(Q), g(ayi 1), gladm))
= g(f(a ™, 6(Q), altn), Fa3i ™, 6(Q), ad 1))
e rmm(Q)/6(Q) = r™™(Q/(Q))-

(2) = (1) Let g(r}) € Q—6(Q) for some 13 € R. Therefore we obtain f(g(r3), p(Q),00m=2)) #

#(Q). Tt follows that

$(Q) # g(f(r1,d(Q),02), f(ra, 6(Q), 0 72)), f(rs, $(Q), 0™ 2))) € Q/H(Q).

By the hypothesis, we get

g(f(r1, ¢(@),00"72), f(r2,$(Q),00""2))) = f(g(r}), $(Q),0" ")) € Q/(Q).

or

9(f(ra, #(Q), 072, f(rs, (Q), 0™ =2)) = f(g(r}), #(Q), 0" ~2)) € ("™ (Q) /$(Q).
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or

g(f(r1, (Q), 02, f(r3, (Q), 0™ =2)) = f(g(r}), #(Q), 0" 2)) € ("™ (Q) /$(Q).

This shows that g(r?) € Q or g(r3) € r™™(Q) or g(r3) € r™™(Q). Consequently, Q is a
¢-(2,2)-absorbing primary hyperideal of R.

Suppose that I is a weakly (2,2)-absorbing primary hyperideal of a commutative Krasner
(m, 2)-hyperring R. Recall from [16] that (z,y,z) is said to be (2,2)-zero primary of I for
z,y,z € R, if g(x,y,2) =0, g(z,y) ¢ I, g(y,2) ¢ v (I) and g(z,z) ¢ r™™(I). Now,
assume that @ is a ¢-(2,2)-absorbing primary hyperideal of a commutative Krasner (m,2)-
hyperring R. Then we say (z,y, z) is a ¢-(2,2) primary of @ for some z,y, z € R if g(z,y,2) €
#(Q), g(z,y) ¢ Q, g(y, 2) ¢ r"™™(Q) and g(z, z) ¢ ™™ (Q). It is easy to see that a proper
hyperideal @ of R is ¢-(2, 2)-absorbing primary that is not (2, 2)-absorbing primary if and only
if @ has a ¢-(2,2) primary (x,y, z) for some z,y,z € R.

Theorem 4.11. Let R be a commutative Krasner (m,2)-hyperring and let ¢ : HZ(R) —
HZ(R) U {p} be a function. Let Q be a ¢-(2,2)-absorbing primary hyperideal of R and
x,y,z € R. Then the followings are equivalent:
(1) (x,y,2) is a $-(2,2) primary of Q.
(2) (f(z,6(Q),0072), f(y, 6(Q),00""2), f(z,6(Q),00"?)) is a (2,2)-zero primary of
Q/o(Q).

Proof. (1) = (2) Let (z,y,z) be a ¢-(2,2) primary of Q. This means that
g(z.y.2) € Q) glx,y) ¢ Q, gly,2) ¢ r™(Q) and g(x,2) ¢ r™"(Q). This
implies that f(g(z,9),Q,0"?) ¢ Q/¢(Q), fl9(y,2),¢(Q),0" ) ¢ »mm(Q)/6(Q)
and f(g(z,2),0(Q),00m2) ¢ (M) (Q)/4(Q). By Theorem , we conclude that
(f (2, $(Q),00"2)), £(y,6(Q),00"2), f(2,¢(Q), 00" ")) is a (2, 2)-zero primary of Q/$(Q).

(2) = (1) Assume that (f(z, ¢(Q),00"~), f(y, ¢(Q), 0"~?), f(2,6(Q),00"~?) isa (2,2)-
zero primary of Q/¢(Q). Thus g(z,y,2) € ¢(Q) but f(g(x,),Q,00" ) ¢ Q/H(Q),
Fl9(y,2),6(Q),00"2)) ¢ r(m™(Q)/6(Q) and f(g(w,2),6(Q),0") ¢ r(™M(Q)/¢(Q).
Hence g(z,y,2) € ¢(Q), g(z,y) & Q, g(y.2) ¢ r™M(Q) and g(z,2) ¢ r™M(Q). It im-
plies that (z,y, z) is a ¢-(2,2) primary of Q. ¢

Theorem 4.12. Let R be a commutative Krasner (m,2)-hyperring and let ¢ : HIZ(R) —
HZ(R)U{p} be a function. Let Q be a ¢-(2,2)-absorbing primary hyperideal of R. If (z,y, 2)
is a $-(2,2) primary of Q for some x,y,z € R, then

(1) g(z,y,Q),9(y, 2,Q),9(z,2,Q) € Q).
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(2) g(z,Q®),g(y,QP),g(z,Q?¥) C ¢(Q).
(3) 9(Q®) C ¢(Q).

Proof. (1) Let (z,y,z) be a ¢-(2,2) primary of a ¢-(2,2)-absorbing primary hyperideal Q.
By Theorem , (f(z,0(Q),00=2)), f(y, d(Q),00™=2), f(2,6(Q),0 ) is a (2, 2)-zero pri-
mary of Q/¢(Q) since (z,vy,2) is a ¢-(2,2) primary of ). Thus

Fla(2,9,Q),6(Q),00" ) = f(g(y, 2,Q),(Q), 0 ?) = f(g(z, 2,Q),6(Q), 0 ?) = (Q),

by Theorem 4.9 in [16], which implies g(z,y, @), 9(y, 2, Q) and g(z, z, Q) are subsets of ¢(Q).

(2) Theorem shows that (f(z, $(Q),00"2)), f(y, #(Q),00™2)), f(z,6(Q),00™2)
is a (2,2)-zero primary of Q/¢(Q).  Moreover, Theorem 1.10 shows that Q/9(Q)
is a weakly (2,2)-absorbing primary of R/¢(Q). Then f(g(z,Q®),o(Q),00m2)
Flg(y, @), ¢(Q), 00" = f(g(2,Q?), 6(Q),0"~?) = $(Q), by Theorem 4.9 of [16]. Con-
sequently, g(z, Q?), g(y,QP), g(z, Q?)) are subsets of ¢(Q).

(3) Again, (f(z,$(Q),02), f(y, 9(Q),00""), f(2,6(Q),00"2)) is a (2,2)-zero primary
of Q/p(Q) and Q/¢(Q) is a weakly (2, 2)-absorbing primary of R/¢(Q) by Theorem and
Theorem , respectively, then f(g(Q®),d(Q),00"=2) = $(Q) by Theorem 4.10 in [16].
Thus g(Q®) is a subset of ¢(Q). g

Theorem 4.13. Suppose that Q is a proper hyperideal of a commutative Krasner (m,n)-
hyperring R and ¢ : HZ(R) — HZ(R)U{p} is a function. Then the followings are equivalent:
(1) @ is a ¢-(k,n)-absorbing primary hyperideal of R.
(2) Q/P(Q) is a weakly (k,n)-absorbing primary hyperideal of R/¢(Q).

Proof. It can be easily proved in a similar manner to the proof of Theorem . 0

Suppose that @ is a ¢-(k,n)-absorbing primary hyperideal of R. Then we say (r’f(n_l)ﬂ)

is a ¢-(k,n) primary of @ for some rlf(nfl)ﬂ € Rif g(r]f(nfl)ﬂ) € 0(Q), g(r%kil)n*kw) ¢ Q
and a g-product of (k —1)n — k + 2 of s, except g(rgk_l)n_kﬂ), is not in (™™ (Q).

Theorem 4.14. Let R be a commutative Krasner (m,2)-hyperring and let ¢ : HZ(R) —
HZ(R) U {¢} be a function. Let Q be a ¢-(k,n)-absorbing primary hyperideal of R and
rlf(n_l)H € R. Then the followings are equivalent:
(1) (r’f(nfl)ﬂ) is a ¢-(k,n) primary of Q.
(2 (flr8(Q), 07D, f(ri(uy1, (Q), 077D is a (k,n)-zero primary of
Q/9(Q).

Proof. 1t is seen to be true in a similar manner to Theorem . 0
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Theorem 4.15. Let R be a commutative Krasner (m,n)-hyperring and let ¢ : HI(R) —
HI(R) U {¢} be a function. Let Q be a ¢-(k,n)-absorbing primary hyperideal of

R. If (rlf(n_l)H) is a ¢-(k,n) primary of @Q for some r]f(n_l)H € R, then
g(rla"' aav"' 7’Fi\27"' aﬁ:a"' 7rk(n—1)+17Q(s)) g ¢(Q) fOT’ every ila"' 7iS € {]-7 7k(n_

D+1}andl1 <s<(k—1)n—k+2.

Proof. (f(Th ¢(Q)) O(m_2))7 T f(rk(nfl)%»lu ¢(Q)7 0(m—2)) is a (ka n)—zero primary of Q/¢(Q)
by Theorem and Q/¢(Q) is a weakly (k,n)-absorbing primary of R/¢(Q) by Theorem
. Then we conclude that

Fg(f(r1, d(Q),00mD) o | f(7y, $(Q), 00D | f(igy, $(Q), 002, -,
FT, 0(@Q), 00D oo F (1)1, 9(Q), 0™2), Q1)) $(Q), 0" 2)) = $(Q).

for every iy, - ,is € {l,--- Jk(n—1)+ 1} and 1 < s < (k—1)n — k+ 2, by Theorem 4.9 of
[16] Thus, g(rla"' ’Fi\m"' 7@7"' 777727"' 77ak(n—1)+17Q(8)) - ¢(Q) 0

Theorem 4.16. Let R be a commutative Krasner (m,n)-hyperring and let ¢ : HZ(R) —
HZ(R) U{p} be a function. Let Q be a ¢-(k,n)-absorbing primary hyperideal of R but is not
a (k,n)-absorbing primary. Then g(Q*"~D+1) C ¢(Q).

Proof. This can be proved, by using Theorem , in a very similar manner to the way in

which was proved.

Now, let give some related corollaries.

Corollary 4.17. Let ¢ : HZ(R) — HZI(R) U{p} be a function. If Q is a ¢-(k,n)-absorbing
primary hyperideal of R such that g(QF—1+1) Z ¢(Q), then Q is a (k,n)-absorbing primary
hyperideal of R.

Corollary 4.18. Let ¢ : HI(R) — HI(R) U {¢} be a function and let Q be a ¢-(k,n)-
absorbing primary hyperideal of R that is not a (k,n)-absorbing primary hyperideal of R.

Then r(m)(Q) = r(mm) ($(Q)).

Proof. By Theorem , we have g(QF("~—1+1) C ¢(Q) as Q is not a (k, n)-absorbing primary.
This means (™™ (Q) C (™™ (4(Q)). On the other hand, from ¢(Q) C Q, it follows that
rmm)($(Q)) € ™M (Q). Hence r™™(Q) = ™™ (¢(Q)). g
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Corollary 4.19. Let ¢ : HZ(R) — HZI(R)U{p} be a function and let Q be a proper hyperideal
of R such that 7™ (4(Q)) is a (k,n)-absorbing hyperideal of R. Then Q is a ¢-(k + 1,n)-
absorbing primary hyperideal of R if and only if Q is a (k+ 1,n)-absorbing primary hyperideal
of R.

Proof. (=) Let @ be a ¢-(k+1,n)-absorbing primary hyperideal of R. If Q) is not a (k+1,n)-
absorbing primary hyperideal of R. Hence 7™ (Q) = (™) ((Q)) by Corollary . Then
r(Mm™)(Q) is a (k,n)-absorbing hyperideal of R which implies that Q is is a (k4 1, n)-absorbing
primary hyperideal of R by Theorem 4.9 in [18].

(<) It is clear.

Theorem 4.20. Let h : Ry — Ry be a ¢1-¢o-homomorphism, where ¢1 and ¢o are two
reduction functions of HZ(R1) and HI(Rz), respectively. Then
(1) If Qa is a ¢2-(k,n)-absorbing primary hyperideal of Ra, then h™1(Q2) is a ¢1-(k,n)-
absorbing primary hyperideal of Ry.
(2) If h is surjective and Q1 is a ¢1-(k,n)-absorbing primary hyperideal of Ry with
Ker(h) C Q1, then h(Q1) is a ¢2-(k,n)-absorbing primary hyperideal of Ra.

Proof. (1) Let Qg be a ¢o-(k, n)-absorbing primary hyperideal of Ry. Assume that r5"~*+1

Ry such that g(r{" ") € h7'(Q2) — é1(h1(Q2)). Then we get h(g(r{" "))
g(h(r1), - s h(Tkn—k+1)) € Q2 — ¢2(Q2). Since Q2 is a ¢a-(k,n)-absorbing primary

S

hyperideal of Rg, we obtain either g(h(r1), -, Mrp—1m—it2)) = h(g(rgk_l)n_kw)) €
()2 which means g(r%k_l)n_kw) € h1(Q2), or g(h(ry),--- 7h/(r\i>7"' S (Thn—kt1)) =
h(g(re, - Fis  Thnekrny)) € 7™™(Q2) which means g(ri,---, 7, Tgnok1) €

= () (Qy)) = (™™ (h=1(Q5)) for some 1 < i < n. Hence h=1(Qy) is a ¢1-(k, n)-absorbing
primary hyperideal of R;.

(2) Assume that h is surjective and @ is a ¢i1-(k,n)-absorbing primary hyperideal of
Ry with Ker(h) € Q1. Let s %1 ¢ Ry such that g(si" ") € h(Q1) — ¢2(h(Q1)).
Therefore there exist rlf”_k+1 € Ry with h(r1) = s1,--+ ,h(rkn—k+1) = Skn—k+1. Hence we
get A(g(ry" 1) = g(h(r1), -+ h(rin-r+1)) = g(si"**1) € h(Q1). Since h is a ¢1-go-

epimorphism and Ker(h) C Qq, we have g(ri"=*1) € Q; — ¢1(Q1). Since Q is a ¢1-(k,n)-
(k—1)n—k-+2)

absorbing primary hyperideal of Ry, we conclude that g(r; ) € @1 which implies
Alg(r{" ") = g(h(m), -+ A ki) = 98T € h(Qu),

or g(rla e 77/%) et 7rkn—k+1) S T(mm) (Ql) lmphes h’(g(rlv e 57/‘\2'7 e )Tkn—k-l—l) -

g(h('f'l),"' 7h(ri)7”' 7h(7aknfk+1)> - 9(817"' 7‘§\ia”' ,Skn,k+1) S h(r(m7n)(Q1)) g

(M) (h(Q1)) for some 1 < i < (k—1)n — k + 2. Consequently, h(Q1) is a ¢o-(k, n)-absorbing
primary hyperideal of Ry.
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As an instant consequence of the previous theorem, we get the following explicit result.

Theorem 4.21. Let Q) and P be two hyperideals of R and ¢ be a reduction function of HZ(R)
such that P C ¢(Q) C Q. If Q is a ¢-(k,n)-absorbing primary hyperideal of R, then Q/P is
a ¢q-(k,n)-absorbing primary hyperideal of R/P.

Theorem 4.22. Let (R;, fi, gi) be a commutative Krasner (m,n)-hyperring for each 1 < i <
kn—k+1 and ¢; : HZ(R;) — HIZ(R;)U{p} be a function. Let Q; be a hyperideal of R; for each
1<i<kn—k+landp=0¢1 X - X Ppn_pr1- IfQ=0Q1 X+ X Qn—p+1 s a ¢-(k+1,n)-
absorbing primary hyperideal of R = Ry X -+ X Rpp_gy1, then Q; is a ¢;-(k,n)-absorbing
primary hyperideal of R; and Q; # R; for all 1 <i <kn —k+ 1.

Proof. By using an argument similar to that in the proof of Theorem @, one can easily

complete the proof.

5. CONCLUSION

In this paper, motivated by the research works on ¢-2-absorbing (primary) ideals of com-
mutative rings, we propsed and investigated the notions of ¢-(k,n)-absorbing and ¢-(k,n)-
absorbing primary hyperideals in a Krasner (m,n)-hyperring. Some of their essential charac-
teristics were analysed. Moreover, the stabilty of the notions were examined in some hyperring-
theoretic constructions. As a new research subject, we suggest the concept of ¢-(k, n)-absorbing

0-primary hyperideals, where § is an expansion function of HZ(R).
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