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Abstract. Various expansions of prime hyperideals have been studied in a Krasner (m,n)-

hyperring R. For instance, a proper hyperideal Q of R is called weakly (k, n)-absorbing

(primary) provided that for rkn−k+1
1 ∈ R, g(rkn−k+1

1 ) ∈ Q − {0} implies that there are

(k − 1)n − k + 2 of the r,is whose g-product is in Q
(

g(r
(k−1)n−k+2
1 ) ∈ Q or a g-product

of (k − 1)n − k + 2 of r,is ,except g(r
(k−1)n−k+2
1 ), is in r(m,n)(Q)

)
. In this paper, we aim

to extend the notions to the concepts of ϕ-(k, n)-absorbing and ϕ-(k, n)-absorbing primary

hyperideals. Assume that ϕ is a function from HI(R) to HI(R) ∪ {φ} such that HI(R) is

the set of hyperideals of R and k is a positive integer. We call a proper hyperideal Q of R a

ϕ-(k, n)-absorbing (primary) hyperideal if for rkn−k+1
1 ∈ R, g(rkn−k+1

1 ) ∈ Q − ϕ(Q) implies

that there are (k − 1)n − k + 2 of the r,is whose g-product is in Q
(

g(r
(k−1)n−k+2
1 ) ∈ Q

or a g-product of (k − 1)n − k + 2 of r,is ,except g(r
(k−1)n−k+2
1 ), is in r(m,n)(Q)

)
. Several

properties and characterizations of them are presented.
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1. Introduction

Extensions of prime and primary ideals to the context of ϕ-prime and ϕ-primary ideals were
studied in [7, 12]. Afterwards, Khaksari in [20] and Badawi et al. in [9] introduced ϕ-2-prime
and ϕ-2-primary ideals, respectively. Let R be a commutative ring. Suppose that ϕ is a
function from I(R) to I(R) ∪ {φ} where I(R) is the set of ideals of R. A proper ideal I of R
is said to be a ϕ-2-absorbing ideal if whenever x, y, z ∈ R, with xyz ∈ I − ϕ(I) implies that
xy ∈ I or xz ∈ I or yz ∈ I. Also, A proper ideal I of R is called a ϕ-2-absorbing primary ideal
if for every x, y, z ∈ R, xyz ∈ I − ϕ(I) implies that xy ∈ I or xz ∈ r(I) or yz ∈ r(I).

Hyperstructures are algebraic structures equipped with at least one multi-valued operation,
called a hyperoperation. A hyperoperation on a non-empty set is a mapping from to the
nonempty power set. Hundreds of papers and several books have been written on this topic
(for more details see [2, 10, 11, 13, 17, 21, 26, 30, 32, 33, 34]). An n-ary extension of algebraic
structures is the most natural method for deeper understanding of their fundamental prop-
erties. Mirvakili and Davvaz in [28] introduced (m,n)-hyperrings and gave several results in
this respect. They defined and described a generalization of the notion of a hypergroup and
a generalization of an n-ary group, which is called n-ary hypergroup [14]. Some review of the
n-ary structures can be found in in [22, 23, 24, 25, 31]. One important class of hyperrings,
where the addition is a hyperoperation, while the multiplication is an ordinary binary oper-
ation, is Krasner hyperring. An extension of the Krasner hyperrings, which is a subclass of
(m,n)-hyperrings, was presented by Mirvakili and Davvaz [27], which is called Krasner (m,n)-
hyperring. Some important hyperideals namely Jacobson radical, nilradical, n-ary prime and
primary hyperideals and n-ary multiplicative subsets of Krasner (m,n)-hyperrings were defined
by Ameri and Norouzi in [1]. Afterward, the concept of (k, n)-absorbing (primary) hyperideals
was studied by Hila et al. [18]. Norouzi et al. gave a new definition for normal hyperideals
in Krasner (m,n)-hyperrings, with respect to that one given in [27] and they showed that
these hyperideals correspond to strongly regular relations [29]. Direct limit of a direct system
was defined and analysed by Asadi and Ameri in the category of Krasner (m,n)-hyperrigs [8].
The notion of δ-primary hyperideals in Krasner (m,n)-hyperrings, which unifies the prime
and primary hyperideals under one frame, was presented in [4]. Recently, Davvaz et al. in-
troduced new expansion classes, namely weakly (k, n)-absorbing (primary) hyperideals in a
Krasner (m,n)-hyperring [16].

In this paper, we introduce and study the notions of ϕ-(k, n)-absorbing and ϕ-(k, n)-
absorbing primary hyperideals in a commutative Krasner (m,n)-hyperring. A number of main
results are given to explain the general framework of these structures. Among many results in
this paper, it is shown (Theorem 3.6) that if Q is a ϕ-(k, n)-absorbing hyperideal of R, then Q

is a ϕ-(s, n)-absorbing hyperideal for all s ≥ k. Although every ϕ-(k, n)-absorbing of a Krasner
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(m,n)-hyperring is ϕ-(k, n)-absorbing primary, Example 4.3 shows that the converse may not
be always true. It is shown (Theorem 4.13) that Q is a ϕ-(k, n)-absorbing primary hyperideal
of R if and only if Q/ϕ(Q) is a weakly (k, n)-absorbing primary hyperideal of R/ϕ(Q). In
Theorem 4.16, we show that if Q is a ϕ-(k, n)-absorbing primary hyperideal of R but is not a
(k, n)-absorbing primary, then g(Qk(n−1)+1) ⊆ ϕ(Q). As a result of the theorem we conclude
that if Q is a ϕ-(k, n)-absorbing primary hyperideal of R that is not a (k, n)-absorbing primary
hyperideal of R, then r(m,n)(Q) = r(m,n)(ϕ(Q)).

2. Krasner (m,n)-hyperrings

In this section, we summarize the preliminary definitions which are related to Krasner
(m,n)-hyperrings.

Let A be a non-empty set and P ∗(A) the set of all the non-empty subsets of A. An n-
ary hyperoperation on A is a map f : An −→ P ∗(A) and the couple (A, f) is called an
n-ary hypergroupoid. The notation aji will denote the sequence ai, ai+1, ..., aj for j ≥ i and
it is the empty symbol for j < i. If G1, ..., Gn are non-empty subsets of A, then we define
f(Gn

1 ) = f(G1, ..., Gn) =
⋃
{f(an1 ) | ai ∈ Gi, 1 ≤ i ≤ n}. If bi+1 = ... = bj = b, we write

f(ai1, b
j
i+1, c

n
j+1) = f(ai1, b

(j−i), cnj+1). If f is an n-ary hyperoperation, then t-ary hyperopera-
tion f(l) is given by

f(l)(a
l(n−1)+1
1 ) = f

(
f(..., f(f(an1 ), a

2n−1
n+1 ), ...), a

l(n−1)+1
(l−1)(n−1)+1

)
,

where t = l(n− 1) + 1.

Definition 2.1. [27] (R, f, g), or simply R, is defined as a Krasner (m,n)-hyperring if the
following statements hold:
(1) (R, f) is a canonical m-ary hypergroup;
(2) (R, g) is a n-ary semigroup;
(3) The n-ary operation g is distributive with respect to the m-ary hyperoperation f , i.e., for
every ai−1

1 , ani+1, x
m
1 ∈ R, and 1 ≤ i ≤ n,

g

(
ai−1
1 , f(xm1 ), ani+1

)
= f

(
g(ai−1

1 , x1, a
n
i+1), ..., g(a

i−1
1 , xm, ani+1)

)
;

(4) 0 is a zero element of the n-ary operation g, i.e., for each an1 ∈ R , g(ai−1
1 , 0, ani+1) = 0.

Throughout this paper, R denotes a commutative Krasner (m,n)-hyperring with the scalar
identity 1.

A non-empty subset T of R is called a subhyperring of R if (T, f, g) is a Krasner (m,n)-
hyperring. The non-empty subset I of R is a hyperideal if (I, f) is an m-ary subhypergroup
of (R, f) and g(xi−1

1 , I, xni+1) ⊆ I, for each xn1 ∈ R and 1 ≤ i ≤ n.
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Definition 2.2. [1] Let I be a proper hyperideal of R. I refers to a prime hyperideal if for
hyperideals In1 of R, g(In1 ) ⊆ P implies Ii ⊆ I for some 1 ≤ i ≤ n.

Lemma 4.5 in [1] shows that the proper hyperideal I of R is prime if for all an1 ∈ R, g(an1 ) ∈ I

implies ai ∈ I for some 1 ≤ i ≤ n.

Definition 2.3. [1] The radical of a proper hyperideal I of R, denoted by r(m,n)(I) is the
intersection of all prime hyperideals of R containing I. If the set of all prime hyperideals which
contain I is empty, then r(m,n)(I) = R.

It was shown (Theorem 4.23 in [1]) that if a ∈ r(m,n)(I) then there exists s ∈ N with
g(a(s), 1

(n−s)
R ) ∈ I for s ≤ n, or g(l)(a

(s)) ∈ I for s = l(n− 1) + 1.

Definition 2.4. [1] A proper hyperideal I of R is primary if g(an1 ) ∈ I for an1 ∈ R implies
ai ∈ I or g(ai−1

1 , 1R, a
n
i+1) ∈ r(m,n)(I) for some 1 ≤ i ≤ n.

Theorem 4.28 in [1] shows that the radical of a primary hyperideal of R is prime.

Definition 2.5. [18] Let I be a proper hyperideal of R. I refers to an
(1) (k, n)-absorbing hyperideal if for rkn−k+1

1 ∈ R, g(rkn−k+1
1 ) ∈ I implies that there exist

(k − 1)n− k + 2 of the r,is whose g-product is in I. In this case, if k = 1, then I is an
n-ary prime hyperideal of R. If n = 2 and k = 1, then I is a classic prime hyperideal
of R.

(2) (k, n)-absorbing primary hyperideal if for rkn−k+1
1 ∈ R, g(rkn−k+1

1 ) ∈ I implies that
g(r

(k−1)n−k+2
1 ) ∈ I or a g-product of (k− 1)n− k+2 of the r,is, except g(r

(k−1)n−k+2
1 ),

is in r(m,n)(I).

3. ϕ-(k, n)-absorbing hyperideals

In his paper [16], Davvaz et al. introduced a generalization of the n-ary prime hyperideals
in a Krasner (k, n)-hyperring, which they defined as weakly (k, n)-absorbing hyperideals. In
this section, we generalize this notion to the context of ϕ-(k, n)-absorbing hyperideals.

Definition 3.1. Assume that HI(R) is the set of hyperideals of R and ϕ : HI(R) −→
HI(R) ∪ {φ} is a function. Let k be a positive integer. A proper hyperideal Q of R is said
to be ϕ-(k, n)-absorbing provided that for rkn−k+1

1 ∈ R, g(rkn−k+1
1 ) ∈ Q − ϕ(Q) implies that

there are (k − 1)n− k + 2 of the r,is whose g-product is in Q.

Example 3.2. Consider the Krasner (2, 2)-hyperring R = {0, 1, x} with the hyperaddition
and multiplication defined by
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+ 0 1 x

0 0 1 x

1 1 R 1

x x 1 {0, x}

· 0 1 x

0 0 0 0

1 0 1 x

x 0 x 0

Assume that ϕ is a function from HI(R) to HI(R) ∪ {φ} defined ϕ(I) = g(I(2)) for I ∈
HI(R). Then the hyperideal Q = {0, x} is a ϕ-(2, 2)-absorbing hyperideal of R.

Example 3.3. Let t > 4. Consider Krasner (4, 3)-hyperring (Z55t ,+, ·) where + and · are
usual addition and multiplication. Defined ϕ(I) = I5 for I ∈ HI(Z55t). Then I = ⟨5t⟩ is not
a (2, 3)-absorbing hyperideal of Z55t since 5.5.5.5.5t−4 ∈ I − ϕ(I) but 5.5.5, 5.5.5t−4 /∈ I.

Let ϕ : HI(R) −→ HI(R) ∪ {φ} be a function. Clearly, every (k, n)-absorbing hyperideal
in a Krasner (m,n)-hyperring is a ϕ-(k, n)-absorbing hyperideal. But, the following example
shows that the converse does not necessarily hold.

Example 3.4. Assume that R is the Krasner (2, 4)-hyperring given in Example 4.7 in [1]. In
[16], it was shown that ⟨0⟩ is not a (1, 4)-absorbing hyperideal of R. Now, defined ϕ(I) = g(I(4))

for I ∈ HI(R). In this hyperring, ⟨0⟩ is a ϕ-(1, 4)-absorbing hyperideal of R.

Theorem 3.5. Let ϕ1, ϕ2 : HI(R) −→ HI(R) ∪ {φ} be two functions such that for all
I ∈ HI(R), ϕ1(I) ⊆ ϕ2(I). If Q is a ϕ1-(k, n)-absorbing hyperideal of R, then Q is a ϕ2-
(k, n)-absorbing hyperideal.

Proof. Suppose that g(rkn−k+1
1 ) ∈ Q−ϕ2(Q) for rkn−k+1

1 ∈ R. From ϕ1(Q) ⊆ ϕ2(Q), it follows
that g(rkn−k+1

1 ) ∈ Q − ϕ1(Q). Since Q is a ϕ1-(k, n)-absorbing hyperideal of R, we conclude
that there are (k − 1)n− k + 2 of the r,is whose g-product is in Q, as needed.

Theorem 3.6. Let ϕ : HI(R) −→ HI(R) ∪ {φ} be a function. If Q is a ϕ-(k, n)-absorbing
hyperideal of R, then Q is a ϕ-(s, n)-absorbing hyperideal for all s ≥ k.

Proof. Let us use the induction on k that if Q is ϕ-(k, n)-absorbing hyperideal of R, then Q is ϕ-
(k+1, n)-absorbing. Assume that Q is ϕ-(2, n)-absorbing and g(r2n−2

1 , g(r3n−2
2n−1)) ∈ Q−ϕ(Q) for

some r3n−2
1 ∈ R. Since Q is ϕ-(2, n)-absorbing, then there are n of the r,is except g(r3n−2

2n−1) whose
g-product is in Q and so there are 2n−1 of the r,is whose g-product is in Q. This shows that Q
is ϕ-(3, n)-absorbing. Assume that Q is ϕ-(k, n)-absorbing and g(g(r2n−2

1 ), r
(k+1)n−(k+1)+1
2n−1 ) ∈

Q − ϕ(Q) for some r
(k+1)n−(k+1)+1
1 ∈ R. Since Q is ϕ-(k, n)-absorbing, we conclude that

g(g(r
2(n−1)
1 ), r2n−1, · · · , r̂i, · · · , r(k+1)n−(k+1)+1) ∈ Q for some 2(n−1) ≤ i ≤ (k+1)n−(k+1)+1

or g(r
(k+1)n−(k+1)+1
2n−1 ) ∈ Q. The former case shows that Q is ϕ-(k + 1, n)-absorbing. In the
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latter case, we obtain g(rn−1
1 , r

(k+1)n−(k+1)+1
2n−1 ) ∈ Q since g(r2(n−1)

1 ) ∈ Q. Thus Q is ϕ-(k+1, n)-
absorbing.

Recall from [15] that if (R1, f1, g1) and (R2, f2, g2) are two Krasner (m,n)-hyperrings such
that 1R1 and 1R2 are scalar identities of R1 and R2, respectively, then (R1×R2, f1×f2, g1×g2)

is a Krasner (m,n)-hyperring where

f = f1 × f2((a1, b1), · · · , (am, bm)) = {(a, b) | a ∈ f1(a
m
1 ), b ∈ f2(b

m
1 )},

g = g1 × g2((x1, y1), · · · , (xn, yn)) = (g1(x
n
1 ), g2(y

n
1 )),

for all am1 , xn1 ∈ R1 and bm1 , yn1 ∈ R2.

Theorem 3.7. Let (Ri, fi, gi) be a commutative Krasner (m,n)-hyperring for each 1 ≤ i ≤
kn − k + 1 and ϕi : HI(Ri) −→ HI(Ri) ∪ {φ} be a function. Let Qi be a hyperideal of Ri

for each 1 ≤ i ≤ kn − k + 1 and ϕ = ϕ1 × · · · × ϕkn−k+1. If Q = Q1 × · · · × Qkn−k+1 is a
ϕ-(k + 1, n)-absorbing hyperideal of R = R1 × · · · × Rkn−k+1, then Qi is a ϕi-(k, n)-absorbing
hyperideal of Ri and Qi ̸= Ri for all 1 ≤ i ≤ kn− k + 1.

Proof. Let rkn−k+1
1 ∈ Ri such that g(rkn−k+1

1 ) ∈ Qi − ϕi(Qi). Suppose by contradiction that
Qi is not a ϕi-(k, n)-absorbing hyperideal of Ri. Define

a1 = (1R1 , · · · , 1Ri−1 , r1, 1Ri+1 , · · · , 1Rkn−k+1
),

a2 = (1R1 , · · · , 1Ri−1 , r2, 1Ri+1 , · · · , 1Rkn−k+1
),

...

akn−k+1 = (1R1 , · · · , 1Ri−1 , rkn−k+1, 1Ri+1 , · · · , 1Rkn−k+1
),

akn−k = (1R1 , · · · , 1Ri−1 , 1Ri , 1Ri+1 , · · · , 1Rkn−k+1
),

a(k+1)n−(k+1)+1 = (0, · · · , 0, 1Ri , 0, · · · , 0).

Hence g(a
(k+1)n−(k+1)+1)
1 ) ∈ Q − ϕ(Q) but g(akn−k+1

1 ) /∈ Q. Since Q is a ϕ-(k + 1, n)-
absorbing hyperideal of R, we conclude that one of g-productions of kn− k + 1 of a,is except
g(a

(k+1)n−(k+1)+1
1 ) is in Q. This implies that there exist (k−1)n−k+2 of r,is whose g-product

is in Qi which is a contradiction. Consequently, Qi is a ϕi-(k, n)-absorbing hyperideal of Ri.

Assume that (R1, f1, g1) and (R2, f2, g2) are two Krasner (m,n)-hyperrings. Recall from
[27] that a mapping h : R1 −→ R2 is called a homomorphism if for all am1 ∈ R1 and bn1 ∈ R1

we have (1)h(f1(a1, ..., am)) = f2(h(a1), ..., h(am)), (2)h(g1(b1, ..., bn)) = g2(h(b1), ..., h(bn)).

Moreover, recall from [19] that a function ϕ : HI(R) −→ HI(R) ∪ {φ} is called a reduction
function of HI(R) if ϕ(P ) ⊆ P and P ⊆ Q implies that ϕ(P ) ⊆ ϕ(Q) for all P,Q ∈ HI(R).
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Now, assume that R1 and R2 are two Krasner (m,n)-hyperring such that h : R1 −→ R2 is a
homomorphism. Suppose that ϕ1 and ϕ2 are two reduction functions of HI(R1) and HI(R2),
respectively. If ϕ1(h

−1(I2)) = h−1(ϕ2(I2)) for all I2 ∈ HI(R2), then we say h is a ϕ1-ϕ2-
homomorphism. Let h be a ϕ1-ϕ2-epimorphism from R1 to R2 and let I1 be a hyperideal of
R1 with Ker(h) ⊆ I1. It is easy to see that ϕ2(h(I1)) = h(ϕ1(I1)).

Example 3.8. Let R1 and R2 be two Krasner (m,n)-hyperrings and ϕ1 and ϕ2 be two empty
reduction functions of HI(R1) and HI(R2), respectively. Then every homorphism h from R1

to R2 is a ϕ1-ϕ2-homomorphism.

Theorem 3.9. Let h : R1 −→ R2 be a ϕ1-ϕ2-homomorphism, where ϕ1 and ϕ2 are two
reduction functions of HI(R1) and HI(R2), respectively. Then

(1) If Q2 is a ϕ2-(k, n)-absorbing hyperideal of R2, then h−1(Q2) is a ϕ1-(k, n)-absorbing
of R1.

(2) If h is surjective and Q1 is a ϕ1-(k, n)-absorbing hyperideal of R1 with Ker(h) ⊆ Q1,
then h(Q1) is a ϕ2-(k, n)-absorbing hyperideal of R2.

Proof. (1) Let Q2 be a ϕ2-(k, n)-absorbing hyperideal of R2 and g(rkn−k+1
1 ) ∈ h−1(Q2) −

ϕ1(h
−1(Q2)) for some rkn−k+1

1 ∈ R1. Then we get h(g(rkn−k+1
1 )) = g(h(r1), · · · , h(rkn−k+1)) ∈

Q2 − ϕ2(Q2). Since Q2 is a ϕ2-(k, n)-absorbing hyperideal of R2, we conclude that the image
of h of (k − 1)n− k + 2 of r,is whose g-product is in Q2. Then there exist (k − 1)n− k + 2 of
r,is whose g-product is in h−1(Q2). Thus h−1(Q2) is a ϕ1-(k, n)-absorbing of R1.

(2) Suppose that Q1 is a ϕ1-(k, n)-absorbing hyperideal of R1 with Ker(h) ⊆ Q1 and
h is surjective. Let g(skn−k+1

1 ) ∈ h(Q1) − ϕ2(h(Q1)) for some skn−k+1
1 ∈ R2. Then there

exists ri ∈ R1 for every 1 ≤ i ≤ kn − k + 1 such that h(ri) = si. Hence we get
h(g(rkn−k+1

1 ) = g(h(r1), · · · , h(rkn−k+1)) = g(skn−k+1
1 ) ∈ h(Q1). Since Ker(h) ⊆ Q1 and h is

a ϕ1-ϕ2-epimorphism, we have g(rkn−k+1
1 ) ∈ Q1 − ϕ1(Q1). Since Q1 is a ϕ1-(k, n)-absorbing

hyperideal of R1, there are (k− 1)n− k+2 of r,is whose g-product is in Q1. Now, since h is a
homomorphism, we are done.

Let P be a hyperideal of R. Then the set R/P = {f(ai−1
1 , P, ami+1) | ai−1

1 , ami+1 ∈ R}
with m-ary hyperoperation f and n-operation g is the quotient Krasner (m,n)-hyperring of
R by P . Theorem 3.2 in [1] shows that the projection map π from R to R/P , defined by
π(r) = f(r, P, 0(m−2)), is homomorphism. Let P be a hyperideal of R and ϕ be a reduction
function of HI(R). Then the function ϕq from HI(R/P ) to HI(R/P ) ∪ {φ} defined by
ϕq(I/P ) = ϕ(I)/P is a reduction function. Now, we have the following theorem as a result of
Theorem 3.9 that is easily verified, and hence we omit the proof.
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Theorem 3.10. Let Q and P be two hyperideals of R and ϕ be a reduction function of
HI(R) such that P ⊆ ϕ(Q) ⊆ Q. If Q is a ϕ-(k, n)-absorbing hyperideal of R, then Q/P is a
ϕq-(k, n)-absorbing hyperideal of R/P .

4. ϕ-(k, n)-absorbing primary hyperideals

Definition 4.1. Suppose that HI(R) is the set of hyperideals of R and ϕ : HI(R) −→
HI(R) ∪ {φ} is a function. Let k be a positive integer. A proper hyperideal Q of R is
called ϕ-(k, n)-absorbing primary if g(rkn−k+1

1 ) ∈ Q − ϕ(Q) for rkn−k+1
1 ∈ R implies that

g(r
(k−1)n−k+2
1 ) ∈ Q or a g-product of (k − 1)n − k + 2 of r,is ,except g(r

(k−1)n−k+2
1 ), is in

r(m,n)(Q).

Example 4.2. Every ϕ-(k, n)-absorbing of a Krasner (m,n)-hyperring is ϕ-(k, n)-absorbing
primary.

The converse may not be always true as it is shown in the following example.

Example 4.3. Consider the Krasner (2, 2)-hyperring R = [0, 1] with the 2-ary hyperoperation
defined by

a⊕ b =

{max{a, b}}, if a ̸= b,

[0, a], if a = b,

and multiplication is the usual multiplication on real numbers. Suppose that ϕ is a function
from HI(R) to HI(R) ∪ {φ} defined ϕ(I) = ∩∞

i=1g(I
(i)) for I ∈ HI(R).Then the hyperideal

Q = [0, 0.5] is a ϕ-(2, 2)-absorbing primary hyperideal of R but it is not ϕ-(2, 2)-absorbing.

The next theorem provides us how to determine ϕ-(k, n)-absorbing primary hyperideal to
be (k, n)-absorbing primary.

Theorem 4.4. Assume that Q is a hyperideal of R and ϕ : HI(R) −→ HI(R) ∪ {φ} is a
reduction function such that ϕ(Q) is a (k, n)-absorbing primary huperideal of R. If Q is a
ϕ-(k, n)-absorbing primary hyperideal of R, then Q is a (k, n)-absorbing primary hyperideal of
R.

Proof. Let rkn−k+1
1 ∈ R such that g(rkn−k+1

1 ) ∈ Q and g(r
(k−1)n−k+2
1 ) /∈ Q. Assume

that g(rkn−k+1
1 ) ∈ ϕ(Q). Since ϕ(Q) is a (k, n)-absorbing primary hyperideal of R and

g(r
(k−1)n−k+2
1 ) /∈ ϕ(Q), we conclude that a g-product of (k − 1)n − k + 2 of the r,is, except

g(r
(k−1)n−k+2
1 ) is in r(m,n)(ϕ(Q)) ⊆ r(m,n)(Q), as needed. Suppose that g(rkn−k+1

1 ) /∈ ϕ(Q).
Since Q is a ϕ-(k, n)-absorbing primary hyperideal of R, we are done.
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In the following, the relationship between a ϕ-(k, n)-absorbing primary hyperideal of R and
its radical is considered.

Theorem 4.5. Let Q be a hyperideal of R and ϕ : HI(R) −→ HI(R) ∪ {φ} be a function
such that r(m,n)(ϕ(Q)) = ϕ(r(m,n)(Q)). If Q is a ϕ-(k, n)-absorbing primary hyperideal of R,
then r(m,n)(Q) is a ϕ-(k, n)-absorbing hyperideal of R.

Proof. Let rkn−k+1
1 ∈ R such that g(rkn−k+1

1 ) ∈ r(m,n)(Q) − ϕ(r(m,n)(Q)). As-
sume that all products of (k − 1)n − k + 2 of the r,is except g(r

(k−1)n−k+2
1 ) are

not in r(m,n)(Q). Since g(rkn−k+1
1 ) ∈ r(m,n)(Q), then there exists s ∈ Z+ with

g(g(rkn−k+1
1 )(s), 1(n−s)) ∈ Q, for s ≤ n or g(l)(g(r

kn−k+1
1 )(s)) ∈ Q, for s > n, s =

l(n − 1) + 1. In the former case, we get g(g(r1)
(s), g(r2)

(s), · · · , g(rkn−k+1)
(s), 1(n−s)) ∈ Q. If

g(g(r1)
(s), g(r2)

(s), · · · , g(rkn−k+1)
(s), 1(n−s)) ∈ ϕ(Q), we obtain g(rkn−k+1

1 ) ∈ r(m,n)(ϕ(Q)) =

ϕ(r(m,n)(Q)), a contradiction. Since Q is a ϕ-(k, n)-absorbing primary hyperideal of R, then
g(g(r1)

(s), g(r2)
(s), · · · , g(r(k−1)n−k+2)

(s)), 1(n−s)) = g(g(r
(k−1)n−k+2)
1 )(s), 1(n−s)) ∈ Q which

means g(r
(k−1)n−k+2
1 ) ∈ r(m,n)(Q). For the other case, we have a similar argument. Con-

sequently, r(m,n)(Q) is a ϕ-(k, n)-absorbing hyperideal of R.

Example 4.6. Assume that H = Z3[X,Y, Z] and Q = ⟨X3Y 3Z3⟩. Then R = H/Q is a Kras-
ner (m,n)-hyperring with ordinary addition and ordinary multiplication. Defined ϕ(I/Q) = 0R

for I/Q ∈ HI(R). In the hyperring, Q/Q is a ϕ-(1, 3)-absorbing primary hyperideal of R and
r(m,n)(ϕ(Q/Q)) ̸= ϕ(r(m,n)(Q/Q)). Note that r(m,n)(Q/Q) is not a ϕ-(1, 3)-absorbing hyper-
ideal of R because 2XY Z +Q = (2X +Q)(Y +Q)(Z +Q) ∈ r(m,n)(Q/Q)− ϕ(r(m,n)(Q/Q))

but none of the elements (2X +Q), (Y +Q) and (Z +Q) are not in r(m,n)(Q/Q)).

Theorem 4.7. Assume that ϕ : HI(R) −→ HI(R) ∪ {φ} is a function. If Q is a ϕ-(k, n)-
absorbing primary hyperideal of R, then Q is a ϕ-(s, n)-absorbing primary hyperideal for all
s ≥ k.

Proof. Let Q be a ϕ-(k, n)-absorbing primary hyperideal of R. Suppose that
g(g(rn+2

1 ), r
(k+1)n−(k+1)+1
n+3 ) ∈ Q − ϕ(Q) for some r

(k+1)n−(k+1)+1
1 ∈ R. Put g(rn+2

1 ) = a1.
Then we conclude that g(a1, · · · , r(k+1)n−(k+1)+1) ∈ Q or a g-product of kn − k + 1 of the
r,is, except g(a1, · · · , r(k+1)n−(k+1)+1) is in r(m,n)(Q) as Q is a ϕ-(k, n)-absorbing primary
hyperideal of R. Since r(m,n)(Q) is a hyperideal of R and rn+2

1 ∈ R, we conclude that
g(r1, rn+3, · · · , r(k+1)n−(k+1)+1) ∈ r(m,n)(Q) or · · · or g(rn+2, rn+3, · · · , r(k+1)n−(k+1)+1) ∈
r(m,n)(Q) and so Q is (k + 1, n)-absorbing primary.
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Theorem 4.8. Let ϕ1, ϕ2 : HI(R) −→ HI(R) ∪ {φ} be two functions such that for all
I ∈ HI(R), ϕ1(I) ⊆ ϕ2(I). If Q is a ϕ1-(k, n)-absorbing primary hyperideal of R, then Q is a
ϕ2-(k, n)-absorbing primary hyperideal.

Proof. It is proved in a similar way to Theorem 3.5.

Theorem 4.9. Let ϕ : HI(R) −→ HI(R) ∪ {φ} be a function. If Q is a ϕ-(1, n)-absorbing
primary hyperideal of R, then Q is a ϕ-(2, n)-absorbing primary hyperideal.

Proof. Let Q be a ϕ-(1, n)-absorbing primary hyperideal and g(g(rn1 ), · · · , r2n−1) ∈ Q− ϕ(Q)

for some r2n−1
1 ∈ R. Then we get g(rn1 ) ∈ Q or g(r2n−1

n+1 ) ∈ r(m,n)(Q). By definition of hyper-
ideal, we conclude that g(r1, rn+1, · · · , r2n−1) ∈ r(m,n)(Q) or · · · or g(r1, rn+1, · · · , r2n−1) ∈
r(m,n)(Q) since rn1 ∈ R. Consequently, Q is a ϕ-(2, n)-absorbing primary hyperideal of R.

Let Q be a proper hyperideal of R and ϕ : HI(R) −→ HI(R)∪ {φ} be a function. Q refers
to a strongly ϕ-(k, n)-absorbing primary hyperideal of R if g(Qkn−k+1

1 ) ⊆ Q − ϕ(Q) for some
hyperideals Qkn−k+1

1 of R implies that g(Q
(k−1)n−k+2
1 ) ⊆ Q or a g-product of (k− 1)n− k+2

of Q,
is, except g(Q

(k−1)n−k+2
1 ), is a subset of r(m,n)(Q). In the sequel, we assume that all ϕ-

(k, n)-absorbing primary hyperideals of R are strongly ϕ-(k, n)-absorbing primary hyperideal.
Recall from [16] that a proper hyperideal Q of R is called weakly (k, n)-absorbing primary
if 0 ̸= g(rkn−k+1

1 ) ∈ Q for rkn−k+1
1 ∈ R implies that g(r

(k−1)n−k+2
1 ) ∈ Q or a g-product of

(k − 1)n− k + 2 of r,is ,except g(r
(k−1)n−k+2
1 ), is in r(m,n)(Q).

Theorem 4.10. Suppose that Q is a proper hyperideal of a commutative Krasner (m, 2)-
hyperring R and ϕ : HI(R) −→ HI(R)∪{φ} is a function. Then the followings are equivalent:

(1) Q is a ϕ-(2, 2)-absorbing primary hyperideal of R.
(2) Q/ϕ(Q) is a weakly (2, 2)-absorbing primary hyperideal of R/ϕ(Q).

Proof. (1) =⇒ (2) Let Q be ϕ-(2, 2)-absorbing primary and for a1m11 , a2m21 , a3m31 ∈ R,

ϕ(Q) ̸= g(f(a
1(i−1)
11 , ϕ(Q), a1m1(i+1)), f(a

2(i−1)
21 , ϕ(Q), a2m2(i+1)), f(a

3(i−1)
31 , ϕ(Q), a3m3(i+1)))

= f(g(a3111), · · · , g(a
3(i−1)
1(i−1)), ϕ(Q), g(a

3(i+1)
1(i+1)), · · · , g(a

3m
1m))

∈ Q/ϕ(Q).

Then

f(g(a3111), · · · , g(a
3(i−1)
1(i−1)), 0, g(a

3(i+1)
1(i+1)), · · · , g(a

3m
1m))

= g(f(a
1(i−1)
11 , 0, a1m1(i+1)), f(a

2(i−1)
21 , 0, a2m2(i+1)), f(a

3(i−1)
31 , 0, a3m3(i+1)))

∈ Q− ϕ(Q).
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Since Q is a ϕ-(2, 2)-absorbing primary hyperideal of R, we get

g(f(a
1(i−1)
11 , 0, a1m1(i+1)), f(a

2(i−1)
21 , 0, a2m2(i+1)))

= f(g(a2111), · · · , g(a
2(i−1)
1(i−1)), 0, g(a

2(i+1)
1(i+1)), · · · , g(a

2m
1m)) ⊆ Q,

g(f(a
2(i−1)
21 , 0, a2m2(i+1)), f(a

3(i−1)
31 , 0, a3m3(i+1)))

= f(g(a3121), · · · , g(a
3(i−1)
2(i−1)), 0, g(a

3(i+1)
2(i+1)), · · · , g(a

3m
2m)) ⊆ r(m,n)(Q),

or

g(f(a
1(i−1)
11 , 0, a1m1(i+1)), f(a

3(i−1)
31 , 0, a3m3(i+1)))

= f(g(a3111), · · · , g(a
3(i−1)
1(i−1)), 0, g(a

3(i+1)
1(i+1)), · · · , g(a

3m
1m)) ⊆ r(m,n)(Q).

It implies that

f(g(a2111), · · · , g(a
2(i−1)
1(i−1)), ϕ(Q), g(a

2(i+1)
1(i+1)), · · · , g(a

2m
1m))

= g(f(a
1(i−1)
11 , ϕ(Q), a1m1(i+1)), f(a

2(i−1)
21 , ϕ(Q), a2m2(i+1))) ∈ Q/ϕ(Q),

or

f(g(a3121), · · · , g(a
3(i−1)
2(i−1)), ϕ(Q), g(a

3(i+1)
2(i+1)), · · · , g(a

3m
2m))

= g(f(a
2(i−1)
21 , ϕ(Q), a2m2(i+1)), f(a

3(i−1)
31 , ϕ(Q), a3m3(i+1)))

∈ r(m,n)(Q)/ϕ(Q) = r(m,n)(Q/ϕ(Q)),

or

f(g(a3111), · · · , g(a
3(i−1)
1(i−1)), ϕ(Q), g(a

3(i+1)
1(i+1)), · · · , g(a

3m
1m))

= g(f(a
1(i−1)
11 , ϕ(Q), a1m1(i+1)), f(a

3(i−1)
31 , ϕ(Q), a3m3(i+1)))

∈ r(m,n)(Q)/ϕ(Q) = r(m,n)(Q/ϕ(Q)).

(2) =⇒ (1) Let g(r31) ∈ Q−ϕ(Q) for some r31 ∈ R. Therefore we obtain f(g(r31), ϕ(Q), 0(m−2)) ̸=
ϕ(Q). It follows that

ϕ(Q) ̸= g(f(r1, ϕ(Q), 0(m−2)), f(r2, ϕ(Q), 0(m−2)), f(r3, ϕ(Q), 0(m−2))) ∈ Q/ϕ(Q).

By the hypothesis, we get

g(f(r1, ϕ(Q), 0(m−2)), f(r2, ϕ(Q), 0(m−2))) = f(g(r21), ϕ(Q), 0(m−2)) ∈ Q/ϕ(Q).

or

g(f(r2, ϕ(Q), 0(m−2)), f(r3, ϕ(Q), 0(m−2))) = f(g(r32), ϕ(Q), 0(m−2)) ∈ r(m,n)(Q)/ϕ(Q).
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or

g(f(r1, ϕ(Q), 0(m−2)), f(r3, ϕ(Q), 0(m−2))) = f(g(r31), ϕ(Q), 0(m−2)) ∈ r(m,n)(Q)/ϕ(Q).

This shows that g(r21) ∈ Q or g(r32) ∈ r(m,n)(Q) or g(r31) ∈ r(m,n)(Q). Consequently, Q is a
ϕ-(2, 2)-absorbing primary hyperideal of R.

Suppose that I is a weakly (2, 2)-absorbing primary hyperideal of a commutative Krasner
(m, 2)-hyperring R. Recall from [16] that (x, y, z) is said to be (2, 2)-zero primary of I for
x, y, z ∈ R, if g(x, y, z) = 0, g(x, y) /∈ I, g(y, z) /∈ r(m,n)(I) and g(x, z) /∈ r(m,n)(I). Now,
assume that Q is a ϕ-(2, 2)-absorbing primary hyperideal of a commutative Krasner (m, 2)-
hyperring R. Then we say (x, y, z) is a ϕ-(2, 2) primary of Q for some x, y, z ∈ R if g(x, y, z) ∈
ϕ(Q), g(x, y) /∈ Q, g(y, z) /∈ r(m,n)(Q) and g(x, z) /∈ r(m,n)(Q). It is easy to see that a proper
hyperideal Q of R is ϕ-(2, 2)-absorbing primary that is not (2, 2)-absorbing primary if and only
if Q has a ϕ-(2, 2) primary (x, y, z) for some x, y, z ∈ R.

Theorem 4.11. Let R be a commutative Krasner (m, 2)-hyperring and let ϕ : HI(R) −→
HI(R) ∪ {φ} be a function. Let Q be a ϕ-(2, 2)-absorbing primary hyperideal of R and
x, y, z ∈ R. Then the followings are equivalent:

(1) (x, y, z) is a ϕ-(2, 2) primary of Q.
(2) (f(x, ϕ(Q), 0(m−2)), f(y, ϕ(Q), 0(m−2)), f(z, ϕ(Q), 0(m−2)) is a (2, 2)-zero primary of

Q/ϕ(Q).

Proof. (1) =⇒ (2) Let (x, y, z) be a ϕ-(2, 2) primary of Q. This means that
g(x, y, z) ∈ ϕ(Q), g(x, y) /∈ Q, g(y, z) /∈ r(m,n)(Q) and g(x, z) /∈ r(m,n)(Q). This
implies that f(g(x, y), Q, 0(m−2)) /∈ Q/ϕ(Q), f(g(y, z), ϕ(Q), 0(m−2)) /∈ r(m,n)(Q)/ϕ(Q)

and f(g(x, z), ϕ(Q), 0(m−2)) /∈ r(m,n)(Q)/ϕ(Q). By Theorem 4.10, we conclude that
(f(x, ϕ(Q), 0(m−2)), f(y, ϕ(Q), 0(m−2)), f(z, ϕ(Q), 0(m−2)) is a (2, 2)-zero primary of Q/ϕ(Q).

(2) =⇒ (1) Assume that (f(x, ϕ(Q), 0(m−2)), f(y, ϕ(Q), 0(m−2)), f(z, ϕ(Q), 0(m−2)) is a (2, 2)-
zero primary of Q/ϕ(Q). Thus g(x, y, z) ∈ ϕ(Q) but f(g(x, y), Q, 0(m−2)) /∈ Q/ϕ(Q),
f(g(y, z), ϕ(Q), 0(m−2)) /∈ r(m,n)(Q)/ϕ(Q) and f(g(x, z), ϕ(Q), 0(m−2)) /∈ r(m,n)(Q)/ϕ(Q).
Hence g(x, y, z) ∈ ϕ(Q), g(x, y) /∈ Q, g(y, z) /∈ r(m,n)(Q) and g(x, z) /∈ r(m,n)(Q). It im-
plies that (x, y, z) is a ϕ-(2, 2) primary of Q.

Theorem 4.12. Let R be a commutative Krasner (m, 2)-hyperring and let ϕ : HI(R) −→
HI(R)∪ {φ} be a function. Let Q be a ϕ-(2, 2)-absorbing primary hyperideal of R. If (x, y, z)
is a ϕ-(2, 2) primary of Q for some x, y, z ∈ R, then

(1) g(x, y,Q), g(y, z,Q), g(x, z,Q) ⊆ ϕ(Q).
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(2) g(x,Q(2)), g(y,Q(2)), g(z,Q(2)) ⊆ ϕ(Q).
(3) g(Q(3)) ⊆ ϕ(Q).

Proof. (1) Let (x, y, z) be a ϕ-(2, 2) primary of a ϕ-(2, 2)-absorbing primary hyperideal Q.
By Theorem 4.11, (f(x, ϕ(Q), 0(m−2)), f(y, ϕ(Q), 0(m−2)), f(z, ϕ(Q), 0(m−2)) is a (2, 2)-zero pri-
mary of Q/ϕ(Q) since (x, y, z) is a ϕ-(2, 2) primary of Q. Thus

f(g(x, y,Q), ϕ(Q), 0(m−2)) = f(g(y, z,Q), ϕ(Q), 0(m−2)) = f(g(x, z,Q), ϕ(Q), 0(m−2)) = ϕ(Q),

by Theorem 4.9 in [16], which implies g(x, y,Q), g(y, z,Q) and g(x, z,Q) are subsets of ϕ(Q).
(2) Theorem 4.11 shows that (f(x, ϕ(Q), 0(m−2)), f(y, ϕ(Q), 0(m−2)), f(z, ϕ(Q), 0(m−2))

is a (2, 2)-zero primary of Q/ϕ(Q). Moreover, Theorem 4.10 shows that Q/ϕ(Q)

is a weakly (2, 2)-absorbing primary of R/ϕ(Q). Then f(g(x,Q(2)), ϕ(Q), 0(m−2)) =

f(g(y,Q(2)), ϕ(Q), 0(m−2)) = f(g(z,Q(2)), ϕ(Q), 0(m−2)) = ϕ(Q), by Theorem 4.9 of [16]. Con-
sequently, g(x,Q(2)), g(y,Q(2)), g(z,Q(2)) are subsets of ϕ(Q).

(3) Again, (f(x, ϕ(Q), 0(m−2)), f(y, ϕ(Q), 0(m−2)), f(z, ϕ(Q), 0(m−2)) is a (2, 2)-zero primary
of Q/ϕ(Q) and Q/ϕ(Q) is a weakly (2, 2)-absorbing primary of R/ϕ(Q) by Theorem 4.11 and
Theorem 4.10, respectively, then f(g(Q(3)), ϕ(Q), 0(m−2)) = ϕ(Q) by Theorem 4.10 in [16].
Thus g(Q(3)) is a subset of ϕ(Q).

Theorem 4.13. Suppose that Q is a proper hyperideal of a commutative Krasner (m,n)-
hyperring R and ϕ : HI(R) −→ HI(R)∪{φ} is a function. Then the followings are equivalent:

(1) Q is a ϕ-(k, n)-absorbing primary hyperideal of R.
(2) Q/ϕ(Q) is a weakly (k, n)-absorbing primary hyperideal of R/ϕ(Q).

Proof. It can be easily proved in a similar manner to the proof of Theorem 4.10.

Suppose that Q is a ϕ-(k, n)-absorbing primary hyperideal of R. Then we say (r
k(n−1)+1
1 )

is a ϕ-(k, n) primary of Q for some r
k(n−1)+1
1 ∈ R if g(rk(n−1)+1

1 ) ∈ ϕ(Q), g(r(k−1)n−k+2
1 ) /∈ Q

and a g-product of (k − 1)n− k + 2 of r,is, except g(r
(k−1)n−k+2
1 ), is not in r(m,n)(Q).

Theorem 4.14. Let R be a commutative Krasner (m, 2)-hyperring and let ϕ : HI(R) −→
HI(R) ∪ {φ} be a function. Let Q be a ϕ-(k, n)-absorbing primary hyperideal of R and
r
k(n−1)+1
1 ∈ R. Then the followings are equivalent:

(1) (r
k(n−1)+1
1 ) is a ϕ-(k, n) primary of Q.

(2) (f(r1, ϕ(Q), 0(m−2)), · · · , f(rk(n−1)+1, ϕ(Q), 0(m−2)) is a (k, n)-zero primary of
Q/ϕ(Q).

Proof. It is seen to be true in a similar manner to Theorem 4.11.
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Theorem 4.15. Let R be a commutative Krasner (m,n)-hyperring and let ϕ : HI(R) −→
HI(R) ∪ {φ} be a function. Let Q be a ϕ-(k, n)-absorbing primary hyperideal of
R. If (r

k(n−1)+1
1 ) is a ϕ-(k, n) primary of Q for some r

k(n−1)+1
1 ∈ R, then

g(r1, · · · , r̂i1 , · · · , r̂i2 , · · · , r̂is , · · · , rk(n−1)+1, Q
(s)) ⊆ ϕ(Q) for every i1, · · · , is ∈ {1, · · · , k(n −

1) + 1} and 1 ≤ s ≤ (k − 1)n− k + 2.

Proof. (f(r1, ϕ(Q), 0(m−2)), · · · , f(rk(n−1)+1, ϕ(Q), 0(m−2)) is a (k, n)-zero primary of Q/ϕ(Q)

by Theorem 4.14 and Q/ϕ(Q) is a weakly (k, n)-absorbing primary of R/ϕ(Q) by Theorem
4.13. Then we conclude that

f(g(f(r1, ϕ(Q), 0(m−2)), · · · , f(r̂i1 , ϕ(Q), 0(m−2)), · · · , f(r̂i2 , ϕ(Q), 0(m−2)), · · · ,

f(r̂is , ϕ(Q), 0(m−2)), · · · , f(rk(n−1)+1, ϕ(Q), 0(m−2)), Q(s)), ϕ(Q), 0(m−2)) = ϕ(Q).

for every i1, · · · , is ∈ {1, · · · , k(n − 1) + 1} and 1 ≤ s ≤ (k − 1)n − k + 2, by Theorem 4.9 of
[16]. Thus, g(r1, · · · , r̂i1 , · · · , r̂i2 , · · · , r̂is , · · · , rk(n−1)+1, Q

(s)) ⊆ ϕ(Q).

Theorem 4.16. Let R be a commutative Krasner (m,n)-hyperring and let ϕ : HI(R) −→
HI(R) ∪ {φ} be a function. Let Q be a ϕ-(k, n)-absorbing primary hyperideal of R but is not
a (k, n)-absorbing primary. Then g(Qk(n−1)+1) ⊆ ϕ(Q).

Proof. This can be proved, by using Theorem 4.15, in a very similar manner to the way in
which 4.12 was proved.

Now, let give some related corollaries.

Corollary 4.17. Let ϕ : HI(R) −→ HI(R) ∪ {φ} be a function. If Q is a ϕ-(k, n)-absorbing
primary hyperideal of R such that g(Qk(n−1)+1) * ϕ(Q), then Q is a (k, n)-absorbing primary
hyperideal of R.

Corollary 4.18. Let ϕ : HI(R) −→ HI(R) ∪ {φ} be a function and let Q be a ϕ-(k, n)-
absorbing primary hyperideal of R that is not a (k, n)-absorbing primary hyperideal of R.
Then r(m,n)(Q) = r(m,n)(ϕ(Q)).

Proof. By Theorem 4.16, we have g(Qk(n−1)+1) ⊆ ϕ(Q) as Q is not a (k, n)-absorbing primary.
This means r(m,n)(Q) ⊆ r(m,n)(ϕ(Q)). On the other hand, from ϕ(Q) ⊆ Q, it follows that
r(m,n)(ϕ(Q)) ⊆ r(m,n)(Q). Hence r(m,n)(Q) = r(m,n)(ϕ(Q)).
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Corollary 4.19. Let ϕ : HI(R) −→ HI(R)∪{φ} be a function and let Q be a proper hyperideal
of R such that r(m,n)(ϕ(Q)) is a (k, n)-absorbing hyperideal of R. Then Q is a ϕ-(k + 1, n)-
absorbing primary hyperideal of R if and only if Q is a (k+1, n)-absorbing primary hyperideal
of R.

Proof. (=⇒) Let Q be a ϕ-(k+1, n)-absorbing primary hyperideal of R. If Q is not a (k+1, n)-
absorbing primary hyperideal of R. Hence r(m,n)(Q) = r(m,n)(ϕ(Q)) by Corollary 4.18. Then
r(m,n)(Q) is a (k, n)-absorbing hyperideal of R which implies that Q is is a (k+1, n)-absorbing
primary hyperideal of R by Theorem 4.9 in [18].

(⇐=) It is clear.

Theorem 4.20. Let h : R1 −→ R2 be a ϕ1-ϕ2-homomorphism, where ϕ1 and ϕ2 are two
reduction functions of HI(R1) and HI(R2), respectively. Then

(1) If Q2 is a ϕ2-(k, n)-absorbing primary hyperideal of R2, then h−1(Q2) is a ϕ1-(k, n)-
absorbing primary hyperideal of R1.

(2) If h is surjective and Q1 is a ϕ1-(k, n)-absorbing primary hyperideal of R1 with
Ker(h) ⊆ Q1, then h(Q1) is a ϕ2-(k, n)-absorbing primary hyperideal of R2.

Proof. (1) Let Q2 be a ϕ2-(k, n)-absorbing primary hyperideal of R2. Assume that rkn−k+1
1 ∈

R1 such that g(rkn−k+1
1 ) ∈ h−1(Q2) − ϕ1(h

−1(Q2)). Then we get h(g(rkn−k+1
1 )) =

g(h(r1), · · · , h(rkn−k+1)) ∈ Q2 − ϕ2(Q2). Since Q2 is a ϕ2-(k, n)-absorbing primary
hyperideal of R2, we obtain either g(h(r1), · · · , h(r(k−1)n−k+2)) = h(g(r

(k−1)n−k+2
1 )) ∈

Q2 which means g(r
(k−1)n−k+2
1 ) ∈ h−1(Q2), or g(h(r1), · · · , ĥ(ri), · · · , h(rkn−k+1)) =

h(g(r1, · · · , r̂i, · · · , rkn−k+1))) ∈ r(m,n)(Q2) which means g(r1, · · · , r̂i, · · · , rkn−k+1)) ∈
h−1(r(m,n)(Q2)) = r(m,n)(h−1(Q2)) for some 1 ≤ i ≤ n. Hence h−1(Q2) is a ϕ1-(k, n)-absorbing
primary hyperideal of R1.

(2) Assume that h is surjective and Q1 is a ϕ1-(k, n)-absorbing primary hyperideal of
R1 with Ker(h) ⊆ Q1. Let skn−k+1

1 ∈ R2 such that g(skn−k+1
1 ) ∈ h(Q1) − ϕ2(h(Q1)).

Therefore there exist rkn−k+1
1 ∈ R1 with h(r1) = s1, · · · , h(rkn−k+1) = skn−k+1. Hence we

get h(g(rkn−k+1
1 ) = g(h(r1), · · · , h(rkn−k+1)) = g(skn−k+1

1 ) ∈ h(Q1). Since h is a ϕ1-ϕ2-
epimorphism and Ker(h) ⊆ Q1, we have g(rkn−k+1

1 ) ∈ Q1 − ϕ1(Q1). Since Q1 is a ϕ1-(k, n)-
absorbing primary hyperideal of R1, we conclude that g(r

(k−1)n−k+2)
1 ) ∈ Q1 which implies

h(g(r
(k−1)n−k+2)
1 ) = g(h(r1), · · · , h(r(k−1)n−k+2)) = g(s

(k−1)n−k+2)
1 ) ∈ h(Q1),

or g(r1, · · · , r̂i, · · · , rkn−k+1) ∈ r(m,n)(Q1) implies h(g(r1, · · · , r̂i, · · · , rkn−k+1) =

g(h(r1), · · · , ĥ(ri), · · · , h(rkn−k+1)) = g(s1, · · · , ŝi, · · · , skn−k+1) ∈ h(r(m,n)(Q1)) ⊆
r(m,n)(h(Q1)) for some 1 ≤ i ≤ (k− 1)n− k+2. Consequently, h(Q1) is a ϕ2-(k, n)-absorbing
primary hyperideal of R2.
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As an instant consequence of the previous theorem, we get the following explicit result.

Theorem 4.21. Let Q and P be two hyperideals of R and ϕ be a reduction function of HI(R)

such that P ⊆ ϕ(Q) ⊆ Q. If Q is a ϕ-(k, n)-absorbing primary hyperideal of R, then Q/P is
a ϕq-(k, n)-absorbing primary hyperideal of R/P .

Theorem 4.22. Let (Ri, fi, gi) be a commutative Krasner (m,n)-hyperring for each 1 ≤ i ≤
kn−k+1 and ϕi : HI(Ri) −→ HI(Ri)∪{φ} be a function. Let Qi be a hyperideal of Ri for each
1 ≤ i ≤ kn− k + 1 and ϕ = ϕ1 × · · · × ϕkn−k+1. If Q = Q1 × · · · ×Qkn−k+1 is a ϕ-(k + 1, n)-
absorbing primary hyperideal of R = R1 × · · · × Rkn−k+1, then Qi is a ϕi-(k, n)-absorbing
primary hyperideal of Ri and Qi ̸= Ri for all 1 ≤ i ≤ kn− k + 1.

Proof. By using an argument similar to that in the proof of Theorem 3.7, one can easily
complete the proof.

5. Conclusion

In this paper, motivated by the research works on ϕ-2-absorbing (primary) ideals of com-
mutative rings, we propsed and investigated the notions of ϕ-(k, n)-absorbing and ϕ-(k, n)-
absorbing primary hyperideals in a Krasner (m,n)-hyperring. Some of their essential charac-
teristics were analysed. Moreover, the stabilty of the notions were examined in some hyperring-
theoretic constructions. As a new research subject, we suggest the concept of ϕ-(k, n)-absorbing
δ-primary hyperideals, where δ is an expansion function of HI(R).
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