Algebraic AS TA Structures established in AS TA Structures

Algebraic Structures and Their Applications

Algebraic Structures and Their Applications Vol. X No. X (20XX) pp XX-XX.

Research Paper

$\phi\text{-}(k,n)\text{-}\mathbf{ABSORBING}$ (PRIMARY) HYPERIDEALS IN A KRASNER $(m,n)\text{-}\mathbf{HYPERRING}$

MAHDI ANBARLOEI*

ABSTRACT. Various expansions of prime hyperideals have been studied in a Krasner (m,n)-hyperring R. For instance, a proper hyperideal Q of R is called weakly (k,n)-absorbing (primary) provided that for $r_1^{kn-k+1} \in R$, $g(r_1^{kn-k+1}) \in Q - \{0\}$ implies that there are (k-1)n-k+2 of the r_i 's whose g-product is in $Q\left(g(r_1^{(k-1)n-k+2}) \in Q \text{ or a } g$ -product of (k-1)n-k+2 of r_i 's ,except $g(r_1^{(k-1)n-k+2})$, is in $\mathbf{r}^{(m,n)}(Q)$. In this paper, we aim to extend the notions to the concepts of ϕ -(k,n)-absorbing and ϕ -(k,n)-absorbing primary hyperideals. Assume that ϕ is a function from $\mathcal{HI}(R)$ to $\mathcal{HI}(R) \cup \{\varphi\}$ such that $\mathcal{HI}(R)$ is the set of hyperideals of R and k is a positive integer. We call a proper hyperideal Q of R a ϕ -(k,n)-absorbing (primary) hyperideal if for $r_1^{kn-k+1} \in R$, $g(r_1^{kn-k+1}) \in Q - \phi(Q)$ implies that there are (k-1)n-k+2 of the r_i 's whose g-product is in $Q\left(g(r_1^{(k-1)n-k+2}) \in Q$ or a g-product of (k-1)n-k+2 of r_i 's ,except $g(r_1^{(k-1)n-k+2})$, is in $\mathbf{r}^{(m,n)}(Q)$. Several properties and characterizations of them are presented.

DOI: 10.22034/as.2024.20052.1638

 $\label{eq:MSC(2010):Primary: 20N20, 16Y99, 20N15, 06E20.}$

Keywords: ϕ -(k, n)-absorbing hyperideal, ϕ -(k, n)-absorbing primary hyperideal.

Received: 02 May 2023, Accepted: 05 May 2024.

*Corresponding author

1. Introduction

Extensions of prime and primary ideals to the context of ϕ -prime and ϕ -primary ideals were studied in [7, 12]. Afterwards, Khaksari in [20] and Badawi et al. in [9] introduced ϕ -2-prime and ϕ -2-primary ideals, respectively. Let R be a commutative ring. Suppose that ϕ is a function from $\mathcal{I}(R)$ to $\mathcal{I}(R) \cup \{\varphi\}$ where $\mathcal{I}(R)$ is the set of ideals of R. A proper ideal I of R is said to be a ϕ -2-absorbing ideal if whenever $x, y, z \in R$, with $xyz \in I - \phi(I)$ implies that $xy \in I$ or $xz \in I$ or $yz \in I$. Also, A proper ideal I of R is called a ϕ -2-absorbing primary ideal if for every $x, y, z \in R$, $xyz \in I - \phi(I)$ implies that $xy \in I$ or $xz \in I$ or $yz \in I$.

Hyperstructures are algebraic structures equipped with at least one multi-valued operation, called a hyperoperation. A hyperoperation on a non-empty set is a mapping from to the nonempty power set. Hundreds of papers and several books have been written on this topic (for more details see [2, 10, 11, 13, 17, 21, 26, 30, 32, 33, 34]). An n-ary extension of algebraic structures is the most natural method for deeper understanding of their fundamental properties. Mirvakili and Davvaz in [28] introduced (m,n)-hyperrings and gave several results in this respect. They defined and described a generalization of the notion of a hypergroup and a generalization of an n-ary group, which is called n-ary hypergroup [14]. Some review of the n-ary structures can be found in in [22, 23, 24, 25, 31]. One important class of hyperrings, where the addition is a hyperoperation, while the multiplication is an ordinary binary operation, is Krasner hyperring. An extension of the Krasner hyperrings, which is a subclass of (m,n)-hyperrings, was presented by Mirvakili and Davvaz [27], which is called Krasner (m,n)hyperring. Some important hyperideals namely Jacobson radical, nilradical, n-ary prime and primary hyperideals and n-ary multiplicative subsets of Krasner (m, n)-hyperrings were defined by Ameri and Norouzi in [1]. Afterward, the concept of (k, n)-absorbing (primary) hyperideals was studied by Hila et al. [18]. Norouzi et al. gave a new definition for normal hyperideals in Krasner (m,n)-hyperrings, with respect to that one given in [27] and they showed that these hyperideals correspond to strongly regular relations [29]. Direct limit of a direct system was defined and analysed by Asadi and Ameri in the category of Krasner (m, n)-hyperrigs [8]. The notion of δ -primary hyperideals in Krasner (m,n)-hyperrings, which unifies the prime and primary hyperideals under one frame, was presented in [4]. Recently, Davvaz et al. introduced new expansion classes, namely weakly (k,n)-absorbing (primary) hyperideals in a Krasner (m, n)-hyperring [16].

In this paper, we introduce and study the notions of ϕ -(k, n)-absorbing and ϕ -(k, n)-absorbing primary hyperideals in a commutative Krasner (m, n)-hyperring. A number of main results are given to explain the general framework of these structures. Among many results in this paper, it is shown (Theorem 3.6) that if Q is a ϕ -(k, n)-absorbing hyperideal of R, then Q is a ϕ -(s, n)-absorbing hyperideal for all $s \geq k$. Although every ϕ -(k, n)-absorbing of a Krasner

(m,n)-hyperring is ϕ -(k,n)-absorbing primary, Example 4.3 shows that the converse may not be always true. It is shown (Theorem 4.13) that Q is a ϕ -(k,n)-absorbing primary hyperideal of R if and only if $Q/\phi(Q)$ is a weakly (k,n)-absorbing primary hyperideal of $R/\phi(Q)$. In Theorem 4.16, we show that if Q is a ϕ -(k,n)-absorbing primary hyperideal of R but is not a (k,n)-absorbing primary, then $g(Q^{k(n-1)+1}) \subseteq \phi(Q)$. As a result of the theorem we conclude that if Q is a ϕ -(k,n)-absorbing primary hyperideal of R that is not a (k,n)-absorbing primary hyperideal of R, then $\mathbf{r}^{(m,n)}(Q) = \mathbf{r}^{(m,n)}(\phi(Q))$.

2. Krasner (m, n)-hyperrings

In this section, we summarize the preliminary definitions which are related to Krasner (m, n)-hyperrings.

Let A be a non-empty set and $P^*(A)$ the set of all the non-empty subsets of A. An nary hyperoperation on A is a map $f:A^n \longrightarrow P^*(A)$ and the couple (A,f) is called an n-ary hypergroupoid. The notation a_i^j will denote the sequence $a_i, a_{i+1}, ..., a_j$ for $j \geq i$ and
it is the empty symbol for j < i. If $G_1, ..., G_n$ are non-empty subsets of A, then we define $f(G_1^n) = f(G_1, ..., G_n) = \bigcup \{f(a_1^n) \mid a_i \in G_i, 1 \leq i \leq n\}$. If $b_{i+1} = ... = b_j = b$, we write $f(a_1^i, b_{i+1}^j, c_{j+1}^n) = f(a_1^i, b^{(j-i)}, c_{j+1}^n)$. If f is an n-ary hyperoperation, then t-ary hyperoperation f(l) is given by

$$f_{(l)}(a_1^{l(n-1)+1}) = f\bigg(f(...,f(f(a_1^n),a_{n+1}^{2n-1}),...),a_{(l-1)(n-1)+1}^{l(n-1)+1}\bigg),$$

where t = l(n - 1) + 1.

Definition 2.1. [27] (R, f, g), or simply R, is defined as a Krasner (m, n)-hyperring if the following statements hold:

- (1) (R, f) is a canonical m-ary hypergroup;
- (2) (R, g) is a *n*-ary semigroup;
- (3) The *n*-ary operation g is distributive with respect to the *m*-ary hyperoperation f, i.e., for every $a_1^{i-1}, a_{i+1}^n, x_1^m \in R$, and $1 \le i \le n$,

$$g\bigg(a_1^{i-1},f(x_1^m),a_{i+1}^n\bigg)=f\bigg(g(a_1^{i-1},x_1,a_{i+1}^n),...,g(a_1^{i-1},x_m,a_{i+1}^n)\bigg);$$

(4) 0 is a zero element of the *n*-ary operation g, i.e., for each $a_1^n \in R$, $g(a_1^{i-1}, 0, a_{i+1}^n) = 0$.

Throughout this paper, R denotes a commutative Krasner (m, n)-hyperring with the scalar identity 1.

A non-empty subset T of R is called a subhyperring of R if (T, f, g) is a Krasner (m, n)-hyperring. The non-empty subset I of R is a hyperideal if (I, f) is an m-ary subhypergroup of (R, f) and $g(x_1^{i-1}, I, x_{i+1}^n) \subseteq I$, for each $x_1^n \in R$ and $1 \le i \le n$.

Definition 2.2. [1] Let I be a proper hyperideal of R. I refers to a prime hyperideal if for hyperideals I_1^n of R, $g(I_1^n) \subseteq P$ implies $I_i \subseteq I$ for some $1 \le i \le n$.

Lemma 4.5 in [1] shows that the proper hyperideal I of R is prime if for all $a_1^n \in R$, $g(a_1^n) \in I$ implies $a_i \in I$ for some $1 \le i \le n$.

Definition 2.3. [1] The radical of a proper hyperideal I of R, denoted by $\mathbf{r}^{(m,n)}(I)$ is the intersection of all prime hyperideals of R containing I. If the set of all prime hyperideals which contain I is empty, then $\mathbf{r}^{(m,n)}(I) = R$.

It was shown (Theorem 4.23 in [1]) that if $a \in \mathbf{r}^{(m,n)}(I)$ then there exists $s \in \mathbb{N}$ with $g(a^{(s)}, 1_R^{(n-s)}) \in I$ for $s \leq n$, or $g_{(l)}(a^{(s)}) \in I$ for s = l(n-1)+1.

Definition 2.4. [1] A proper hyperideal I of R is primary if $g(a_1^n) \in I$ for $a_1^n \in R$ implies $a_i \in I$ or $g(a_1^{i-1}, 1_R, a_{i+1}^n) \in \boldsymbol{r}^{(m,n)}(I)$ for some $1 \leq i \leq n$.

Theorem 4.28 in [1] shows that the radical of a primary hyperideal of R is prime.

Definition 2.5. [18] Let I be a proper hyperideal of R. I refers to an

- (1) (k,n)-absorbing hyperideal if for $r_1^{kn-k+1} \in R$, $g(r_1^{kn-k+1}) \in I$ implies that there exist (k-1)n-k+2 of the r_i 's whose g-product is in I. In this case, if k=1, then I is an n-ary prime hyperideal of R. If n=2 and k=1, then I is a classic prime hyperideal of R.
- (2) (k,n)-absorbing primary hyperideal if for $r_1^{kn-k+1} \in R$, $g(r_1^{kn-k+1}) \in I$ implies that $g(r_1^{(k-1)n-k+2}) \in I$ or a g-product of (k-1)n-k+2 of the r_i 's, except $g(r_1^{(k-1)n-k+2})$, is in $\boldsymbol{r}^{(m,n)}(I)$.

3. ϕ -(k, n)-Absorbing hyperideals

In his paper [16], Davvaz et al. introduced a generalization of the *n*-ary prime hyperideals in a Krasner (k, n)-hyperring, which they defined as weakly (k, n)-absorbing hyperideals. In this section, we generalize this notion to the context of ϕ -(k, n)-absorbing hyperideals.

Definition 3.1. Assume that $\mathcal{HI}(R)$ is the set of hyperideals of R and $\phi: \mathcal{HI}(R) \longrightarrow \mathcal{HI}(R) \cup \{\varphi\}$ is a function. Let k be a positive integer. A proper hyperideal Q of R is said to be ϕ -(k, n)-absorbing provided that for $r_1^{kn-k+1} \in R$, $g(r_1^{kn-k+1}) \in Q - \phi(Q)$ implies that there are (k-1)n-k+2 of the r_i 's whose g-product is in Q.

Example 3.2. Consider the Krasner (2,2)-hyperring $R = \{0,1,x\}$ with the hyperaddition and multiplication defined by

+	0	1	x
0	0	1	x
1	1	R	1
x	x	1	$\{0,x\}$

•	0	1	x
0	0	0	0
1	0	1	x
x	0	x	0

Assume that ϕ is a function from $\mathcal{HI}(R)$ to $\mathcal{HI}(R) \cup \{\varphi\}$ defined $\phi(I) = g(I^{(2)})$ for $I \in \mathcal{HI}(R)$. Then the hyperideal $Q = \{0, x\}$ is a ϕ -(2, 2)-absorbing hyperideal of R.

Example 3.3. Let t > 4. Consider Krasner (4,3)-hyperring $(\mathbb{Z}_{5^{5t}}, +, \cdot)$ where + and \cdot are usual addition and multiplication. Defined $\phi(I) = I^5$ for $I \in \mathcal{HI}(\mathbb{Z}_{5^{5t}})$. Then $I = \langle 5^t \rangle$ is not a (2,3)-absorbing hyperideal of $\mathbb{Z}_{5^{5t}}$ since $5.5.5.5.5^{t-4} \in I - \phi(I)$ but $5.5.5, 5.5.5^{t-4} \notin I$.

Let $\phi: \mathcal{HI}(R) \longrightarrow \mathcal{HI}(R) \cup \{\varphi\}$ be a function. Clearly, every (k, n)-absorbing hyperideal in a Krasner (m, n)-hyperring is a ϕ -(k, n)-absorbing hyperideal. But, the following example shows that the converse does not necessarily hold.

Example 3.4. Assume that R is the Krasner (2,4)-hyperring given in Example 4.7 in [1]. In [16], it was shown that $\langle 0 \rangle$ is not a (1,4)-absorbing hyperideal of R. Now, defined $\phi(I) = g(I^{(4)})$ for $I \in \mathcal{HI}(R)$. In this hyperring, $\langle 0 \rangle$ is a ϕ -(1,4)-absorbing hyperideal of R.

Theorem 3.5. Let $\phi_1, \phi_2 : \mathcal{HI}(R) \longrightarrow \mathcal{HI}(R) \cup \{\varphi\}$ be two functions such that for all $I \in \mathcal{HI}(R)$, $\phi_1(I) \subseteq \phi_2(I)$. If Q is a ϕ_1 -(k, n)-absorbing hyperideal of R, then Q is a ϕ_2 -(k, n)-absorbing hyperideal.

Proof. Suppose that $g(r_1^{kn-k+1}) \in Q - \phi_2(Q)$ for $r_1^{kn-k+1} \in R$. From $\phi_1(Q) \subseteq \phi_2(Q)$, it follows that $g(r_1^{kn-k+1}) \in Q - \phi_1(Q)$. Since Q is a ϕ_1 -(k,n)-absorbing hyperideal of R, we conclude that there are (k-1)n-k+2 of the r_i 's whose g-product is in Q, as needed. \square

Theorem 3.6. Let $\phi: \mathcal{HI}(R) \longrightarrow \mathcal{HI}(R) \cup \{\varphi\}$ be a function. If Q is a ϕ -(k, n)-absorbing hyperideal of R, then Q is a ϕ -(s, n)-absorbing hyperideal for all $s \geq k$.

Proof. Let us use the induction on k that if Q is ϕ -(k,n)-absorbing hyperideal of R, then Q is ϕ -(k+1,n)-absorbing. Assume that Q is ϕ -(2,n)-absorbing and $g(r_1^{2n-2},g(r_{2n-1}^{3n-2})) \in Q-\phi(Q)$ for some $r_1^{3n-2} \in R$. Since Q is ϕ -(2,n)-absorbing, then there are n of the r_i 's except $g(r_{2n-1}^{3n-2})$ whose g-product is in Q and so there are 2n-1 of the r_i 's whose g-product is in Q. This shows that Q is ϕ -(3,n)-absorbing. Assume that Q is ϕ -(k,n)-absorbing and $g(g(r_1^{2n-2}),r_{2n-1}^{(k+1)n-(k+1)+1}) \in Q-\phi(Q)$ for some $r_1^{(k+1)n-(k+1)+1} \in R$. Since Q is ϕ -(k,n)-absorbing, we conclude that $g(g(r_1^{2(n-1)}),r_{2n-1},\cdots,\widehat{r_i},\cdots,r_{(k+1)n-(k+1)+1}) \in Q$ for some $2(n-1) \le i \le (k+1)n-(k+1)+1$ or $g(r_{2n-1}^{(k+1)n-(k+1)+1}) \in Q$. The former case shows that Q is ϕ -(k+1,n)-absorbing. In the

latter case, we obtain $g(r_1^{n-1}, r_{2n-1}^{(k+1)n-(k+1)+1}) \in Q$ since $g(r_1^{2(n-1)}) \in Q$. Thus Q is ϕ -(k+1, n)-absorbing. \square

Recall from [15] that if (R_1, f_1, g_1) and (R_2, f_2, g_2) are two Krasner (m, n)-hyperrings such that 1_{R_1} and 1_{R_2} are scalar identities of R_1 and R_2 , respectively, then $(R_1 \times R_2, f_1 \times f_2, g_1 \times g_2)$ is a Krasner (m, n)-hyperring where

$$f = f_1 \times f_2((a_1, b_1), \dots, (a_m, b_m)) = \{(a, b) \mid a \in f_1(a_1^m), b \in f_2(b_1^m)\},$$

$$g = g_1 \times g_2((x_1, y_1), \dots, (x_n, y_n)) = (g_1(x_1^n), g_2(y_1^n)),$$

for all $a_1^m, x_1^n \in R_1$ and $b_1^m, y_1^n \in R_2$.

Theorem 3.7. Let (R_i, f_i, g_i) be a commutative Krasner (m, n)-hyperring for each $1 \leq i \leq kn - k + 1$ and $\phi_i : \mathcal{HI}(R_i) \longrightarrow \mathcal{HI}(R_i) \cup \{\varphi\}$ be a function. Let Q_i be a hyperideal of R_i for each $1 \leq i \leq kn - k + 1$ and $\phi = \phi_1 \times \cdots \times \phi_{kn-k+1}$. If $Q = Q_1 \times \cdots \times Q_{kn-k+1}$ is a ϕ -(k+1,n)-absorbing hyperideal of $R = R_1 \times \cdots \times R_{kn-k+1}$, then Q_i is a ϕ_i -(k,n)-absorbing hyperideal of R_i and $Q_i \neq R_i$ for all $1 \leq i \leq kn-k+1$.

Proof. Let $r_1^{kn-k+1} \in R_i$ such that $g(r_1^{kn-k+1}) \in Q_i - \phi_i(Q_i)$. Suppose by contradiction that Q_i is not a ϕ_i -(k, n)-absorbing hyperideal of R_i . Define

$$a_1 = (1_{R_1}, \cdots, 1_{R_{i-1}}, r_1, 1_{R_{i+1}}, \cdots, 1_{R_{kn-k+1}}),$$

$$a_2 = (1_{R_1}, \cdots, 1_{R_{i-1}}, r_2, 1_{R_{i+1}}, \cdots, 1_{R_{kn-k+1}}),$$

$$\vdots$$

$$a_{kn-k+1} = (1_{R_1}, \cdots, 1_{R_{i-1}}, r_{kn-k+1}, 1_{R_{i+1}}, \cdots, 1_{R_{kn-k+1}}),$$

$$a_{kn-k} = (1_{R_1}, \cdots, 1_{R_{i-1}}, 1_{R_i}, 1_{R_{i+1}}, \cdots, 1_{R_{kn-k+1}}),$$

$$a_{(k+1)n-(k+1)+1} = (0, \cdots, 0, 1_{R_i}, 0, \cdots, 0).$$

Hence $g(a_1^{(k+1)n-(k+1)+1)}) \in Q - \phi(Q)$ but $g(a_1^{kn-k+1}) \notin Q$. Since Q is a ϕ -(k+1,n)-absorbing hyperideal of R, we conclude that one of g-productions of kn-k+1 of a_i 's except $g(a_1^{(k+1)n-(k+1)+1})$ is in Q. This implies that there exist (k-1)n-k+2 of r_i 's whose g-product is in Q_i which is a contradiction. Consequently, Q_i is a ϕ_i -(k,n)-absorbing hyperideal of R_i . \square

Assume that (R_1, f_1, g_1) and (R_2, f_2, g_2) are two Krasner (m, n)-hyperrings. Recall from [27] that a mapping $h: R_1 \longrightarrow R_2$ is called a homomorphism if for all $a_1^m \in R_1$ and $b_1^n \in R_1$ we have $(1)h(f_1(a_1, ..., a_m)) = f_2(h(a_1), ..., h(a_m)), (2)h(g_1(b_1, ..., b_n)) = g_2(h(b_1), ..., h(b_n)).$ Moreover, recall from [19] that a function $\phi: \mathcal{HI}(R) \longrightarrow \mathcal{HI}(R) \cup \{\varphi\}$ is called a reduction function of $\mathcal{HI}(R)$ if $\phi(P) \subseteq P$ and $P \subseteq Q$ implies that $\phi(P) \subseteq \phi(Q)$ for all $P, Q \in \mathcal{HI}(R)$.

Now, assume that R_1 and R_2 are two Krasner (m, n)-hyperring such that $h: R_1 \longrightarrow R_2$ is a homomorphism. Suppose that ϕ_1 and ϕ_2 are two reduction functions of $\mathcal{HI}(R_1)$ and $\mathcal{HI}(R_2)$, respectively. If $\phi_1(h^{-1}(I_2)) = h^{-1}(\phi_2(I_2))$ for all $I_2 \in \mathcal{HI}(R_2)$, then we say h is a ϕ_1 - ϕ_2 -homomorphism. Let h be a ϕ_1 - ϕ_2 -epimorphism from R_1 to R_2 and let I_1 be a hyperideal of R_1 with $Ker(h) \subseteq I_1$. It is easy to see that $\phi_2(h(I_1)) = h(\phi_1(I_1))$.

Example 3.8. Let R_1 and R_2 be two Krasner (m, n)-hyperrings and ϕ_1 and ϕ_2 be two empty reduction functions of $\mathcal{HI}(R_1)$ and $\mathcal{HI}(R_2)$, respectively. Then every homorphism h from R_1 to R_2 is a ϕ_1 - ϕ_2 -homomorphism.

Theorem 3.9. Let $h: R_1 \longrightarrow R_2$ be a ϕ_1 - ϕ_2 -homomorphism, where ϕ_1 and ϕ_2 are two reduction functions of $\mathcal{HI}(R_1)$ and $\mathcal{HI}(R_2)$, respectively. Then

- (1) If Q_2 is a ϕ_2 -(k, n)-absorbing hyperideal of R_2 , then $h^{-1}(Q_2)$ is a ϕ_1 -(k, n)-absorbing of R_1 .
- (2) If h is surjective and Q_1 is a ϕ_1 -(k, n)-absorbing hyperideal of R_1 with $Ker(h) \subseteq Q_1$, then $h(Q_1)$ is a ϕ_2 -(k, n)-absorbing hyperideal of R_2 .
- Proof. (1) Let Q_2 be a ϕ_2 -(k, n)-absorbing hyperideal of R_2 and $g(r_1^{kn-k+1}) \in h^{-1}(Q_2) \phi_1(h^{-1}(Q_2))$ for some $r_1^{kn-k+1} \in R_1$. Then we get $h(g(r_1^{kn-k+1})) = g(h(r_1), \dots, h(r_{kn-k+1})) \in Q_2 \phi_2(Q_2)$. Since Q_2 is a ϕ_2 -(k, n)-absorbing hyperideal of R_2 , we conclude that the image of h of (k-1)n-k+2 of r_i 's whose g-product is in Q_2 . Then there exist (k-1)n-k+2 of r_i 's whose g-product is in $h^{-1}(Q_2)$. Thus $h^{-1}(Q_2)$ is a ϕ_1 -(k, n)-absorbing of R_1 .
- (2) Suppose that Q_1 is a ϕ_1 -(k,n)-absorbing hyperideal of R_1 with $Ker(h) \subseteq Q_1$ and h is surjective. Let $g(s_1^{kn-k+1}) \in h(Q_1) \phi_2(h(Q_1))$ for some $s_1^{kn-k+1} \in R_2$. Then there exists $r_i \in R_1$ for every $1 \le i \le kn k + 1$ such that $h(r_i) = s_i$. Hence we get $h(g(r_1^{kn-k+1}) = g(h(r_1), \dots, h(r_{kn-k+1})) = g(s_1^{kn-k+1}) \in h(Q_1)$. Since $Ker(h) \subseteq Q_1$ and h is a ϕ_1 - ϕ_2 -epimorphism, we have $g(r_1^{kn-k+1}) \in Q_1 \phi_1(Q_1)$. Since Q_1 is a ϕ_1 -(k,n)-absorbing hyperideal of R_1 , there are (k-1)n k + 2 of r_i 's whose g-product is in Q_1 . Now, since h is a homomorphism, we are done. \square

Let P be a hyperideal of R. Then the set $R/P = \{f(a_1^{i-1}, P, a_{i+1}^m) \mid a_1^{i-1}, a_{i+1}^m \in R\}$ with m-ary hyperoperation f and n-operation g is the quotient Krasner (m, n)-hyperring of R by P. Theorem 3.2 in [1] shows that the projection map π from R to R/P, defined by $\pi(r) = f(r, P, 0^{(m-2)})$, is homomorphism. Let P be a hyperideal of R and ϕ be a reduction function of $\mathcal{HI}(R)$. Then the function ϕ_q from $\mathcal{HI}(R/P)$ to $\mathcal{HI}(R/P) \cup \{\varphi\}$ defined by $\phi_q(I/P) = \phi(I)/P$ is a reduction function. Now, we have the following theorem as a result of Theorem 3.9 that is easily verified, and hence we omit the proof.

Theorem 3.10. Let Q and P be two hyperideals of R and ϕ be a reduction function of $\mathcal{HI}(R)$ such that $P \subseteq \phi(Q) \subseteq Q$. If Q is a ϕ -(k, n)-absorbing hyperideal of R, then Q/P is a ϕ_q -(k, n)-absorbing hyperideal of R/P.

4.
$$\phi$$
- (k, n) -Absorbing primary hyperideals

Definition 4.1. Suppose that $\mathcal{HI}(R)$ is the set of hyperideals of R and $\phi: \mathcal{HI}(R) \longrightarrow \mathcal{HI}(R) \cup \{\varphi\}$ is a function. Let k be a positive integer. A proper hyperideal Q of R is called ϕ -(k,n)-absorbing primary if $g(r_1^{kn-k+1}) \in Q - \phi(Q)$ for $r_1^{kn-k+1} \in R$ implies that $g(r_1^{(k-1)n-k+2}) \in Q$ or a g-product of (k-1)n-k+2 of r_i 's ,except $g(r_1^{(k-1)n-k+2})$, is in $\mathbf{r}^{(m,n)}(Q)$.

Example 4.2. Every ϕ -(k, n)-absorbing of a Krasner (m, n)-hyperring is ϕ -(k, n)-absorbing primary.

The converse may not be always true as it is shown in the following example.

Example 4.3. Consider the Krasner (2,2)-hyperring R = [0,1] with the 2-ary hyperoperation defined by

$$a \oplus b = \begin{cases} \{\max\{a, b\}\}, & \text{if } a \neq b, \\ [0, a], & \text{if } a = b, \end{cases}$$

and multiplication is the usual multiplication on real numbers. Suppose that ϕ is a function from $\mathcal{HI}(R)$ to $\mathcal{HI}(R) \cup \{\varphi\}$ defined $\phi(I) = \bigcap_{i=1}^{\infty} g(I^{(i)})$ for $I \in \mathcal{HI}(R)$. Then the hyperideal Q = [0, 0.5] is a ϕ -(2, 2)-absorbing primary hyperideal of R but it is not ϕ -(2, 2)-absorbing.

The next theorem provides us how to determine ϕ -(k, n)-absorbing primary hyperideal to be (k, n)-absorbing primary.

Theorem 4.4. Assume that Q is a hyperideal of R and $\phi : \mathcal{HI}(R) \longrightarrow \mathcal{HI}(R) \cup \{\varphi\}$ is a reduction function such that $\phi(Q)$ is a (k,n)-absorbing primary hyperideal of R. If Q is a ϕ -(k,n)-absorbing primary hyperideal of R, then Q is a (k,n)-absorbing primary hyperideal of R.

Proof. Let $r_1^{kn-k+1} \in R$ such that $g(r_1^{kn-k+1}) \in Q$ and $g(r_1^{(k-1)n-k+2}) \notin Q$. Assume that $g(r_1^{kn-k+1}) \in \phi(Q)$. Since $\phi(Q)$ is a (k,n)-absorbing primary hyperideal of R and $g(r_1^{(k-1)n-k+2}) \notin \phi(Q)$, we conclude that a g-product of (k-1)n-k+2 of the r_i 's, except $g(r_1^{(k-1)n-k+2})$ is in $\mathbf{r}^{(m,n)}(\phi(Q)) \subseteq \mathbf{r}^{(m,n)}(Q)$, as needed. Suppose that $g(r_1^{kn-k+1}) \notin \phi(Q)$. Since Q is a ϕ -(k,n)-absorbing primary hyperideal of R, we are done. \square

In the following, the relationship between a ϕ -(k, n)-absorbing primary hyperideal of R and its radical is considered.

Theorem 4.5. Let Q be a hyperideal of R and $\phi : \mathcal{HI}(R) \longrightarrow \mathcal{HI}(R) \cup \{\varphi\}$ be a function such that $\mathbf{r}^{(m,n)}(\phi(Q)) = \phi(\mathbf{r}^{(m,n)}(Q))$. If Q is a ϕ -(k,n)-absorbing primary hyperideal of R, then $\mathbf{r}^{(m,n)}(Q)$ is a ϕ -(k,n)-absorbing hyperideal of R.

Proof. Let $r_1^{kn-k+1} \in R$ such that $g(r_1^{kn-k+1}) \in \boldsymbol{r}^{(m,n)}(Q) - \phi(\boldsymbol{r}^{(m,n)}(Q))$. Assume that all products of (k-1)n-k+2 of the r_i 's except $g(r_1^{(k-1)n-k+2})$ are not in $\boldsymbol{r}^{(m,n)}(Q)$. Since $g(r_1^{kn-k+1}) \in \boldsymbol{r}^{(m,n)}(Q)$, then there exists $s \in \mathbb{Z}^+$ with $g(g(r_1^{kn-k+1})^{(s)},1^{(n-s)}) \in Q$, for $s \leq n$ or $g(l)(g(r_1^{kn-k+1})^{(s)}) \in Q$, for s > n, s = l(n-1)+1. In the former case, we get $g(g(r_1)^{(s)},g(r_2)^{(s)},\cdots,g(r_{kn-k+1})^{(s)},1^{(n-s)}) \in Q$. If $g(g(r_1)^{(s)},g(r_2)^{(s)},\cdots,g(r_{kn-k+1})^{(s)},1^{(n-s)}) \in Q$, we obtain $g(r_1^{kn-k+1}) \in \boldsymbol{r}^{(m,n)}(\phi(Q)) = \phi(\boldsymbol{r}^{(m,n)}(Q))$, a contradiction. Since Q is a ϕ -(k,n)-absorbing primary hyperideal of R, then $g(g(r_1)^{(s)},g(r_2)^{(s)},\cdots,g(r_{(k-1)n-k+2})^{(s)}),1^{(n-s)}) = g(g(r_1^{(k-1)n-k+2)})^{(s)},1^{(n-s)}) \in Q$ which means $g(r_1^{(k-1)n-k+2}) \in \boldsymbol{r}^{(m,n)}(Q)$. For the other case, we have a similar argument. Consequently, $\boldsymbol{r}^{(m,n)}(Q)$ is a ϕ -(k,n)-absorbing hyperideal of R. \square

Example 4.6. Assume that $H = \mathbb{Z}_3[X,Y,Z]$ and $Q = \langle X^3Y^3Z^3 \rangle$. Then R = H/Q is a Krasner (m,n)-hyperring with ordinary addition and ordinary multiplication. Defined $\phi(I/Q) = 0_R$ for $I/Q \in \mathcal{HI}(R)$. In the hyperring, Q/Q is a ϕ -(1, 3)-absorbing primary hyperideal of R and $\mathbf{r}^{(m,n)}(\phi(Q/Q)) \neq \phi(\mathbf{r}^{(m,n)}(Q/Q))$. Note that $\mathbf{r}^{(m,n)}(Q/Q)$ is not a ϕ -(1, 3)-absorbing hyperideal of R because $2XYZ + Q = (2X + Q)(Y + Q)(Z + Q) \in \mathbf{r}^{(m,n)}(Q/Q) - \phi(\mathbf{r}^{(m,n)}(Q/Q))$ but none of the elements (2X + Q), (Y + Q) and (Z + Q) are not in $\mathbf{r}^{(m,n)}(Q/Q)$.

Theorem 4.7. Assume that $\phi: \mathcal{HI}(R) \longrightarrow \mathcal{HI}(R) \cup \{\varphi\}$ is a function. If Q is a ϕ -(k, n)-absorbing primary hyperideal of R, then Q is a ϕ -(s, n)-absorbing primary hyperideal for all $s \geq k$.

Proof. Let Q be a ϕ -(k,n)-absorbing primary hyperideal of R. Suppose that $g(g(r_1^{n+2}), r_{n+3}^{(k+1)n-(k+1)+1}) \in Q - \phi(Q)$ for some $r_1^{(k+1)n-(k+1)+1} \in R$. Put $g(r_1^{n+2}) = a_1$. Then we conclude that $g(a_1, \cdots, r_{(k+1)n-(k+1)+1}) \in Q$ or a g-product of kn - k + 1 of the r_i 's, except $g(a_1, \cdots, r_{(k+1)n-(k+1)+1})$ is in $\mathbf{r}^{(m,n)}(Q)$ as Q is a ϕ -(k,n)-absorbing primary hyperideal of R. Since $\mathbf{r}^{(m,n)}(Q)$ is a hyperideal of R and $r_1^{n+2} \in R$, we conclude that $g(r_1, r_{n+3}, \cdots, r_{(k+1)n-(k+1)+1}) \in \mathbf{r}^{(m,n)}(Q)$ or \cdots or $g(r_{n+2}, r_{n+3}, \cdots, r_{(k+1)n-(k+1)+1}) \in \mathbf{r}^{(m,n)}(Q)$ and so Q is (k+1, n)-absorbing primary. \square

Theorem 4.8. Let $\phi_1, \phi_2 : \mathcal{HI}(R) \longrightarrow \mathcal{HI}(R) \cup \{\varphi\}$ be two functions such that for all $I \in \mathcal{HI}(R), \phi_1(I) \subseteq \phi_2(I)$. If Q is a ϕ_1 -(k, n)-absorbing primary hyperideal of R, then Q is a ϕ_2 -(k, n)-absorbing primary hyperideal.

Proof. It is proved in a similar way to Theorem 3.5. \square

Theorem 4.9. Let $\phi : \mathcal{HI}(R) \longrightarrow \mathcal{HI}(R) \cup \{\varphi\}$ be a function. If Q is a ϕ -(1, n)-absorbing primary hyperideal of R, then Q is a ϕ -(2, n)-absorbing primary hyperideal.

Proof. Let Q be a ϕ -(1, n)-absorbing primary hyperideal and $g(g(r_1^n), \dots, r_{2n-1}) \in Q - \phi(Q)$ for some $r_1^{2n-1} \in R$. Then we get $g(r_1^n) \in Q$ or $g(r_{n+1}^{2n-1}) \in \mathbf{r}^{(m,n)}(Q)$. By definition of hyperideal, we conclude that $g(r_1, r_{n+1}, \dots, r_{2n-1}) \in \mathbf{r}^{(m,n)}(Q)$ or \dots or $g(r_1, r_{n+1}, \dots, r_{2n-1}) \in \mathbf{r}^{(m,n)}(Q)$ since $r_1^n \in R$. Consequently, Q is a ϕ -(2, n)-absorbing primary hyperideal of R. \square

Let Q be a proper hyperideal of R and $\phi: \mathcal{HI}(R) \longrightarrow \mathcal{HI}(R) \cup \{\varphi\}$ be a function. Q refers to a strongly ϕ -(k,n)-absorbing primary hyperideal of R if $g(Q_1^{kn-k+1}) \subseteq Q - \phi(Q)$ for some hyperideals Q_1^{kn-k+1} of R implies that $g(Q_1^{(k-1)n-k+2}) \subseteq Q$ or a g-product of (k-1)n-k+2 of Q_i 's, except $g(Q_1^{(k-1)n-k+2})$, is a subset of $r^{(m,n)}(Q)$. In the sequel, we assume that all ϕ -(k,n)-absorbing primary hyperideals of R are strongly ϕ -(k,n)-absorbing primary hyperideal. Recall from [16] that a proper hyperideal Q of R is called weakly (k,n)-absorbing primary if $0 \neq g(r_1^{kn-k+1}) \in Q$ for $r_1^{kn-k+1} \in R$ implies that $g(r_1^{(k-1)n-k+2}) \in Q$ or a g-product of (k-1)n-k+2 of r_i 's ,except $g(r_1^{(k-1)n-k+2})$, is in $r^{(m,n)}(Q)$.

Theorem 4.10. Suppose that Q is a proper hyperideal of a commutative Krasner (m, 2)-hyperring R and $\phi : \mathcal{HI}(R) \longrightarrow \mathcal{HI}(R) \cup \{\varphi\}$ is a function. Then the followings are equivalent:

- (1) Q is a ϕ -(2,2)-absorbing primary hyperideal of R.
- (2) $Q/\phi(Q)$ is a weakly (2,2)-absorbing primary hyperideal of $R/\phi(Q)$.

Proof. (1) \Longrightarrow (2) Let Q be ϕ -(2,2)-absorbing primary and for $a_{11}^{1m}, a_{21}^{2m}, a_{31}^{3m} \in R$,

$$\begin{split} \phi(Q) &\neq g(f(a_{11}^{1(i-1)}, \phi(Q), a_{1(i+1)}^{1m}), f(a_{21}^{2(i-1)}, \phi(Q), a_{2(i+1)}^{2m}), f(a_{31}^{3(i-1)}, \phi(Q), a_{3(i+1)}^{3m})) \\ &= f(g(a_{11}^{31}), \cdots, g(a_{1(i-1)}^{3(i-1)}), \phi(Q), g(a_{1(i+1)}^{3(i+1)}), \cdots, g(a_{1m}^{3m})) \\ &\in Q/\phi(Q). \end{split}$$

Then

$$f(g(a_{11}^{31}), \cdots, g(a_{1(i-1)}^{3(i-1)}), 0, g(a_{1(i+1)}^{3(i+1)}), \cdots, g(a_{1m}^{3m}))$$

$$= g(f(a_{11}^{1(i-1)}, 0, a_{1(i+1)}^{1m}), f(a_{21}^{2(i-1)}, 0, a_{2(i+1)}^{2m}), f(a_{31}^{3(i-1)}, 0, a_{3(i+1)}^{3m}))$$

$$\in Q - \phi(Q).$$

Since Q is a ϕ -(2, 2)-absorbing primary hyperideal of R, we get

$$\begin{split} g(f(a_{11}^{1(i-1)},0,a_{1(i+1)}^{1m}),f(a_{21}^{2(i-1)},0,a_{2(i+1)}^{2m})) \\ &= f(g(a_{11}^{21}),\cdots,g(a_{1(i-1)}^{2(i-1)}),0,g(a_{1(i+1)}^{2(i+1)}),\cdots,g(a_{1m}^{2m})) \subseteq Q, \\ g(f(a_{21}^{2(i-1)},0,a_{2(i+1)}^{2m}),f(a_{31}^{3(i-1)},0,a_{3(i+1)}^{3m})) \\ &= f(g(a_{21}^{31}),\cdots,g(a_{2(i-1)}^{3(i-1)}),0,g(a_{2(i+1)}^{3(i+1)}),\cdots,g(a_{2m}^{3m})) \subseteq \mathbf{r}^{(m,n)}(Q), \end{split}$$

or

$$g(f(a_{11}^{1(i-1)}, 0, a_{1(i+1)}^{1m}), f(a_{31}^{3(i-1)}, 0, a_{3(i+1)}^{3m}))$$

$$= f(g(a_{11}^{31}), \cdots, g(a_{1(i-1)}^{3(i-1)}), 0, g(a_{1(i+1)}^{3(i+1)}), \cdots, g(a_{1m}^{3m})) \subseteq \mathbf{r}^{(m,n)}(Q).$$

It implies that

$$f(g(a_{11}^{21}), \cdots, g(a_{1(i-1)}^{2(i-1)}), \phi(Q), g(a_{1(i+1)}^{2(i+1)}), \cdots, g(a_{1m}^{2m}))$$

$$= g(f(a_{11}^{1(i-1)}, \phi(Q), a_{1(i+1)}^{1m}), f(a_{21}^{2(i-1)}, \phi(Q), a_{2(i+1)}^{2m})) \in Q/\phi(Q),$$

or

$$\begin{split} f(g(a_{21}^{31}),\cdots,g(a_{2(i-1)}^{3(i-1)}),\phi(Q),g(a_{2(i+1)}^{3(i+1)}),\cdots,g(a_{2m}^{3m}))\\ &=g(f(a_{21}^{2(i-1)},\phi(Q),a_{2(i+1)}^{2m}),f(a_{31}^{3(i-1)},\phi(Q),a_{3(i+1)}^{3m}))\\ &\in \boldsymbol{r}^{(m,n)}(Q)/\phi(Q)=\boldsymbol{r}^{(m,n)}(Q/\phi(Q)), \end{split}$$

or

$$\begin{split} f(g(a_{11}^{31}),\cdots,g(a_{1(i-1)}^{3(i-1)}),\phi(Q),g(a_{1(i+1)}^{3(i+1)}),\cdots,g(a_{1m}^{3m})) \\ &= g(f(a_{11}^{1(i-1)},\phi(Q),a_{1(i+1)}^{1m}),f(a_{31}^{3(i-1)},\phi(Q),a_{3(i+1)}^{3m})) \\ &\in \boldsymbol{r}^{(m,n)}(Q)/\phi(Q) = \boldsymbol{r}^{(m,n)}(Q/\phi(Q)). \end{split}$$

 $(2) \Longrightarrow (1)$ Let $g(r_1^3) \in Q - \phi(Q)$ for some $r_1^3 \in R$. Therefore we obtain $f(g(r_1^3), \phi(Q), 0^{(m-2)}) \neq \phi(Q)$. It follows that

$$\phi(Q) \neq g(f(r_1, \phi(Q), 0^{(m-2)}), f(r_2, \phi(Q), 0^{(m-2)}), f(r_3, \phi(Q), 0^{(m-2)})) \in Q/\phi(Q).$$

By the hypothesis, we get

$$g(f(r_1, \phi(Q), 0^{(m-2)}), f(r_2, \phi(Q), 0^{(m-2)})) = f(g(r_1^2), \phi(Q), 0^{(m-2)}) \in Q/\phi(Q).$$

or

$$g(f(r_2,\phi(Q),0^{(m-2)}),f(r_3,\phi(Q),0^{(m-2)})) = f(g(r_2^3),\phi(Q),0^{(m-2)}) \in \mathbf{r}^{(m,n)}(Q)/\phi(Q).$$

or

$$g(f(r_1,\phi(Q),0^{(m-2)}),f(r_3,\phi(Q),0^{(m-2)}))=f(g(r_1^3),\phi(Q),0^{(m-2)})\in \mathbf{r}^{(m,n)}(Q)/\phi(Q).$$

This shows that $g(r_1^2) \in Q$ or $g(r_2^3) \in r^{(m,n)}(Q)$ or $g(r_1^3) \in r^{(m,n)}(Q)$. Consequently, Q is a ϕ -(2,2)-absorbing primary hyperideal of R. \square

Suppose that I is a weakly (2,2)-absorbing primary hyperideal of a commutative Krasner (m,2)-hyperring R. Recall from [16] that (x,y,z) is said to be (2,2)-zero primary of I for $x,y,z\in R$, if g(x,y,z)=0, $g(x,y)\notin I$, $g(y,z)\notin {\bf r}^{(m,n)}(I)$ and $g(x,z)\notin {\bf r}^{(m,n)}(I)$. Now, assume that Q is a ϕ -(2,2)-absorbing primary hyperideal of a commutative Krasner (m,2)-hyperring R. Then we say (x,y,z) is a ϕ -(2,2) primary of Q for some $x,y,z\in R$ if $g(x,y,z)\in \phi(Q)$, $g(x,y)\notin Q$, $g(y,z)\notin {\bf r}^{(m,n)}(Q)$ and $g(x,z)\notin {\bf r}^{(m,n)}(Q)$. It is easy to see that a proper hyperideal Q of R is ϕ -(2,2)-absorbing primary that is not (2,2)-absorbing primary if and only if Q has a ϕ -(2,2) primary (x,y,z) for some $x,y,z\in R$.

Theorem 4.11. Let R be a commutative Krasner (m,2)-hyperring and let $\phi: \mathcal{HI}(R) \longrightarrow \mathcal{HI}(R) \cup \{\varphi\}$ be a function. Let Q be a ϕ -(2,2)-absorbing primary hyperideal of R and $x,y,z \in R$. Then the followings are equivalent:

- (1) (x, y, z) is a ϕ -(2, 2) primary of Q.
- (2) $(f(x,\phi(Q),0^{(m-2)}), f(y,\phi(Q),0^{(m-2)}), f(z,\phi(Q),0^{(m-2)})$ is a (2,2)-zero primary of $Q/\phi(Q)$.

Proof. (1) \Longrightarrow (2) Let (x,y,z) be a ϕ -(2,2) primary of Q. This means that $g(x,y,z) \in \phi(Q), \ g(x,y) \notin Q, \ g(y,z) \notin \mathbf{r}^{(m,n)}(Q)$ and $g(x,z) \notin \mathbf{r}^{(m,n)}(Q)$. This implies that $f(g(x,y),Q,0^{(m-2)}) \notin Q/\phi(Q), \ f(g(y,z),\phi(Q),0^{(m-2)}) \notin \mathbf{r}^{(m,n)}(Q)/\phi(Q)$ and $f(g(x,z),\phi(Q),0^{(m-2)}) \notin \mathbf{r}^{(m,n)}(Q)/\phi(Q)$. By Theorem 4.10, we conclude that $(f(x,\phi(Q),0^{(m-2)}),f(y,\phi(Q),0^{(m-2)}),f(z,\phi(Q),0^{(m-2)})$ is a (2,2)-zero primary of $Q/\phi(Q)$. (2) \Longrightarrow (1) Assume that $(f(x,\phi(Q),0^{(m-2)}),f(y,\phi(Q),0^{(m-2)}),f(z,\phi(Q),0^{(m-2)})$ is a (2,2)-zero primary of $Q/\phi(Q)$. Thus $g(x,y,z) \in \phi(Q)$ but $f(g(x,y),Q,0^{(m-2)}) \notin Q/\phi(Q), f(g(y,z),\phi(Q),0^{(m-2)}) \notin \mathbf{r}^{(m,n)}(Q)/\phi(Q)$ and $f(g(x,z),\phi(Q),0^{(m-2)}) \notin \mathbf{r}^{(m,n)}(Q)/\phi(Q).$ Hence $g(x,y,z) \in \phi(Q), g(x,y) \notin Q, g(y,z) \notin \mathbf{r}^{(m,n)}(Q)$ and $g(x,z) \notin \mathbf{r}^{(m,n)}(Q)$. It implies that (x,y,z) is a ϕ -(2,2) primary of Q.

Theorem 4.12. Let R be a commutative Krasner (m,2)-hyperring and let $\phi: \mathcal{HI}(R) \longrightarrow \mathcal{HI}(R) \cup \{\varphi\}$ be a function. Let Q be a ϕ -(2,2)-absorbing primary hyperideal of R. If (x,y,z) is a ϕ -(2,2) primary of Q for some $x,y,z \in R$, then

(1) $g(x, y, Q), g(y, z, Q), g(x, z, Q) \subseteq \phi(Q)$.

- (2) $g(x, Q^{(2)}), g(y, Q^{(2)}), g(z, Q^{(2)}) \subseteq \phi(Q).$
- (3) $q(Q^{(3)}) \subset \phi(Q)$.

Proof. (1) Let (x, y, z) be a ϕ -(2, 2) primary of a ϕ -(2, 2)-absorbing primary hyperideal Q. By Theorem 4.11, $(f(x, \phi(Q), 0^{(m-2)}), f(y, \phi(Q), 0^{(m-2)}), f(z, \phi(Q), 0^{(m-2)})$ is a (2, 2)-zero primary of $Q/\phi(Q)$ since (x, y, z) is a ϕ -(2, 2) primary of Q. Thus

$$f(g(x,y,Q),\phi(Q),0^{(m-2)}) = f(g(y,z,Q),\phi(Q),0^{(m-2)}) = f(g(x,z,Q),\phi(Q),0^{(m-2)}) = \phi(Q),$$

by Theorem 4.9 in [16], which implies g(x, y, Q), g(y, z, Q) and g(x, z, Q) are subsets of $\phi(Q)$.

- (2) Theorem 4.11 shows that $(f(x,\phi(Q),0^{(m-2)}),f(y,\phi(Q),0^{(m-2)}),f(z,\phi(Q),0^{(m-2)})$ is a (2,2)-zero primary of $Q/\phi(Q)$. Moreover, Theorem 4.10 shows that $Q/\phi(Q)$ is a weakly (2,2)-absorbing primary of $R/\phi(Q)$. Then $f(g(x,Q^{(2)}),\phi(Q),0^{(m-2)})=f(g(y,Q^{(2)}),\phi(Q),0^{(m-2)})=f(g(z,Q^{(2)}),\phi(Q),0^{(m-2)})=\phi(Q)$, by Theorem 4.9 of [16]. Consequently, $g(x,Q^{(2)}),g(y,Q^{(2)}),g(z,Q^{(2)})$ are subsets of $\phi(Q)$.
- (3) Again, $(f(x,\phi(Q),0^{(m-2)}),f(y,\phi(Q),0^{(m-2)}),f(z,\phi(Q),0^{(m-2)})$ is a (2,2)-zero primary of $Q/\phi(Q)$ and $Q/\phi(Q)$ is a weakly (2,2)-absorbing primary of $R/\phi(Q)$ by Theorem 4.11 and Theorem 4.10, respectively, then $f(g(Q^{(3)}),\phi(Q),0^{(m-2)})=\phi(Q)$ by Theorem 4.10 in [16]. Thus $g(Q^{(3)})$ is a subset of $\phi(Q)$. \square

Theorem 4.13. Suppose that Q is a proper hyperideal of a commutative Krasner (m, n)-hyperring R and $\phi : \mathcal{HI}(R) \longrightarrow \mathcal{HI}(R) \cup \{\varphi\}$ is a function. Then the followings are equivalent:

- (1) Q is a ϕ -(k, n)-absorbing primary hyperideal of R.
- (2) $Q/\phi(Q)$ is a weakly (k,n)-absorbing primary hyperideal of $R/\phi(Q)$.

Proof. It can be easily proved in a similar manner to the proof of Theorem 4.10. \Box

Suppose that Q is a ϕ -(k, n)-absorbing primary hyperideal of R. Then we say $(r_1^{k(n-1)+1})$ is a ϕ -(k, n) primary of Q for some $r_1^{k(n-1)+1} \in R$ if $g(r_1^{k(n-1)+1}) \in \phi(Q)$, $g(r_1^{(k-1)n-k+2}) \notin Q$ and a g-product of (k-1)n-k+2 of r_i 's, except $g(r_1^{(k-1)n-k+2})$, is not in $\mathbf{r}^{(m,n)}(Q)$.

Theorem 4.14. Let R be a commutative Krasner (m,2)-hyperring and let $\phi: \mathcal{HI}(R) \longrightarrow \mathcal{HI}(R) \cup \{\varphi\}$ be a function. Let Q be a ϕ -(k,n)-absorbing primary hyperideal of R and $r_1^{k(n-1)+1} \in R$. Then the followings are equivalent:

- (1) $(r_1^{k(n-1)+1})$ is a ϕ -(k, n) primary of Q.
- (2) $(f(r_1, \phi(Q), 0^{(m-2)}), \dots, f(r_{k(n-1)+1}, \phi(Q), 0^{(m-2)})$ is a (k, n)-zero primary of $Q/\phi(Q)$.

Proof. It is seen to be true in a similar manner to Theorem 4.11. \Box

Theorem 4.15. Let R be a commutative Krasner (m,n)-hyperring and let $\phi: \mathcal{HI}(R) \longrightarrow \mathcal{HI}(R) \cup \{\varphi\}$ be a function. Let Q be a ϕ -(k,n)-absorbing primary hyperideal of R. If $(r_1^{k(n-1)+1})$ is a ϕ -(k,n) primary of Q for some $r_1^{k(n-1)+1} \in R$, then $g(r_1, \dots, \widehat{r_{i_1}}, \dots, \widehat{r_{i_2}}, \dots, \widehat{r_{i_s}}, \dots, r_{k(n-1)+1}, Q^{(s)}) \subseteq \phi(Q)$ for every $i_1, \dots, i_s \in \{1, \dots, k(n-1)+1\}$ and $1 \leq s \leq (k-1)n-k+2$.

Proof. $(f(r_1, \phi(Q), 0^{(m-2)}), \dots, f(r_{k(n-1)+1}, \phi(Q), 0^{(m-2)})$ is a (k, n)-zero primary of $Q/\phi(Q)$ by Theorem 4.14 and $Q/\phi(Q)$ is a weakly (k, n)-absorbing primary of $R/\phi(Q)$ by Theorem 4.13. Then we conclude that

$$f(g(f(r_1,\phi(Q),0^{(m-2)}),\cdots,f(\widehat{r_{i_1}},\phi(Q),0^{(m-2)}),\cdots,f(\widehat{r_{i_2}},\phi(Q),0^{(m-2)}),\cdots,f(\widehat{r_{i_2}},\phi(Q),0^{(m-2)}),\cdots,f(\widehat{r_{i_m}},\phi(Q),0^{(m-2)}),\cdots,f(r_{k(n-1)+1},\phi(Q),0^{(m-2)}),Q^{(s)}),\phi(Q),0^{(m-2)})=\phi(Q).$$

for every $i_1, \dots, i_s \in \{1, \dots, k(n-1)+1\}$ and $1 \leq s \leq (k-1)n-k+2$, by Theorem 4.9 of [16]. Thus, $g(r_1, \dots, \widehat{r_{i_1}}, \dots, \widehat{r_{i_2}}, \dots, \widehat{r_{i_s}}, \dots, r_{k(n-1)+1}, Q^{(s)}) \subseteq \phi(Q)$.

Theorem 4.16. Let R be a commutative Krasner (m,n)-hyperring and let $\phi: \mathcal{HI}(R) \longrightarrow \mathcal{HI}(R) \cup \{\varphi\}$ be a function. Let Q be a ϕ -(k,n)-absorbing primary hyperideal of R but is not a (k,n)-absorbing primary. Then $g(Q^{k(n-1)+1}) \subseteq \phi(Q)$.

Proof. This can be proved, by using Theorem 4.15, in a very similar manner to the way in which 4.12 was proved. \Box

Now, let give some related corollaries.

Corollary 4.17. Let $\phi: \mathcal{HI}(R) \longrightarrow \mathcal{HI}(R) \cup \{\varphi\}$ be a function. If Q is a ϕ -(k,n)-absorbing primary hyperideal of R such that $g(Q^{k(n-1)+1}) \nsubseteq \phi(Q)$, then Q is a (k,n)-absorbing primary hyperideal of R.

Corollary 4.18. Let $\phi: \mathcal{HI}(R) \longrightarrow \mathcal{HI}(R) \cup \{\varphi\}$ be a function and let Q be a ϕ -(k, n)-absorbing primary hyperideal of R that is not a (k, n)-absorbing primary hyperideal of R. Then $\mathbf{r}^{(m,n)}(Q) = \mathbf{r}^{(m,n)}(\phi(Q))$.

Proof. By Theorem 4.16, we have $g(Q^{k(n-1)+1}) \subseteq \phi(Q)$ as Q is not a (k, n)-absorbing primary. This means $\mathbf{r}^{(m,n)}(Q) \subseteq \mathbf{r}^{(m,n)}(\phi(Q))$. On the other hand, from $\phi(Q) \subseteq Q$, it follows that $\mathbf{r}^{(m,n)}(\phi(Q)) \subseteq \mathbf{r}^{(m,n)}(Q)$. Hence $\mathbf{r}^{(m,n)}(\phi(Q))$.

Corollary 4.19. Let $\phi : \mathcal{HI}(R) \longrightarrow \mathcal{HI}(R) \cup \{\varphi\}$ be a function and let Q be a proper hyperideal of R such that $\mathbf{r}^{(m,n)}(\phi(Q))$ is a (k,n)-absorbing hyperideal of R. Then Q is a ϕ -(k+1,n)-absorbing primary hyperideal of R if and only if Q is a (k+1,n)-absorbing primary hyperideal of R.

Proof. (\Longrightarrow) Let Q be a ϕ -(k+1,n)-absorbing primary hyperideal of R. If Q is not a (k+1,n)-absorbing primary hyperideal of R. Hence $\mathbf{r}^{(m,n)}(Q) = \mathbf{r}^{(m,n)}(\phi(Q))$ by Corollary 4.18. Then $\mathbf{r}^{(m,n)}(Q)$ is a (k,n)-absorbing hyperideal of R which implies that Q is is a (k+1,n)-absorbing primary hyperideal of R by Theorem 4.9 in [18].

 (\Leftarrow) It is clear. \square

Theorem 4.20. Let $h: R_1 \longrightarrow R_2$ be a ϕ_1 - ϕ_2 -homomorphism, where ϕ_1 and ϕ_2 are two reduction functions of $\mathcal{HI}(R_1)$ and $\mathcal{HI}(R_2)$, respectively. Then

- (1) If Q_2 is a ϕ_2 -(k, n)-absorbing primary hyperideal of R_2 , then $h^{-1}(Q_2)$ is a ϕ_1 -(k, n)-absorbing primary hyperideal of R_1 .
- (2) If h is surjective and Q_1 is a ϕ_1 -(k,n)-absorbing primary hyperideal of R_1 with $Ker(h) \subseteq Q_1$, then $h(Q_1)$ is a ϕ_2 -(k,n)-absorbing primary hyperideal of R_2 .

Proof. (1) Let Q_2 be a ϕ_2 -(k,n)-absorbing primary hyperideal of R_2 . Assume that $r_1^{kn-k+1} \in R_1$ such that $g(r_1^{kn-k+1}) \in h^{-1}(Q_2) - \phi_1(h^{-1}(Q_2))$. Then we get $h(g(r_1^{kn-k+1})) = g(h(r_1), \dots, h(r_{kn-k+1})) \in Q_2 - \phi_2(Q_2)$. Since Q_2 is a ϕ_2 -(k,n)-absorbing primary hyperideal of R_2 , we obtain either $g(h(r_1), \dots, h(r_{(k-1)n-k+2})) = h(g(r_1^{(k-1)n-k+2})) \in Q_2$ which means $g(r_1^{(k-1)n-k+2}) \in h^{-1}(Q_2)$, or $g(h(r_1), \dots, h(r_i), \dots, h(r_{kn-k+1})) = h(g(r_1, \dots, \hat{r_i}, \dots, r_{kn-k+1})) \in r^{(m,n)}(Q_2)$ which means $g(r_1, \dots, \hat{r_i}, \dots, r_{kn-k+1}) \in h^{-1}(r^{(m,n)}(Q_2)) = r^{(m,n)}(h^{-1}(Q_2))$ for some $1 \le i \le n$. Hence $h^{-1}(Q_2)$ is a ϕ_1 -(k,n)-absorbing primary hyperideal of R_1 .

(2) Assume that h is surjective and Q_1 is a ϕ_1 -(k,n)-absorbing primary hyperideal of R_1 with $Ker(h)\subseteq Q_1$. Let $s_1^{kn-k+1}\in R_2$ such that $g(s_1^{kn-k+1})\in h(Q_1)-\phi_2(h(Q_1))$. Therefore there exist $r_1^{kn-k+1}\in R_1$ with $h(r_1)=s_1,\cdots,h(r_{kn-k+1})=s_{kn-k+1}$. Hence we get $h(g(r_1^{kn-k+1})=g(h(r_1),\cdots,h(r_{kn-k+1}))=g(s_1^{kn-k+1})\in h(Q_1)$. Since h is a ϕ_1 - ϕ_2 -epimorphism and $Ker(h)\subseteq Q_1$, we have $g(r_1^{kn-k+1})\in Q_1-\phi_1(Q_1)$. Since Q_1 is a ϕ_1 -(k,n)-absorbing primary hyperideal of R_1 , we conclude that $g(r_1^{(k-1)n-k+2)})\in Q_1$ which implies

$$h(g(r_1^{(k-1)n-k+2)}) = g(h(r_1), \cdots, h(r_{(k-1)n-k+2)}) = g(s_1^{(k-1)n-k+2)}) \in h(Q_1),$$

or $g(r_1, \dots, \widehat{r_i}, \dots, r_{kn-k+1}) \in \mathbf{r}^{(m,n)}(Q_1)$ implies $h(g(r_1, \dots, \widehat{r_i}, \dots, r_{kn-k+1}) = g(h(r_1), \dots, \widehat{h(r_i)}, \dots, h(r_{kn-k+1})) = g(s_1, \dots, \widehat{s_i}, \dots, s_{kn-k+1}) \in h(\mathbf{r}^{(m,n)}(Q_1)) \subseteq \mathbf{r}^{(m,n)}(h(Q_1))$ for some $1 \leq i \leq (k-1)n-k+2$. Consequently, $h(Q_1)$ is a ϕ_2 -(k,n)-absorbing primary hyperideal of R_2 . \square

As an instant consequence of the previous theorem, we get the following explicit result.

Theorem 4.21. Let Q and P be two hyperideals of R and ϕ be a reduction function of $\mathcal{HI}(R)$ such that $P \subseteq \phi(Q) \subseteq Q$. If Q is a ϕ -(k, n)-absorbing primary hyperideal of R, then Q/P is a ϕ_q -(k, n)-absorbing primary hyperideal of R/P.

Theorem 4.22. Let (R_i, f_i, g_i) be a commutative Krasner (m, n)-hyperring for each $1 \leq i \leq kn-k+1$ and $\phi_i : \mathcal{HI}(R_i) \longrightarrow \mathcal{HI}(R_i) \cup \{\varphi\}$ be a function. Let Q_i be a hyperideal of R_i for each $1 \leq i \leq kn-k+1$ and $\phi = \phi_1 \times \cdots \times \phi_{kn-k+1}$. If $Q = Q_1 \times \cdots \times Q_{kn-k+1}$ is a ϕ -(k+1, n)-absorbing primary hyperideal of $R = R_1 \times \cdots \times R_{kn-k+1}$, then Q_i is a ϕ_i -(k, n)-absorbing primary hyperideal of R_i and $Q_i \neq R_i$ for all $1 \leq i \leq kn-k+1$.

Proof. By using an argument similar to that in the proof of Theorem 3.7, one can easily complete the proof. \Box

5. Conclusion

In this paper, motivated by the research works on ϕ -2-absorbing (primary) ideals of commutative rings, we propsed and investigated the notions of ϕ -(k, n)-absorbing and ϕ -(k, n)-absorbing primary hyperideals in a Krasner (m, n)-hyperring. Some of their essential characteristics were analysed. Moreover, the stabilty of the notions were examined in some hyperring-theoretic constructions. As a new research subject, we suggest the concept of ϕ -(k, n)-absorbing δ -primary hyperideals, where δ is an expansion function of $\mathcal{HI}(R)$.

6. Acknowledgments

The author wish to sincerely thank the referees for several useful comments.

References

- R. Ameri and M. Norouzi, Prime and primary hyperideals in Krasner (m,n)-hyperrings, European J. Combin., 34 (2013) 379-390.
- [2] R. Ameri, A. Kordi and S. Sarka-Mayerova, Multiplicative hyperring of fractions and coprime hyperideals, An. Stiint. Univ. Ovidius Constanta Ser. Mat., 25 No. 1 (2017) 5-23.
- [3] M. Anbarloei, n-ary 2-absorbing and 2-absorbing primary hyperideals in Krasner (m, n)-hyperrings, Mat. Vesn., **71** No. 3 (2019) 250-262.
- [4] M. Anbarloei, Unifing the prime and primary hyperideals under one frame in a Krasner (m, n)-hyperring, Comm. Algebra, 49 (2021) 3432-3446.
- [5] M. Anbarloei, A study on a generalization of the n-ary prime hyperideals in Krasner (m, n)-hyperrings, Afr. Mat., 33 (2021) 1021-1032.
- [6] M. Anbarloei, Krasner (m, n)-hyperring of fractions, Jordan J. Math. Stat., 16 No. 1 (2023) 165-185.
- [7] D. D. Anderson and M. Bataineh, Generalizations of prime ideals, Comm. Algebra, 36 (2008) 686-696.

- [8] A. Asadi and R. Ameri, Direct limit of Krasner (m,n)-hyperrings, J. Sci., 31 No. 1 (2020) 75-83.
- [9] A. Badawi, U. Tekir, E. A. Ugurlu, G. Ulucak and E. Y. Celikel, Generalizations of 2-absorbing primary ideals of commutative rings, Turkish J. Math., 40 No. 3 (2016) 703-717.
- [10] S. Corsini, Prolegomena of Hypergroup Theory, Second edition, Aviani editor, Italy, 1993.
- [11] S. Corsini and V. Leoreanu, Applications of Hyperstructure Theory, Advances in Mathematics, Vol. 5, Kluwer Academic Publishers, 2003.
- [12] A. Y. Darani, Generalizations of primary ideals in commutative rings, Novi Sad J. Math., 42 No.1 (2012) 27-35.
- [13] B. Davvaz and V. Leoreanu-Fotea, Hyperring Theory and Applications, International Academic Press, Palm Harbor, USA, 2007.
- [14] B. Davvaz and T. Vougiouklis, n-ary hypergroups, Iran. J. Sci. Technol., 30 No. A2 (2006) 165-174.
- [15] B. Davvaz, Fuzzy Krasner (m, n)-hyperrings, Comput. Math. Appl., **59** (2010) 3879-3891.
- [16] B. Davvaz, G. Ulucak and U. Tekir, Weakly (k,n)-absorbing (Primary) hyperideals of a Krasner (m,n)-hyperring, Hacet. J. Math. Stat., 52 No. 5 (2023) 1229-1238
- [17] W. Dorente, Untersuchungen über einen verallgemeinerten Gruppenbegriff, Math. Z., 29 (1928) 1-19.
- [18] K. Hila, K. Naka and B. Davvaz, On(k, n)-absorbing hyperideals in Krasner (m, n)-hyperrings, Q. J. Math., **69** (2018) 1035-1046.
- [19] A. Jaber, Properties of φ-δ-primary and 2-absorbing δ-primary ideals of commutative rings, Asian-Eur. J. Math., 13 No. 1 (2020), 2050026.
- [20] A. Khaksari, φ-2-prime ideals, Int. J. Pure Appl. Math., 99 No. 1 (2015) 1-10.
- [21] E. Kasner, An extension of the group concept (reported by L.G. Weld), Bull. Amer. Math. Soc., 10 (1904) 290-291.
- [22] V. Leoreanu-Fotea, Canonical n-ary hypergroups, Ital. J. Pure Appl. Math., 24 (2008) 247-254.
- [23] V. Leoreanu-Fotea and B. Davvaz, n-hypergroups and binary relations, European J. Combin., 29 (2008) 1027-1218.
- [24] V. Leoreanu-Fotea and B. Davvaz, Roughness in n-ary hypergroups, Inform. Sci., 178 (2008) 4114-4124.
- [25] X. Ma, J. Zhan and B. Davvaz, Applications of rough soft sets to Krasner (m, n)-hyperrings and corresponding decision making methods, Filomat, 32 (2018) 6599-6614.
- [26] F. Marty, Sur une generalization de la notion de groupe, In 8th Congress Math. Scandenaves, Stockholm, 1934.
- [27] S. Mirvakili and B. Davvaz, *Relations on Krasner* (m, n)-hyperrings, European J. Combin., **31** (2010) 790-802.
- [28] S. Mirvakili and B. Davvaz, Constructions of (m,n)-hyperrings, Mat. Vesn., 67 No. 1 (2015) 1-16.
- [29] M. Norouzi, R.Ameri and V. Leoreanu-Fotea, Normal hyperideals in Krasner (m, n)-hyperrings, An. St. Univ. Ovidius Constanta, 26 No. 3 (2018) 197-211.
- [30] S. Omidi and B. Davvaz, Contribution to study special kinds of hyperideals in ordered semihyperrings, J. Taibah Univ. Sci., 11 (2017) 1083-1094.
- [31] S. Ostadhadi-Dehkordi and B. Davvaz, A Note on isomorphism theorems of Krasner (m, n)-hyperrings, Arab. J. Math., 5 (2016) 103-115.
- [32] T. Vougiouklis, Hyperstructures and their Representations, Hadronic Press Inc., Florida, 1994.

[33] M. M. Zahedi and R. Ameri, On the prime, primary and maximal subhypermodules, Ital. J. Pure Appl. Math., 5 (1999) 61-80.

[34] J. Zhan, B. Davvaz and K. P. Shum, Generalized fuzzy hyperideals of hyperrings, Comput. Math. Appl., 56 (2008) 1732-1740.

Mahdi Anbarloei

Department of Mathematics, Faculty of Sciences Imam Khomeini International University Qazvin, Iran.

m.anbarloei@sci.ikiu.ac.ir