

Algebraic Structures Their Applications

Algebraic Structures and Their Applications Vol. 11 No. 4 (2024) pp 287-304.

Research Paper

*ϕ***-**(*k, n*)**-ABSORBING (PRIMARY) HYPERIDEALS IN A KRASNER** (*m, n*)**-HYPERRING**

MAHDI ANBARLOEI*[∗]*

Abstract. Various expansions of prime hyperideals have been studied in a Krasner (*m, n*) hyperring *R*. For instance, a proper hyperideal *Q* of *R* is called weakly (*k, n*)-absorbing (primary) provided that for $r_1^{kn-k+1} \in R$, $g(r_1^{kn-k+1}) \in Q - \{0\}$ implies that there are $(k-1)n - k + 2$ of the r_is whose g-product is in $Q\left(g(r_1^{(k-1)n-k+2}) \in Q \text{ or a } g\text{-product}\right)$ of $(k-1)n - k + 2$ of r_i s, except $g(r_1^{(k-1)n-k+2})$, is in $r^{(m,n)}(Q)$). In this paper, we aim to extend the notions to the concepts of ϕ -(*k, n*)-absorbing and ϕ -(*k, n*)-absorbing primary hyperideals. Assume that ϕ is a function from $H\mathcal{I}(R)$ to $H\mathcal{I}(R) \cup {\varphi}$ such that $H\mathcal{I}(R)$ is the set of hyperideals of *R* and *k* is a positive integer. We call a proper hyperideal *Q* of *R* a ϕ -(*k, n*)-absorbing (primary) hyperideal if for r_1^{kn-k+1} ∈ *R, g*(r_1^{kn-k+1}) ∈ *Q* − ϕ (*Q*) implies that there are $(k-1)n - k + 2$ of the r_is whose g-product is in $Q\left(g(r_1^{(k-1)n-k+2}) \in Q\right)$ or a g-product of $(k-1)n - k + 2$ of r_i s , except $g(r_1^{(k-1)n-k+2})$, is in $r^{(m,n)}(Q)$). Several properties and characterizations of them are presented.

DOI: 10.22034/as.2024.20052.1638

MSC(2010): Primary: 20N20, 16Y99, 20N15, 06E20.

Keywords: ϕ -(*k, n*)-absorbing hyperideal, ϕ -(*k, n*)-absorbing primary hyperideal.

Received: 02 May 2023, Accepted: 05 May 2024.

*[∗]*Corresponding author

^{© 2024} Yazd University.

1. INTRODUCTION

Extensions of prime and primary ideals to the context of *ϕ*-prime and *ϕ*-primary ideals were studied in [\[7,](#page-15-0) [12\]](#page-16-0). Afterwards, Khaksari in [[20\]](#page-16-1) and Badawi et al. in [\[9\]](#page-16-2) introduced *ϕ*-2-prime and ϕ -2-primary ideals, respectively. Let *R* be a commutative ring. Suppose that ϕ is a function from $\mathcal{I}(R)$ to $\mathcal{I}(R) \cup \{\varphi\}$ where $\mathcal{I}(R)$ is the set of ideals of *R*. A proper ideal *I* of *R* is said to be a ϕ -2-absorbing ideal if whenever $x, y, z \in R$, with $xyz \in I - \phi(I)$ implies that $xy \in I$ or $xz \in I$ or $yz \in I$. Also, A proper ideal *I* of *R* is called a ϕ -2-absorbing primary ideal if for every $x, y, z \in R$, $xyz \in I - \phi(I)$ implies that $xy \in I$ or $xz \in r(I)$ or $yz \in r(I)$.

Hyperstructures are algebraic structures equipped with at least one multi-valued operation, called a hyperoperation. A hyperoperation on a non-empty set is a mapping from to the nonempty power set. Hundreds of papers and several books have been written on this topic (for more details see [[2](#page-15-1), [10,](#page-16-3) [11,](#page-16-4) [13](#page-16-5), [17,](#page-16-6) [21,](#page-16-7) [26](#page-16-8), [30](#page-16-9), [32,](#page-16-10) [33,](#page-17-0) [34](#page-17-1)]). An *n*-ary extension of algebraic structures is the most natural method for deeper understanding of their fundamental properties. Mirvakili and Davvaz in [\[28](#page-16-11)] introduced (*m, n*)-hyperrings and gave several results in this respect. They defined and described a generalization of the notion of a hypergroup and a generalization of an *n*-ary group, which is called *n*-ary hypergroup [[14\]](#page-16-12). Some review of the *n*-ary structures can be found in in [[22,](#page-16-13) [23](#page-16-14), [24](#page-16-15), [25,](#page-16-16) [31\]](#page-16-17). One important class of hyperrings, where the addition is a hyperoperation, while the multiplication is an ordinary binary operation, is Krasner hyperring. An extension of the Krasner hyperrings, which is a subclass of (*m, n*)-hyperrings, was presented by Mirvakili and Davvaz [\[27](#page-16-18)], which is called Krasner (*m, n*) hyperring. Some important hyperideals namely Jacobson radical, nilradical, *n*-ary prime and primary hyperideals and *n*-ary multiplicative subsets of Krasner (*m, n*)-hyperrings were defined by Ameri and Norouzi in [[1](#page-15-2)]. Afterward, the concept of (*k, n*)-absorbing (primary) hyperideals was studied by Hila et al. [\[18](#page-16-19)]. Norouzi et al. gave a new definition for normal hyperideals in Krasner (m, n) -hyperrings, with respect to that one given in [[27\]](#page-16-18) and they showed that these hyperideals correspond to strongly regular relations [\[29](#page-16-20)]. Direct limit of a direct system was defined and analysed by Asadi and Ameri in the category of Krasner (*m, n*)-hyperrigs [\[8](#page-16-21)]. The notion of *δ*-primary hyperideals in Krasner (*m, n*)-hyperrings, which unifies the prime and primary hyperideals under one frame, was presented in [\[4\]](#page-15-3). Recently, Davvaz et al. introduced new expansion classes, namely weakly (*k, n*)-absorbing (primary) hyperideals in a Krasner (m, n) -hyperring [\[16](#page-16-22)].

In this paper, we introduce and study the notions of ϕ - (k, n) -absorbing and ϕ - (k, n) absorbing primary hyperideals in a commutative Krasner (*m, n*)-hyperring. A number of main results are given to explain the general framework of these structures. Among many results in this paper, it is shown (Theorem [3.6](#page-4-0)) that if *Q* is a ϕ - (k, n) -absorbing hyperideal of *R*, then *Q* is a ϕ -(*s, n*)-absorbing hyperideal for all $s \geq k$. Although every ϕ -(*k, n*)-absorbing of a Krasner

 (m, n) -hyperring is ϕ - (k, n) -absorbing primary, Example [4.3](#page-7-0) shows that the converse may not be always true. It is shown (Theorem [4.13](#page-12-0)) that Q is a ϕ - (k, n) -absorbing primary hyperideal of *R* if and only if $Q/\phi(Q)$ is a weakly (k, n) -absorbing primary hyperideal of $R/\phi(Q)$. In Theorem [4.16,](#page-13-0) we show that if *Q* is a ϕ - (k, n) -absorbing primary hyperideal of *R* but is not a (k, n) -absorbing primary, then $g(Q^{k(n-1)+1}) \subseteq \phi(Q)$. As a result of the theorem we conclude that if *Q* is a ϕ -(*k, n*)-absorbing primary hyperideal of *R* that is not a (k, n) -absorbing primary hyperideal of *R*, then $r^{(m,n)}(Q) = r^{(m,n)}(\phi(Q)).$

2. Krasner (*m, n*)-hyperrings

In this section, we summarize the preliminary definitions which are related to Krasner (*m, n*)-hyperrings.

Let *A* be a non-empty set and $P^*(A)$ the set of all the non-empty subsets of *A*. An *n*ary hyperoperation on *A* is a map $f : A^n \longrightarrow P^*(A)$ and the couple (A, f) is called an *n*-ary hypergroupoid. The notation a_i^j will denote the sequence $a_i, a_{i+1}, ..., a_j$ for $j \geq i$ and it is the empty symbol for $j < i$. If $G_1, ..., G_n$ are non-empty subsets of A, then we define $f(G_1^n) = f(G_1, ..., G_n) = \bigcup \{ f(a_1^n) \mid a_i \in G_i, 1 \leq i \leq n \}.$ If $b_{i+1} = ... = b_j = b$, we write $f(a_1^i, b_{i+1}^j, c_{j+1}^n) = f(a_1^i, b^{(j-i)}, c_{j+1}^n)$. If f is an n-ary hyperoperation, then t-ary hyperoperation $f_{(l)}$ is given by

$$
f_{(l)}(a_1^{l(n-1)+1}) = f\bigg(f(...,f(f(a_1^n),a_{n+1}^{2n-1}),...),a_{(l-1)(n-1)+1}^{l(n-1)+1}\bigg),
$$

where $t = l(n - 1) + 1$.

Definition 2.1. [\[27](#page-16-18)] (R, f, g) , or simply R, is defined as a Krasner (m, n) -hyperring if the following statements hold:

- (1) (*R, f*) is a canonical *m*-ary hypergroup;
- (2) (R, g) is a *n*-ary semigroup;

(3) The *n*-ary operation *g* is distributive with respect to the *m*-ary hyperoperation *f* , i.e., for every $a_1^{i-1}, a_{i+1}^n, x_1^m \in R$, and $1 \le i \le n$,

$$
g\bigg(a_1^{i-1},f(x_1^m),a_{i+1}^n\bigg)=f\bigg(g(a_1^{i-1},x_1,a_{i+1}^n),...,g(a_1^{i-1},x_m,a_{i+1}^n)\bigg);
$$

(4) 0 is a zero element of the *n*-ary operation *g*, i.e., for each $a_1^n \in R$, $g(a_1^{i-1}, 0, a_{i+1}^n) = 0$.

Throughout this paper, *R* denotes a commutative Krasner (*m, n*)-hyperring with the scalar identity 1.

A non-empty subset *T* of *R* is called a subhyperring of *R* if (T, f, g) is a Krasner (m, n) hyperring. The non-empty subset *I* of *R* is a hyperideal if (I, f) is an *m*-ary subhypergroup $g(x_1^{i-1}, I, x_{i+1}^n) \subseteq I$, for each $x_1^n \in R$ and $1 \le i \le n$.

Definition 2.2. [\[1\]](#page-15-2) Let *I* be a proper hyperideal of *R*. *I* refers to a prime hyperideal if for hyperideals I_1^n of R , $g(I_1^n) \subseteq P$ implies $I_i \subseteq I$ for some $1 \leq i \leq n$.

Lemma 4.5 in [\[1\]](#page-15-2) shows that the proper hyperideal *I* of *R* is prime if for all $a_1^n \in R$, $g(a_1^n) \in I$ implies a_i ∈ *I* for some $1 ≤ i ≤ n$.

Definition 2.3. [\[1\]](#page-15-2) The radical of a proper hyperideal *I* of *R*, denoted by $r^{(m,n)}(I)$ is the intersection of all prime hyperideals of *R* containing *I*. If the set of all prime hyperideals which contain *I* is empty, then $r^{(m,n)}(I) = R$.

It was shown (Theorem 4.23 in [[1](#page-15-2)]) that if $a \in r^{(m,n)}(I)$ then there exists $s \in \mathbb{N}$ with $g(a^{(s)}, 1_R^{(n-s)}) \in I$ for $s \le n$, or $g_{(l)}(a^{(s)}) \in I$ for $s = l(n-1) + 1$.

Definition 2.4. [[1](#page-15-2)] A proper hyperideal *I* of *R* is primary if $g(a_1^n) \in I$ for $a_1^n \in R$ implies $a_i \in I$ or $g(a_1^{i-1}, 1_R, a_{i+1}^n) \in r^{(m,n)}(I)$ for some $1 \le i \le n$.

Theorem 4.28 in [\[1\]](#page-15-2) shows that the radical of a primary hyperideal of *R* is prime.

Definition 2.5. [[18](#page-16-19)] Let *I* be a proper hyperideal of *R*. *I* refers to an

- (1) (k, n) -absorbing hyperideal if for $r_1^{kn-k+1} \in R$, $g(r_1^{kn-k+1}) \in I$ implies that there exist $(k-1)n - k + 2$ of the r_i i_i 's whose *g*-product is in *I*. In this case, if $k = 1$, then *I* is an *n*-ary prime hyperideal of *R*. If $n = 2$ and $k = 1$, then *I* is a classic prime hyperideal of *R*.
- (2) (k, n) -absorbing primary hyperideal if for $r_1^{kn-k+1} \in R$, $g(r_1^{kn-k+1}) \in I$ implies that $g(r_1^{(k-1)n-k+2}) \in I$ or a *g*-product of $(k-1)n - k + 2$ of the r_i i^s , except $g(r_1^{(k-1)n-k+2}),$ is in $r^{(m,n)}(I)$.

3. ϕ - (k, n) -ABSORBING HYPERIDEALS

In his paper [\[16](#page-16-22)], Davvaz et al. introduced a generalization of the *n*-ary prime hyperideals in a Krasner (k, n) -hyperring, which they defined as weakly (k, n) -absorbing hyperideals. In this section, we generalize this notion to the context of ϕ - (k, n) -absorbing hyperideals.

Definition 3.1. Assume that $H\mathcal{I}(R)$ is the set of hyperideals of *R* and ϕ : $H\mathcal{I}(R) \longrightarrow$ $H\mathcal{I}(R) \cup \{\varphi\}$ is a function. Let *k* be a positive integer. A proper hyperideal *Q* of *R* is said to be ϕ -(*k, n*)-absorbing provided that for $r_1^{kn-k+1} \in R$, $g(r_1^{kn-k+1}) \in Q - \phi(Q)$ implies that there are $(k-1)n - k + 2$ of the r_i *i* s whose *g*-product is in *Q*.

Example 3.2. Consider the Krasner $(2, 2)$ -hyperring $R = \{0, 1, x\}$ with the hyperaddition and multiplication defined by

Assume that ϕ is a function from $\mathcal{H}\mathcal{I}(R)$ to $\mathcal{H}\mathcal{I}(R) \cup \{\varphi\}$ defined $\phi(I) = g(I^{(2)})$ for $I \in$ *HI*(*R*). Then the hyperideal $Q = \{0, x\}$ is a ϕ -(2*,* 2)-absorbing hyperideal of *R*.

Example 3.3. Let $t > 4$. Consider Krasner $(4,3)$ -hyperring $(\mathbb{Z}_{5^{5t}}, +, \cdot)$ where $+$ and \cdot are usual addition and multiplication. Defined $\phi(I) = I^5$ for $I \in \mathcal{HI}(\mathbb{Z}_{5^{5t}})$. Then $I = \langle 5^t \rangle$ is not a (2,3)-absorbing hyperideal of $\mathbb{Z}_{5^{5t}}$ since $5.5.5.5.5^{t-4} \in I - \phi(I)$ but $5.5.5, 5.5.5^{t-4} \notin I$.

Let $\phi : \mathcal{HI}(R) \longrightarrow \mathcal{HI}(R) \cup {\varphi}$ be a function. Clearly, every (k, n) -absorbing hyperideal in a Krasner (m, n) -hyperring is a ϕ - (k, n) -absorbing hyperideal. But, the following example shows that the converse does not necessarily hold.

Example 3.4. Assume that *R* is the Krasner (2*,* 4)-hyperring given in Example 4.7 in [\[1\]](#page-15-2). In [[16](#page-16-22)], it was shown that $\langle 0 \rangle$ is not a (1,4)-absorbing hyperideal of *R*. Now, defined $\phi(I) = g(I^{(4)})$ for $I \in \mathcal{HI}(R)$. In this hyperring, $\langle 0 \rangle$ is a ϕ -(1,4)-absorbing hyperideal of R.

Theorem 3.5. Let ϕ_1, ϕ_2 : $\mathcal{H I}(R) \longrightarrow \mathcal{H I}(R) \cup \{\varphi\}$ be two functions such that for all $I \in \mathcal{HI}(R)$, $\phi_1(I) \subseteq \phi_2(I)$. If Q is a $\phi_1-(k,n)$ -absorbing hyperideal of R, then Q is a ϕ_2 -(*k, n*)*-absorbing hyperideal.*

Proof. Suppose that $g(r_1^{kn-k+1}) \in Q - \phi_2(Q)$ for $r_1^{kn-k+1} \in R$. From $\phi_1(Q) \subseteq \phi_2(Q)$, it follows that $g(r_1^{kn-k+1}) \in Q - \phi_1(Q)$. Since *Q* is a ϕ_1 -(*k, n*)-absorbing hyperideal of *R,* we conclude that there are $(k-1)n - k + 2$ of the r_i *i* s whose *g*-product is in *Q*, as needed.

Theorem 3.6. *Let* $\phi : \mathcal{HI}(R) \longrightarrow \mathcal{HI}(R) \cup \{\varphi\}$ *be a function. If Q is a* ϕ -(*k, n*)*-absorbing hyperideal of R, then Q is a* ϕ *-*(*s, n*)*-absorbing hyperideal for all* $s \geq k$ *.*

Proof. Let us use the induction on *k* that if *Q* is ϕ -(*k, n*)-absorbing hyperideal of *R*, then *Q* is ϕ - $(k+1, n)$ -absorbing. Assume that Q is ϕ -(2, n)-absorbing and $g(r_1^{2n-2}, g(r_{2n-1}^{3n-2})) \in Q - \phi(Q)$ for some $r_1^{3n-2} \in R$. Since Q is ϕ - $(2, n)$ -absorbing, then there are *n* of the r_i i_j s except $g(r_{2n-1}^{3n-2})$ whose *g*-product is in *Q* and so there are $2n-1$ of the r_i *i* s whose *g*-product is in *Q*. This shows that *Q* is ϕ -(3, *n*)-absorbing. Assume that *Q* is ϕ -(*k*, *n*)-absorbing and $g(g(r_1^{2n-2}), r_{2n-1}^{(k+1)n-(k+1)+1}$ $\binom{(k+1)n-(k+1)+1}{2n-1}$ ∈ $Q - \phi(Q)$ for some $r_1^{(k+1)n-(k+1)+1} \in R$. Since *Q* is $\phi(x,n)$ -absorbing, we conclude that $g(g(r_1^{2(n-1)}), r_{2n-1}, \cdots, \hat{r_i}, \cdots, r_{(k+1)n-(k+1)+1}) \in Q$ for some $2(n-1) \le i \le (k+1)n-(k+1)+1$ or $g(r_{2n-1}^{(k+1)n-(k+1)+1})$ $\binom{k+1}{2n-1}$ ($k+1$) + 1 ($k+1$) → Q . The former case shows that Q is ϕ -($k+1$, *n*)-absorbing. In the 292 M. Anbarloei

latter case, we obtain $g(r_1^{n-1}, r_{2n-1}^{(k+1)n-(k+1)+1})$ $(2n-1)(n-(k+1)+1)$ ∈ *Q* since $g(r_1^{2(n-1)})$ ∈ *Q*. Thus *Q* is ϕ -(*k*+1*, n*)absorbing. \sqcap

Recall from [\[15](#page-16-23)] that if (R_1, f_1, g_1) and (R_2, f_2, g_2) are two Krasner (m, n) -hyperrings such that 1_{R_1} and 1_{R_2} are scalar identities of R_1 and R_2 , respectively, then $(R_1 \times R_2, f_1 \times f_2, g_1 \times g_2)$ is a Krasner (*m, n*)-hyperring where

$$
f = f_1 \times f_2((a_1, b_1), \cdots, (a_m, b_m)) = \{(a, b) \mid a \in f_1(a_1^m), b \in f_2(b_1^m)\},
$$

$$
g = g_1 \times g_2((x_1, y_1), \cdots, (x_n, y_n)) = (g_1(x_1^n), g_2(y_1^n)),
$$

for all $a_1^m, x_1^n \in R_1$ and $b_1^m, y_1^n \in R_2$.

Theorem 3.7. Let (R_i, f_i, g_i) be a commutative Krasner (m, n) -hyperring for each $1 \leq i \leq n$ $kn-k+1$ and $\phi_i: \mathcal{HI}(R_i) \longrightarrow \mathcal{HI}(R_i) \cup {\varphi}$ be a function. Let Q_i be a hyperideal of R_i for each $1 \leq i \leq kn - k + 1$ and $\phi = \phi_1 \times \cdots \times \phi_{kn-k+1}$. If $Q = Q_1 \times \cdots \times Q_{kn-k+1}$ is a ϕ -(k+1,n)-absorbing hyperideal of $R = R_1 \times \cdots \times R_{kn-k+1}$, then Q_i is a ϕ_i -(k,n)-absorbing *hyperideal of* R_i *and* $Q_i \neq R_i$ *for all* $1 \leq i \leq kn - k + 1$ *.*

Proof. Let $r_1^{kn-k+1} \in R_i$ such that $g(r_1^{kn-k+1}) \in Q_i - \phi_i(Q_i)$. Suppose by contradiction that Q_i is not a ϕ_i - (k, n) -absorbing hyperideal of R_i . Define

$$
a_1 = (1_{R_1}, \dots, 1_{R_{i-1}}, r_1, 1_{R_{i+1}}, \dots, 1_{R_{kn-k+1}}),
$$

\n
$$
a_2 = (1_{R_1}, \dots, 1_{R_{i-1}}, r_2, 1_{R_{i+1}}, \dots, 1_{R_{kn-k+1}}),
$$

\n
$$
\vdots
$$

\n
$$
a_{kn-k+1} = (1_{R_1}, \dots, 1_{R_{i-1}}, r_{kn-k+1}, 1_{R_{i+1}}, \dots, 1_{R_{kn-k+1}}),
$$

\n
$$
a_{kn-k} = (1_{R_1}, \dots, 1_{R_{i-1}}, 1_{R_i}, 1_{R_{i+1}}, \dots, 1_{R_{kn-k+1}}),
$$

\n
$$
a_{(k+1)n-(k+1)+1} = (0, \dots, 0, 1_{R_i}, 0, \dots, 0).
$$

Hence $g(a_1^{(k+1)n-(k+1)+1}) \in Q - \phi(Q)$ but $g(a_1^{kn-k+1}) \notin Q$. Since Q is a $\phi \rightarrow (k+1,n)$ absorbing hyperideal of *R*, we conclude that one of *g*-productions of $kn - k + 1$ of a_i *i* s except $g(a_1^{(k+1)n-(k+1)+1})$ is in *Q*. This implies that there exist $(k-1)n - k + 2$ of r_i *i* s whose *g*-product is in Q_i which is a contradiction. Consequently, Q_i is a ϕ_i - (k, n) -absorbing hyperideal of R_i .

Assume that (R_1, f_1, g_1) and (R_2, f_2, g_2) are two Krasner (m, n) -hyperrings. Recall from [[27](#page-16-18)] that a mapping $h: R_1 \longrightarrow R_2$ is called a homomorphism if for all $a_1^m \in R_1$ and $b_1^n \in R_1$ we have $(1)h(f_1(a_1,...,a_m)) = f_2(h(a_1),...,h(a_m)), (2)h(g_1(b_1,...,b_n)) = g_2(h(b_1),...,h(b_n)).$ Moreover, recall from [[19\]](#page-16-24) that a function $\phi : \mathcal{H}(\mathcal{I}(R) \longrightarrow \mathcal{H}(\mathcal{I}(R) \cup {\varphi}$ is called a reduction function of $H\mathcal{I}(R)$ if $\phi(P) \subseteq P$ and $P \subseteq Q$ implies that $\phi(P) \subseteq \phi(Q)$ for all $P, Q \in H\mathcal{I}(R)$.

Now, assume that R_1 and R_2 are two Krasner (m, n) -hyperring such that $h: R_1 \longrightarrow R_2$ is a homomorphism. Suppose that ϕ_1 and ϕ_2 are two reduction functions of $\mathcal{H}I(R_1)$ and $\mathcal{H}I(R_2)$, respectively. If $\phi_1(h^{-1}(I_2)) = h^{-1}(\phi_2(I_2))$ for all $I_2 \in \mathcal{HI}(R_2)$, then we say *h* is a ϕ_1 - ϕ_2 homomorphism. Let *h* be a ϕ_1 - ϕ_2 -epimorphism from R_1 to R_2 and let I_1 be a hyperideal of *R*₁ with *Ker*(*h*) ⊆ *I*₁. It is easy to see that $\phi_2(h(I_1)) = h(\phi_1(I_1))$.

Example 3.8. Let R_1 and R_2 be two Krasner (m, n) -hyperrings and ϕ_1 and ϕ_2 be two empty reduction functions of $\mathcal{H}I(R_1)$ and $\mathcal{H}I(R_2)$, respectively. Then every homorphism *h* from R_1 to R_2 is a ϕ_1 - ϕ_2 -homomorphism.

Theorem 3.9. *Let* $h: R_1 \longrightarrow R_2$ *be a* $\phi_1 \cdot \phi_2$ *-homomorphism, where* ϕ_1 *and* ϕ_2 *are two reduction functions of* $H\mathcal{I}(R_1)$ *and* $H\mathcal{I}(R_2)$ *, respectively. Then*

- (1) *If* Q_2 *is a* ϕ_2 -(*k,n*)*-absorbing hyperideal of* R_2 *, then* $h^{-1}(Q_2)$ *is a* ϕ_1 -(*k,n*)*-absorbing* of R_1 .
- (2) If *h* is surjective and Q_1 is a ϕ_1 -(*k, n*)-absorbing hyperideal of R_1 with $Ker(h) \subseteq Q_1$, *then* $h(Q_1)$ *is a* ϕ_2 -(*k, n*)*-absorbing hyperideal of* R_2 *.*

Proof. (1) Let Q_2 be a ϕ_2 -(*k, n*)-absorbing hyperideal of R_2 and $g(r_1^{kn-k+1}) \in h^{-1}(Q_2)$ – $\phi_1(h^{-1}(Q_2))$ for some $r_1^{kn-k+1} \in R_1$. Then we get $h(g(r_1^{kn-k+1})) = g(h(r_1), \dots, h(r_{kn-k+1})) \in$ $Q_2 - \phi_2(Q_2)$. Since Q_2 is a $\phi_2(k,n)$ -absorbing hyperideal of R_2 , we conclude that the image of *h* of $(k-1)n - k + 2$ of r_i i_s whose *g*-product is in Q_2 . Then there exist $(k-1)n - k + 2$ of *r ,* ²_is whose *g*-product is in $h^{-1}(Q_2)$. Thus $h^{-1}(Q_2)$ is a ϕ_1 -(*k, n*)-absorbing of R_1 .

(2) Suppose that Q_1 is a $\phi_1-(k,n)$ -absorbing hyperideal of R_1 with $Ker(h) \subseteq Q_1$ and h is surjective. Let $g(s_1^{kn-k+1}) \in h(Q_1) - \phi_2(h(Q_1))$ for some $s_1^{kn-k+1} \in R_2$. Then there exists $r_i \in R_1$ for every $1 \leq i \leq kn - k + 1$ such that $h(r_i) = s_i$. Hence we get $h(g(r_1^{kn-k+1}) = g(h(r_1), \dots, h(r_{kn-k+1})) = g(s_1^{kn-k+1}) \in h(Q_1)$. Since $Ker(h) \subseteq Q_1$ and h is a ϕ_1 - ϕ_2 -epimorphism, we have $g(r_1^{kn-k+1}) \in Q_1 - \phi_1(Q_1)$. Since Q_1 is a ϕ_1 - (k, n) -absorbing hyperideal of R_1 , there are $(k-1)n - k + 2$ of r_i i_i 's whose *g*-product is in Q_1 . Now, since *h* is a homomorphism, we are done. \Box

Let P be a hyperideal of R. Then the set $R/P = \{f(a_1^{i-1}, P, a_{i+1}^m) \mid a_1^{i-1}, a_{i+1}^m \in R\}$ with *m*-ary hyperoperation f and n -operation g is the quotient Krasner (m, n) -hyperring of *R* by *P*. Theorem 3.2 in [[1](#page-15-2)] shows that the projection map π from *R* to *R/P*, defined by $\pi(r) = f(r, P, 0^{(m-2)})$, is homomorphism. Let *P* be a hyperideal of *R* and ϕ be a reduction function of $H\mathcal{I}(R)$. Then the function ϕ_q from $H\mathcal{I}(R/P)$ to $H\mathcal{I}(R/P) \cup {\varphi}$ defined by $\phi_q(I/P) = \phi(I)/P$ is a reduction function. Now, we have the following theorem as a result of Theorem [3.9](#page-6-0) that is easily verified, and hence we omit the proof.

Theorem 3.10. *Let* Q *and* P *be two hyperideals of* R *and* ϕ *be a reduction function of* $\mathcal{H}\mathcal{I}(R)$ such that $P \subseteq \phi(Q) \subseteq Q$. If Q is a ϕ - (k, n) -absorbing hyperideal of R, then Q/P is a ϕ_q ⁻(*k, n*)*-absorbing hyperideal of R/P.*

4. ϕ - (k, n) -ABSORBING PRIMARY HYPERIDEALS

Definition 4.1. Suppose that $H\mathcal{I}(R)$ is the set of hyperideals of *R* and $\phi : H\mathcal{I}(R) \longrightarrow$ $H\mathcal{I}(R) \cup \{\varphi\}$ is a function. Let *k* be a positive integer. A proper hyperideal *Q* of *R* is called ϕ -(*k, n*)-absorbing primary if $g(r_1^{kn-k+1}) \in Q - \phi(Q)$ for $r_1^{kn-k+1} \in R$ implies that *g*($r_1^{(k-1)n-k+2}$) ∈ *Q* or a *g*-product of $(k-1)n - k + 2$ of r_i j_i ^s, except $g(r_1^{(k-1)n-k+2})$, is in $\bm{r}^{(m,n)}(Q).$

Example 4.2. Every ϕ -(*k, n*)-absorbing of a Krasner (m, n) -hyperring is ϕ -(*k, n*)-absorbing primary.

The converse may not be always true as it is shown in the following example.

Example 4.3. Consider the Krasner $(2, 2)$ -hyperring $R = [0, 1]$ with the 2-ary hyperoperation defined by

$$
a \oplus b = \begin{cases} \{\max\{a,b\}\}, & \text{if } a \neq b, \\ [0,a], & \text{if } a = b, \end{cases}
$$

and multiplication is the usual multiplication on real numbers. Suppose that ϕ is a function from $\mathcal{HI}(R)$ to $\mathcal{HI}(R) \cup \{\varphi\}$ defined $\phi(I) = \bigcap_{i=1}^{\infty} g(I^{(i)})$ for $I \in \mathcal{HI}(R)$. Then the hyperideal $Q = [0, 0.5]$ is a ϕ -(2*,* 2)-absorbing primary hyperideal of *R* but it is not ϕ -(2*,* 2)-absorbing.

The next theorem provides us how to determine ϕ - (k, n) -absorbing primary hyperideal to be (*k, n*)-absorbing primary.

Theorem 4.4. *Assume that Q is a hyperideal of R and* ϕ : $\mathcal{H}I(R) \longrightarrow \mathcal{H}I(R) \cup {\phi}$ *is a reduction function such that* $\phi(Q)$ *is a* (k, n) *-absorbing primary huperideal of R. If Q is a ϕ-*(*k, n*)*-absorbing primary hyperideal of R, then Q is a* (*k, n*)*-absorbing primary hyperideal of R.*

Proof. Let $r_1^{kn-k+1} \in R$ such that $g(r_1^{kn-k+1}) \in Q$ and $g(r_1^{(k-1)n-k+2}) \notin Q$. Assume that $g(r_1^{kn-k+1}) \in \phi(Q)$. Since $\phi(Q)$ is a (k, n) -absorbing primary hyperideal of *R* and *g*($r_1^{(k-1)n-k+2}$) ∉ $\phi(Q)$, we conclude that a *g*-product of $(k-1)n - k + 2$ of the r_i *i* s, except $g(r_1^{(k-1)n-k+2})$ is in $r^{(m,n)}(\phi(Q)) \subseteq r^{(m,n)}(Q)$, as needed. Suppose that $g(r_1^{kn-k+1}) \notin \phi(Q)$. Since *Q* is a ϕ -(*k, n*)-absorbing primary hyperideal of *R*, we are done.

In the following, the relationship between a *ϕ*-(*k, n*)-absorbing primary hyperideal of *R* and its radical is considered.

Theorem 4.5. *Let Q be a hyperideal of R* and $\phi : \mathcal{HI}(R) \longrightarrow \mathcal{HI}(R) \cup {\phi}$ *be a function such that* $\mathbf{r}^{(m,n)}(\phi(Q)) = \phi(\mathbf{r}^{(m,n)}(Q))$. If *Q* is a ϕ -(*k, n*)*-absorbing primary hyperideal of R, then* $\mathbf{r}^{(m,n)}(Q)$ *is a* ϕ - (k,n) -absorbing hyperideal of R.

Proof. Let $r_1^{kn-k+1} \in R$ such that $g(r_1^{kn-k+1}) \in r^{(m,n)}(Q) - \phi(r^{(m,n)}(Q)).$ Assume that all products of $(k-1)n - k + 2$ of the r_i^* i ^s
s except $g(r_1^{(k-1)n-k+2})$ are $\text{not in } \mathbf{r}^{(m,n)}(Q).$ Since $g(r_1^{kn-k+1}) \in \mathbf{r}^{(m,n)}(Q),$ then there exists $s \in \mathbb{Z}^+$ with $g(g(r_1^{kn-k+1})^{(s)},1^{(n-s)}) \,\,\in\,\,Q, \,\,\text{ for }\,\, s \,\,\leq\,\, n \,\,\, \text{or} \,\,\, g_{(l)}(g(r_1^{kn-k+1})^{(s)}) \,\,\in\,\,Q, \,\,\, \text{for }\,\, s \,\,>\,\, n, \,\, s \,\,=\,\, 0,$ $l(n-1)+1$. In the former case, we get $g(g(r_1)^{(s)}, g(r_2)^{(s)}, \cdots, g(r_{kn-k+1})^{(s)}, 1^{(n-s)}) \in Q$. If $g(g(r_1)^{(s)}, g(r_2)^{(s)}, \cdots, g(r_{kn-k+1})^{(s)}, 1^{(n-s)}) \in \phi(Q)$, we obtain $g(r_1^{kn-k+1}) \in r^{(m,n)}(\phi(Q)) =$ $\phi(\mathbf{r}^{(m,n)}(Q))$, a contradiction. Since *Q* is a ϕ -(*k, n*)-absorbing primary hyperideal of *R*, then $g(g(r_1)^{(s)}, g(r_2)^{(s)}, \cdots, g(r_{(k-1)n-k+2})^{(s)}), 1^{(n-s)}) = g(g(r_1^{(k-1)n-k+2})^{(s)}, 1^{(n-s)}) \in Q$ which means $g(r_1^{(k-1)n-k+2}) \in r^{(m,n)}(Q)$. For the other case, we have a similar argument. Consequently, $r^{(m,n)}(Q)$ is a ϕ - (k, n) -absorbing hyperideal of *R*.

Example 4.6. Assume that $H = \mathbb{Z}_3[X, Y, Z]$ and $Q = \langle X^3 Y^3 Z^3 \rangle$. Then $R = H/Q$ is a Krasner (m, n) -hyperring with ordinary addition and ordinary multiplication. Defined $\phi(I/Q) = 0_R$ for $I/Q \in \mathcal{HI}(R)$. In the hyperring, Q/Q is a ϕ -(1,3)-absorbing primary hyperideal of *R* and $r^{(m,n)}(\phi(Q/Q)) \neq \phi(r^{(m,n)}(Q/Q))$. Note that $r^{(m,n)}(Q/Q)$ is not a ϕ -(1*,* 3)-absorbing hyper- $\text{ideal of } R \text{ because } 2XYZ + Q = (2X + Q)(Y + Q)(Z + Q) \in r^{(m,n)}(Q/Q) - \phi(r^{(m,n)}(Q/Q))$ but none of the elements $(2X + Q)$, $(Y + Q)$ and $(Z + Q)$ are not in $r^{(m,n)}(Q/Q)$).

Theorem 4.7. *Assume that* $\phi : \mathcal{HI}(R) \longrightarrow \mathcal{HI}(R) \cup \{\varphi\}$ *is a function. If Q is a* ϕ - (k, n) *absorbing primary hyperideal of* R *, then* Q *is a* ϕ -(*s, n*)*-absorbing primary hyperideal for all* $s \geq k$ *.*

Proof. Let *Q* be a ϕ -(*k, n*)-absorbing primary hyperideal of *R*. Suppose that $g(g(r_1^{n+2}), r_{n+3}^{(k+1)n-(k+1)+1}) \in Q - \phi(Q)$ for some $r_1^{(k+1)n-(k+1)+1} \in R$. Put $g(r_1^{n+2}) = a_1$. Then we conclude that $g(a_1, \dots, r_{(k+1)n-(k+1)+1}) \in Q$ or a *g*-product of $kn - k + 1$ of the *r ,* ²_is, except $g(a_1, \dots, r_{(k+1)n-(k+1)+1})$ is in $r^{(m,n)}(Q)$ as Q is a ϕ - (k,n) -absorbing primary hyperideal of *R*. Since $r^{(m,n)}(Q)$ is a hyperideal of *R* and $r_1^{n+2} \in R$, we conclude that $g(r_1,r_{n+3},\cdots,r_{(k+1)n-(k+1)+1}) \in r^{(m,n)}(Q)$ or \cdots or $g(r_{n+2},r_{n+3},\cdots,r_{(k+1)n-(k+1)+1}) \in$ $r^{(m,n)}(Q)$ and so *Q* is $(k+1,n)$ -absorbing primary.

Theorem 4.8. Let ϕ_1, ϕ_2 : $\mathcal{H I}(R) \longrightarrow \mathcal{H I}(R) \cup {\varphi}$ be two functions such that for all $I \in \mathcal{HI}(R)$, $\phi_1(I) \subseteq \phi_2(I)$. If Q is a ϕ_1 -(k, n)-absorbing primary hyperideal of R, then Q is a *ϕ*2*-*(*k, n*)*-absorbing primary hyperideal.*

Proof. It is proved in a similar way to Theorem [3.5.](#page-4-1) \Box

Theorem 4.9. *Let* $\phi : \mathcal{HI}(R) \longrightarrow \mathcal{HI}(R) \cup \{\varphi\}$ *be a function. If Q is a* ϕ -(1*, n*)*-absorbing primary hyperideal of R, then Q is a ϕ-*(2*, n*)*-absorbing primary hyperideal.*

Proof. Let *Q* be a ϕ -(1,*n*)-absorbing primary hyperideal and $g(g(r_1^n), \dots, r_{2n-1}) \in Q - \phi(Q)$ for some $r_1^{2n-1} \in R$. Then we get $g(r_1^n) \in Q$ or $g(r_{n+1}^{2n-1}) \in r^{(m,n)}(Q)$. By definition of hyperideal, we conclude that $g(r_1,r_{n+1},\cdots,r_{2n-1}) \in r^{(m,n)}(Q)$ or \cdots or $g(r_1,r_{n+1},\cdots,r_{2n-1}) \in$ $r^{(m,n)}(Q)$ since $r_1^n \in R$. Consequently, *Q* is a ϕ -(2*, n*)-absorbing primary hyperideal of *R*.

Let *Q* be a proper hyperideal of *R* and $\phi : \mathcal{HI}(R) \longrightarrow \mathcal{HI}(R) \cup {\varphi}$ be a function. *Q* refers to a strongly ϕ -(*k, n*)-absorbing primary hyperideal of *R* if $g(Q_1^{kn-k+1}) \subseteq Q - \phi(Q)$ for some hyperideals Q_1^{kn-k+1} of R implies that $g(Q_1^{(k-1)n-k+2}) \subseteq Q$ or a g-product of $(k-1)n - k + 2$ of *Q ,* $\mathcal{L}_i^{\mathcal{S}}$, except $g(Q_1^{(k-1)n-k+2})$, is a subset of $r^{(m,n)}(Q)$. In the sequel, we assume that all ϕ - (k, n) -absorbing primary hyperideals of *R* are strongly ϕ - (k, n) -absorbing primary hyperideal. Recall from [\[16\]](#page-16-22) that a proper hyperideal *Q* of *R* is called weakly (k, n) -absorbing primary if $0 \neq g(r_1^{kn-k+1}) \in Q$ for $r_1^{kn-k+1} \in R$ implies that $g(r_1^{(k-1)n-k+2}) \in Q$ or a g-product of $(k-1)n - k + 2 \text{ of } r$ i ^s, except $g(r_1^{(k-1)n-k+2})$, is in $r^{(m,n)}(Q)$.

Theorem 4.10. *Suppose that Q is a proper hyperideal of a commutative Krasner* (*m,* 2) *hyperring* R *and* $\phi : \mathcal{HI}(R) \longrightarrow \mathcal{HI}(R) \cup {\varphi}$ *is a function. Then the followings are equivalent:*

- (1) *Q is a* ϕ -(2,2)-absorbing primary hyperideal of *R*.
- (2) $Q/\phi(Q)$ *is a weakly* (2,2)-absorbing primary hyperideal of $R/\phi(Q)$.

Proof. (1) \implies (2) Let *Q* be ϕ -(2, 2)-absorbing primary and for $a_{11}^{1m}, a_{21}^{2m}, a_{31}^{3m} \in R$,

$$
\begin{aligned}\n\phi(Q) &\neq \quad & g(f(a_{11}^{1(i-1)}, \phi(Q), a_{1(i+1)}^{1m}), f(a_{21}^{2(i-1)}, \phi(Q), a_{2(i+1)}^{2m}), f(a_{31}^{3(i-1)}, \phi(Q), a_{3(i+1)}^{3m})) \\
&= \quad & f(g(a_{11}^{31}), \cdots, g(a_{1(i-1)}^{3(i-1)}), \phi(Q), g(a_{1(i+1)}^{3(i+1)}), \cdots, g(a_{1m}^{3m})) \\
&\in \quad & Q/\phi(Q).\n\end{aligned}
$$

Then

$$
f(g(a_{11}^{31}), \cdots, g(a_{1(i-1)}^{3(i-1)}), 0, g(a_{1(i+1)}^{3(i+1)}), \cdots, g(a_{1m}^{3m}))
$$

= $g(f(a_{11}^{1(i-1)}, 0, a_{1(i+1)}^{1m}), f(a_{21}^{2(i-1)}, 0, a_{2(i+1)}^{2m}), f(a_{31}^{3(i-1)}, 0, a_{3(i+1)}^{3m}))$
 $\in Q - \phi(Q).$

Since Q is a ϕ -(2, 2)-absorbing primary hyperideal of R , we get

$$
g(f(a_{11}^{1(i-1)}, 0, a_{1(i+1)}^{1m}), f(a_{21}^{2(i-1)}, 0, a_{2(i+1)}^{2m}))
$$

= $f(g(a_{11}^{21}), \dots, g(a_{1(i-1)}^{2(i-1)}), 0, g(a_{1(i+1)}^{2(i+1)}), \dots, g(a_{1m}^{2m})) \subseteq Q,$

$$
g(f(a_{21}^{2(i-1)}, 0, a_{2(i+1)}^{2m}), f(a_{31}^{3(i-1)}, 0, a_{3(i+1)}^{3m}))
$$

= $f(g(a_{21}^{31}), \dots, g(a_{2(i-1)}^{3(i-1)}), 0, g(a_{2(i+1)}^{3(i+1)}), \dots, g(a_{2m}^{3m})) \subseteq \mathbf{r}^{(m,n)}(Q),$

or

$$
g(f(a_{11}^{1(i-1)}, 0, a_{1(i+1)}^{1m}), f(a_{31}^{3(i-1)}, 0, a_{3(i+1)}^{3m}))
$$

= $f(g(a_{11}^{31}), \cdots, g(a_{1(i-1)}^{3(i-1)}), 0, g(a_{1(i+1)}^{3(i+1)}), \cdots, g(a_{1m}^{3m})) \subseteq r^{(m,n)}(Q).$

It implies that

$$
f(g(a_{11}^{21}),\cdots,g(a_{1(i-1)}^{2(i-1)}),\phi(Q),g(a_{1(i+1)}^{2(i+1)}),\cdots,g(a_{1m}^{2m}))
$$

= $g(f(a_{11}^{1(i-1)},\phi(Q),a_{1(i+1)}^{1m}),f(a_{21}^{2(i-1)},\phi(Q),a_{2(i+1)}^{2m})) \in Q/\phi(Q),$

or

$$
f(g(a_{21}^{31}), \cdots, g(a_{2(i-1)}^{3(i-1)}), \phi(Q), g(a_{2(i+1)}^{3(i+1)}), \cdots, g(a_{2m}^{3m}))
$$

= $g(f(a_{21}^{2(i-1)}, \phi(Q), a_{2(i+1)}^{2m}), f(a_{31}^{3(i-1)}, \phi(Q), a_{3(i+1)}^{3m}))$
 $\in \mathbf{r}^{(m,n)}(Q)/\phi(Q) = \mathbf{r}^{(m,n)}(Q/\phi(Q)),$

or

$$
f(g(a_{11}^{31}),\cdots,g(a_{1(i-1)}^{3(i-1)}),\phi(Q),g(a_{1(i+1)}^{3(i+1)}),\cdots,g(a_{1m}^{3m}))
$$

= $g(f(a_{11}^{1(i-1)},\phi(Q),a_{1(i+1)}^{1m}),f(a_{31}^{3(i-1)},\phi(Q),a_{3(i+1)}^{3m}))$
 $\in \mathbf{r}^{(m,n)}(Q)/\phi(Q) = \mathbf{r}^{(m,n)}(Q/\phi(Q)).$

 $(2) \Longrightarrow (1)$ Let $g(r_1^3) \in Q - \phi(Q)$ for some $r_1^3 \in R$. Therefore we obtain $f(g(r_1^3), \phi(Q), 0^{(m-2)}) \neq$ $\phi(Q)$. It follows that

$$
\phi(Q) \neq g(f(r_1, \phi(Q), 0^{(m-2)}), f(r_2, \phi(Q), 0^{(m-2)}), f(r_3, \phi(Q), 0^{(m-2)})) \in Q/\phi(Q).
$$

By the hypothesis, we get

$$
g(f(r_1, \phi(Q), 0^{(m-2)}), f(r_2, \phi(Q), 0^{(m-2)})) = f(g(r_1^2), \phi(Q), 0^{(m-2)}) \in Q/\phi(Q).
$$

or

$$
g(f(r_2, \phi(Q), 0^{(m-2)}), f(r_3, \phi(Q), 0^{(m-2)})) = f(g(r_2^3), \phi(Q), 0^{(m-2)}) \in \mathbf{r}^{(m,n)}(Q)/\phi(Q).
$$

298 M. Anbarloei

$$
g(f(r_1, \phi(Q), 0^{(m-2)}), f(r_3, \phi(Q), 0^{(m-2)})) = f(g(r_1^3), \phi(Q), 0^{(m-2)}) \in \mathbf{r}^{(m,n)}(Q)/\phi(Q).
$$

This shows that $g(r_1^2) \in Q$ or $g(r_2^3) \in r^{(m,n)}(Q)$ or $g(r_1^3) \in r^{(m,n)}(Q)$. Consequently, *Q* is a ϕ -(2, 2)-absorbing primary hyperideal of *R*.

Suppose that *I* is a weakly (2*,* 2)-absorbing primary hyperideal of a commutative Krasner $(m, 2)$ -hyperring *R*. Recall from [[16\]](#page-16-22) that (x, y, z) is said to be $(2, 2)$ -zero primary of *I* for $x, y, z \in R$, if $g(x, y, z) = 0$, $g(x, y) \notin I$, $g(y, z) \notin r^{(m,n)}(I)$ and $g(x, z) \notin r^{(m,n)}(I)$. Now, assume that *Q* is a ϕ -(2,2)-absorbing primary hyperideal of a commutative Krasner $(m, 2)$ hyperring *R*. Then we say (x, y, z) is a ϕ - $(2, 2)$ primary of *Q* for some $x, y, z \in R$ if $g(x, y, z) \in$ $\phi(Q), g(x, y) \notin Q, g(y, z) \notin r^{(m,n)}(Q)$ and $g(x, z) \notin r^{(m,n)}(Q)$. It is easy to see that a proper hyperideal *Q* of *R* is ϕ -(2, 2)-absorbing primary that is not (2, 2)-absorbing primary if and only if *Q* has a ϕ -(2, 2) primary (x, y, z) for some $x, y, z \in R$.

Theorem 4.11. Let R be a commutative Krasner $(m,2)$ -hyperring and let $\phi : \mathcal{HT}(R) \longrightarrow$ $HI(R) \cup {\varphi}$ *be a function.* Let *Q be a* ϕ -(2*,* 2)*-absorbing primary hyperideal of R and* $x, y, z \in R$ *. Then the followings are equivalent:*

- (1) (x, y, z) *is a* ϕ -(2,2) *primary of Q*.
- (2) $(f(x, \phi(Q), 0^{(m-2)}), f(y, \phi(Q), 0^{(m-2)}), f(z, \phi(Q), 0^{(m-2)})$ is a $(2, 2)$ -zero primary of $Q/\phi(Q)$.

Proof. (1) \implies (2) Let (x, y, z) be a ϕ -(2,2) primary of *Q*. This means that $g(x,y,z) \in \phi(Q)$, $g(x,y) \notin Q$, $g(y,z) \notin r^{(m,n)}(Q)$ and $g(x,z) \notin r^{(m,n)}(Q)$. This implies that $f(g(x, y), Q, 0^{(m-2)}) \notin Q/\phi(Q)$, $f(g(y, z), \phi(Q), 0^{(m-2)}) \notin r^{(m,n)}(Q)/\phi(Q)$ and $f(g(x, z), \phi(Q), 0^{(m-2)}) \notin r^{(m,n)}(Q)/\phi(Q)$. By Theorem [4.10,](#page-9-0) we conclude that $(f(x, \phi(Q), 0^{(m-2)}), f(y, \phi(Q), 0^{(m-2)}), f(z, \phi(Q), 0^{(m-2)})$ is a $(2, 2)$ -zero primary of $Q/\phi(Q)$. $(2) \Longrightarrow (1)$ Assume that $(f(x, \phi(Q), 0^{(m-2)}), f(y, \phi(Q), 0^{(m-2)}), f(z, \phi(Q), 0^{(m-2)})$ is a $(2, 2)$ zero primary of $Q/\phi(Q)$. Thus $g(x, y, z) \in \phi(Q)$ but $f(g(x, y), Q, 0^{(m-2)}) \notin Q/\phi(Q)$, $f(g(y, z), \phi(Q), 0^{(m-2)}) \notin r^{(m,n)}(Q)/\phi(Q)$ and $f(g(x, z), \phi(Q), 0^{(m-2)}) \notin r^{(m,n)}(Q)/\phi(Q)$. Hence $g(x, y, z) \in \phi(Q)$, $g(x, y) \notin Q$, $g(y, z) \notin r^{(m,n)}(Q)$ and $g(x, z) \notin r^{(m,n)}(Q)$. It implies that (x, y, z) is a ϕ - $(2, 2)$ primary of Q .

Theorem 4.12. Let R be a commutative Krasner $(m,2)$ -hyperring and let $\phi : \mathcal{HI}(R) \longrightarrow$ $\mathcal{H}I(R) \cup \{\varphi\}$ *be a function. Let Q be a* ϕ -(2*,* 2)*-absorbing primary hyperideal of R. If* (x, y, z) *is a* ϕ -(2,2) *primary of Q for some* $x, y, z \in R$ *, then*

(1) $q(x, y, Q), q(y, z, Q), q(x, z, Q) \subseteq \phi(Q)$.

or

Alg. Struc. Appl. Vol. 11 No. 4 (2024) 287-304. 299

- $g(2)$ $g(x, Q^{(2)})$, $g(y, Q^{(2)})$, $g(z, Q^{(2)}) \subset \phi(Q)$.
- (3) $q(Q^{(3)})$ ⊂ $\phi(Q)$.

Proof. (1) Let (x, y, z) be a ϕ -(2, 2) primary of a ϕ -(2, 2)-absorbing primary hyperideal *Q*. By Theorem [4.11,](#page-11-0) $(f(x, \phi(Q), 0^{(m-2)}), f(y, \phi(Q), 0^{(m-2)}), f(z, \phi(Q), 0^{(m-2)})$ is a $(2, 2)$ -zero primary of $Q/\phi(Q)$ since (x, y, z) is a ϕ - $(2, 2)$ primary of *Q*. Thus

$$
f(g(x, y, Q), \phi(Q), 0^{(m-2)}) = f(g(y, z, Q), \phi(Q), 0^{(m-2)}) = f(g(x, z, Q), \phi(Q), 0^{(m-2)}) = \phi(Q),
$$

by Theorem 4.9 in [[16\]](#page-16-22), which implies $g(x, y, Q)$, $g(y, z, Q)$ and $g(x, z, Q)$ are subsets of $\phi(Q)$.

(2) Theorem [4.11](#page-11-0) shows that $(f(x, \phi(Q), 0^{(m-2)}), f(y, \phi(Q), 0^{(m-2)}), f(z, \phi(Q), 0^{(m-2)})$ is a $(2, 2)$ -zero primary of $Q/\phi(Q)$. Moreover, Theorem [4.10](#page-9-0) shows that $Q/\phi(Q)$ is a weakly $(2, 2)$ -absorbing primary of $R/\phi(Q)$. Then $f(g(x, Q^{(2)}), \phi(Q), 0^{(m-2)}) =$ $f(g(y, Q^{(2)}), \phi(Q), 0^{(m-2)}) = f(g(z, Q^{(2)}), \phi(Q), 0^{(m-2)}) = \phi(Q)$, by Theorem 4.9 of [[16\]](#page-16-22). Consequently, $g(x, Q^{(2)}), g(y, Q^{(2)}), g(z, Q^{(2)})$ are subsets of $\phi(Q)$.

(3) Again, $(f(x, \phi(Q), 0^{(m-2)}), f(y, \phi(Q), 0^{(m-2)}), f(z, \phi(Q), 0^{(m-2)})$ is a $(2, 2)$ -zero primary of $Q/\phi(Q)$ and $Q/\phi(Q)$ is a weakly $(2, 2)$ -absorbing primary of $R/\phi(Q)$ by Theorem [4.11](#page-11-0) and Theorem [4.10](#page-9-0), respectively, then $f(g(Q^{(3)}), \phi(Q), 0^{(m-2)}) = \phi(Q)$ by Theorem 4.10 in [[16](#page-16-22)]. Thus $g(Q^{(3)})$ is a subset of $\phi(Q)$.

Theorem 4.13. *Suppose that Q is a proper hyperideal of a commutative Krasner* (*m, n*) *hyperring* R *and* $\phi : \mathcal{HI}(R) \longrightarrow \mathcal{HI}(R) \cup {\phi}$ *is a function. Then the followings are equivalent:*

- (1) Q *is a* ϕ - (k, n) -absorbing primary hyperideal of R.
- (2) $Q/\phi(Q)$ *is a weakly* (k, n) *-absorbing primary hyperideal of* $R/\phi(Q)$ *.*

Proof. It can be easily proved in a similar manner to the proof of Theorem [4.10](#page-9-0). \Box

Suppose that *Q* is a ϕ -(*k, n*)-absorbing primary hyperideal of *R*. Then we say $(r_1^{k(n-1)+1})$ is a ϕ -(k, n) primary of Q for some $r_1^{k(n-1)+1} \in R$ if $g(r_1^{k(n-1)+1}) \in \phi(Q)$, $g(r_1^{(k-1)n-k+2}) \notin Q$ and a *g*-product of $(k-1)n - k + 2$ of r_i i^s , except $g(r_1^{(k-1)n-k+2})$, is not in $r^{(m,n)}(Q)$.

Theorem 4.14. Let R be a commutative Krasner $(m,2)$ -hyperring and let $\phi : \mathcal{HT}(R) \longrightarrow$ $HI(R) \cup {\varphi}$ *be a function.* Let *Q be a* ϕ -(*k, n*)*-absorbing primary hyperideal of R and* $r_1^{k(n-1)+1} \in R$ *. Then the followings are equivalent:*

- (1) $(r_1^{k(n-1)+1})$ *is a* ϕ -(*k, n*) *primary of Q.*
- (2) $(f(r_1, \phi(Q), 0^{(m-2)}), \cdots, f(r_{k(n-1)+1}, \phi(Q), 0^{(m-2)})$ is a (k, n) -zero primary of *Q/ϕ*(*Q*)*.*

Proof. It is seen to be true in a similar manner to Theorem [4.11.](#page-11-0) \Box

Theorem 4.15. Let R be a commutative Krasner (m, n) -hyperring and let $\phi : \mathcal{HT}(R) \longrightarrow$ $\mathcal{H}I(R) \cup {\varphi}$ *be a function.* Let *Q be a* ϕ -(*k, n*)-absorbing primary hyperideal of R *.* If $(r_1^{k(n-1)+1})$ is a ϕ -(k, n) primary of *Q* for some $r_1^{k(n-1)+1} \in R$, then $g(r_1,\dots,\widehat{r_{i_1}},\dots,\widehat{r_{i_2}},\dots,\widehat{r_{i_s}},\dots,r_{k(n-1)+1},Q^{(s)})\subseteq\phi(Q)$ for every $i_1,\dots,i_s\in\{1,\dots,k(n-1)\}$ $1) + 1$ *} and* $1 \leq s \leq (k-1)n - k + 2$.

Proof. $(f(r_1, \phi(Q), 0^{(m-2)}), \cdots, f(r_{k(n-1)+1}, \phi(Q), 0^{(m-2)})$ is a (k, n) -zero primary of $Q/\phi(Q)$ by Theorem [4.14](#page-12-1) and $Q/\phi(Q)$ is a weakly (k, n) -absorbing primary of $R/\phi(Q)$ by Theorem [4.13.](#page-12-0) Then we conclude that

$$
f(g(f(r_1,\phi(Q),0^{(m-2)}),\cdots,f(\widehat{r_{i_1}},\phi(Q),0^{(m-2)}),\cdots,f(\widehat{r_{i_2}},\phi(Q),0^{(m-2)}),\cdots,
$$

$$
f(\widehat{r_{i_s}},\phi(Q),0^{(m-2)}),\cdots,f(r_{k(n-1)+1},\phi(Q),0^{(m-2)}),Q^{(s)}),\phi(Q),0^{(m-2)})=\phi(Q).
$$

for every $i_1, ..., i_s \in \{1, ..., k(n-1)+1\}$ and $1 \le s \le (k-1)n - k + 2$, by Theorem 4.9 of [[16](#page-16-22)]. Thus, $g(r_1, \dots, \widehat{r_{i_1}}, \dots, \widehat{r_{i_2}}, \dots, \widehat{r_{i_s}}, \dots, r_{k(n-1)+1}, Q^{(s)}) \subseteq \phi(Q)$.

Theorem 4.16. *Let R be a commutative Krasner* (m, n) *-hyperring and let* $\phi : \mathcal{HI}(R) \longrightarrow$ $H1(R) \cup \{\varphi\}$ *be a function. Let Q be a* φ - (k, n) *-absorbing primary hyperideal of R but is not a* (k, n) *-absorbing primary. Then* $g(Q^{k(n-1)+1}) \subseteq \phi(Q)$ *.*

Proof. This can be proved, by using Theorem [4.15](#page-13-1), in a very similar manner to the way in which [4.12](#page-11-1) was proved. \Box

Now, let give some related corollaries.

Corollary 4.17. *Let ϕ* : *HI*(*R*) *−→ HI*(*R*) *∪ {φ} be a function. If Q is a ϕ-*(*k, n*)*-absorbing primary hyperideal of* R *such that* $g(Q^{k(n-1)+1}) \nsubseteq \phi(Q)$ *, then* Q *is a* (k, n) *-absorbing primary hyperideal of R.*

Corollary 4.18. Let $\phi : \mathcal{HI}(R) \longrightarrow \mathcal{HI}(R) \cup \{\varphi\}$ be a function and let Q be a ϕ -(k, n)*absorbing primary hyperideal of R that is not a* (*k, n*)*-absorbing primary hyperideal of R. Then* $r^{(m,n)}(Q) = r^{(m,n)}(\phi(Q)).$

Proof. By Theorem [4.16,](#page-13-0) we have $g(Q^{k(n-1)+1}) \subseteq \phi(Q)$ as Q is not a (k, n) -absorbing primary. This means $r^{(m,n)}(Q) \subseteq r^{(m,n)}(\phi(Q))$. On the other hand, from $\phi(Q) \subseteq Q$, it follows that $r^{(m,n)}(\phi(Q)) \subseteq r^{(m,n)}(Q)$. Hence $r^{(m,n)}(Q) = r^{(m,n)}(\phi(Q))$.

Corollary 4.19. *Let* $\phi : \mathcal{H}I(R) \longrightarrow \mathcal{H}I(R) \cup \{\varphi\}$ *be a function and let Q be a proper hyperideal* of R such that $r^{(m,n)}(\phi(Q))$ is a (k,n) -absorbing hyperideal of R. Then Q is a ϕ - $(k+1,n)$ *absorbing primary hyperideal of R if and only if Q is a* (*k* + 1*, n*)*-absorbing primary hyperideal of R.*

Proof. (\implies) Let *Q* be a ϕ -(*k*+1*, n*)-absorbing primary hyperideal of *R*. If *Q* is not a (*k*+1*, n*)absorbing primary hyperideal of *R*. Hence $r^{(m,n)}(Q) = r^{(m,n)}(\phi(Q))$ by Corollary [4.18.](#page-13-2) Then $r^{(m,n)}(Q)$ is a (k, n) -absorbing hyperideal of *R* which implies that *Q* is is a $(k+1, n)$ -absorbing primary hyperideal of *R* by Theorem 4.9 in [\[18](#page-16-19)].

 (\Leftarrow) It is clear. \Box

Theorem 4.20. *Let* $h: R_1 \longrightarrow R_2$ *be a* $\phi_1 \cdot \phi_2$ *-homomorphism, where* ϕ_1 *and* ϕ_2 *are two reduction functions of* $H\mathcal{I}(R_1)$ *and* $H\mathcal{I}(R_2)$ *, respectively. Then*

- (1) *If* Q_2 *is a* ϕ_2 -(*k, n*)*-absorbing primary hyperideal of* R_2 *, then* $h^{-1}(Q_2)$ *is a* ϕ_1 -(*k, n*)*absorbing primary hyperideal of R*1*.*
- (2) If *h* is surjective and Q_1 is a ϕ_1 -(k, n)-absorbing primary hyperideal of R_1 with $Ker(h) \subseteq Q_1$, then $h(Q_1)$ *is a* ϕ_2 -(*k, n*)*-absorbing primary hyperideal of* R_2 .

Proof. (1) Let Q_2 be a ϕ_2 -(*k, n*)-absorbing primary hyperideal of R_2 . Assume that r_1^{kn-k+1} \in R_1 such that $g(r_1^{kn-k+1}) \in h^{-1}(Q_2) - \phi_1(h^{-1}(Q_2)).$ Then we get $h(g(r_1^{kn-k+1})) =$ $g(h(r_1), \dots, h(r_{kn-k+1})) \in Q_2 - \phi_2(Q_2)$. Since Q_2 is a $\phi_2(k,n)$ -absorbing primary hyperideal of R_2 , we obtain either $g(h(r_1), \dots, h(r_{(k-1)n-k+2})) = h(g(r_1^{(k-1)n-k+2})) \in$ Q_2 which means $g(r_1^{(k-1)n-k+2}) \in h^{-1}(Q_2)$, or $g(h(r_1), \dots, \widehat{h(r_i)}, \dots, h(r_{kn-k+1})) =$ $h(g(r_1, \dots, \hat{r_i}, \dots, r_{kn-k+1})) \in r^{(m,n)}(Q_2)$ which means $g(r_1, \dots, \hat{r_i}, \dots, r_{kn-k+1}) \in$ $h^{-1}(\bm{r}^{(m,n)}(Q_2)) = \bm{r}^{(m,n)}(h^{-1}(Q_2))$ for some $1 \leq i \leq n$. Hence $h^{-1}(Q_2)$ is a ϕ_1 - (k, n) -absorbing primary hyperideal of *R*1.

(2) Assume that *h* is surjective and Q_1 is a $\phi_1-(k,n)$ -absorbing primary hyperideal of R_1 with $Ker(h) \subseteq Q_1$. Let $s_1^{kn-k+1} \in R_2$ such that $g(s_1^{kn-k+1}) \in h(Q_1) - \phi_2(h(Q_1))$. Therefore there exist $r_1^{kn-k+1} \in R_1$ with $h(r_1) = s_1, \dots, h(r_{kn-k+1}) = s_{kn-k+1}$. Hence we get $h(g(r_1^{kn-k+1}) = g(h(r_1), \dots, h(r_{kn-k+1})) = g(s_1^{kn-k+1}) \in h(Q_1)$. Since h is a $\phi_1 \cdot \phi_2$ epimorphism and $Ker(h) \subseteq Q_1$, we have $g(r_1^{kn-k+1}) \in Q_1 - \phi_1(Q_1)$. Since Q_1 is a ϕ_1 - (k, n) absorbing primary hyperideal of R_1 , we conclude that $g(r_1^{(k-1)n-k+2}) \in Q_1$ which implies

$$
h(g(r_1^{(k-1)n-k+2})) = g(h(r_1), \cdots, h(r_{(k-1)n-k+2})) = g(s_1^{(k-1)n-k+2}) \in h(Q_1),
$$

or $g(r_1, \dots, \hat{r_i}, \dots, r_{kn-k+1}) \in \mathbf{r}^{(m,n)}(Q_1)$ implies $h(g(r_1, \dots, \hat{r_i}, \dots, r_{kn-k+1}) =$ $g(h(r_1), \cdots, \widehat{h(r_i)}, \cdots, h(r_{kn-k+1})) = g(s_1, \cdots, \widehat{s_i}, \cdots, s_{kn-k+1}) \in h(r^{(m,n)}(Q_1)) \subseteq$ $r^{(m,n)}(h(Q_1))$ for some $1 \leq i \leq (k-1)n - k + 2$. Consequently, $h(Q_1)$ is a $\phi_2(k,n)$ -absorbing primary hyperideal of R_2 .

As an instant consequence of the previous theorem, we get the following explicit result.

Theorem 4.21. Let Q and P be two hyperideals of R and ϕ be a reduction function of $\mathcal{H}I(R)$ *such that* $P \subseteq \phi(Q) \subseteq Q$ *. If* Q *is a* ϕ - (k, n) -absorbing primary hyperideal of R, then Q/P is *a* ϕ_q - (k, n) -absorbing primary hyperideal of R/P .

Theorem 4.22. Let (R_i, f_i, g_i) be a commutative Krasner (m, n) -hyperring for each $1 \leq i \leq n$ $kn-k+1$ and $\phi_i:\mathcal{HI}(R_i)\longrightarrow\mathcal{HI}(R_i)\cup\{\varphi\}$ be a function. Let Q_i be a hyperideal of R_i for each $1 \leq i \leq kn-k+1$ and $\phi = \phi_1 \times \cdots \times \phi_{kn-k+1}$. If $Q = Q_1 \times \cdots \times Q_{kn-k+1}$ is a $\phi \cdot (k+1,n)$. *absorbing primary hyperideal of* $R = R_1 \times \cdots \times R_{kn-k+1}$, then Q_i *is a* ϕ_i -(*k, n*)*-absorbing primary hyperideal of* R_i *and* $Q_i \neq R_i$ *for all* $1 \leq i \leq kn - k + 1$ *.*

Proof. By using an argument similar to that in the proof of Theorem [3.7](#page-5-0), one can easily complete the proof. \Box

5. Conclusion

In this paper, motivated by the research works on *ϕ*-2-absorbing (primary) ideals of commutative rings, we propsed and investigated the notions of ϕ -(*k, n*)-absorbing and ϕ -(*k, n*)absorbing primary hyperideals in a Krasner (*m, n*)-hyperring. Some of their essential characteristics were analysed. Moreover, the stabilty of the notions were examined in some hyperringtheoretic constructions. As a new research subject, we suggest the concept of ϕ - (k, n) -absorbing *δ*-primary hyperideals, where *δ* is an expansion function of *HI*(*R*).

6. Acknowledgments

The author wish to sincerely thank the referees for several useful comments.

REFERENCES

- [1] R. Ameri and M. Norouzi, *Prime and primary hyperideals in Krasner* (*m, n*)*-hyperrings*, European J. Combin., **34** (2013) 379-390.
- [2] R. Ameri, A. Kordi and S. Sarka-Mayerova, *Multiplicative hyperring of fractions and coprime hyperideals*, An. Stiint. Univ. Ovidius Constanta Ser. Mat., **25** No. 1 (2017) 5-23.
- [3] M. Anbarloei, *n-ary 2-absorbing and 2-absorbing primary hyperideals in Krasner* (*m, n*)*-hyperrings*, Mat. Vesn., **71** No. 3 (2019) 250-262.
- [4] M. Anbarloei, *Unifing the prime and primary hyperideals under one frame in a Krasner* (*m, n*)*-hyperring*, Comm. Algebra, **49** (2021) 3432-3446.
- [5] M. Anbarloei, *A study on a generalization of the n-ary prime hyperideals in Krasner* (*m, n*)*-hyperrings*, Afr. Mat., **33** (2021) 1021-1032.
- [6] M. Anbarloei, *Krasner (m, n)-hyperring of fractions*, Jordan J. Math. Stat., **16** No. 1 (2023) 165-185.
- [7] D. D. Anderson and M. Bataineh, *Generalizations of prime ideals*, Comm. Algebra, **36** (2008) 686-696.
- [8] A. Asadi and R. Ameri, *Direct limit of Krasner (m,n)-hyperrings*, J. Sci., **31** No. 1 (2020) 75-83.
- [9] A. Badawi, U. Tekir, E. A. Ugurlu, G. Ulucak and E. Y. Celikel, *Generalizations of* 2*-absorbing primary ideals of commutative rings*, Turkish J. Math., **40** No. 3 (2016) 703-717.
- [10] S. Corsini, *Prolegomena of Hypergroup Theory*, Second edition, Aviani editor, Italy, 1993.
- [11] S. Corsini and V. Leoreanu, *Applications of Hyperstructure Theory, Advances in Mathematics*, Vol. 5, Kluwer Academic Publishers, 2003.
- [12] A. Y. Darani, *Generalizations of primary ideals in commutative rings*, Novi Sad J. Math., **42** No.1 (2012) 27-35.
- [13] B. Davvaz and V. Leoreanu-Fotea, *Hyperring Theory and Applications*, International Academic Press, Palm Harbor, USA, 2007.
- [14] B. Davvaz and T. Vougiouklis, *n-ary hypergroups*, Iran. J. Sci. Technol., **30** No. A2 (2006) 165-174.
- [15] B. Davvaz, *Fuzzy Krasner* (*m, n*)*-hyperrings*, Comput. Math. Appl., **59** (2010) 3879-3891.
- [16] B. Davvaz, G. Ulucak and U. Tekir, *Weakly* (*k, n*)*-absorbing (Primary) hyperideals of a Krasner* (*m, n*) *hyperring*, Hacet. J. Math. Stat., **52** No. 5 (2023) 1229-1238
- [17] W. Dorente, *Untersuchungen über einen verallgemeinerten Gruppenbegriff*, Math. Z., **29** (1928) 1-19.
- [18] K. Hila, K. Naka and B. Davvaz, *On* (*k, n*)*-absorbing hyperideals in Krasner* (*m, n*)*-hyperrings*, Q. J. Math., **69** (2018) 1035-1046.
- [19] A. Jaber, *Properties of ϕ-δ-primary and 2-absorbing δ-primary ideals of commutative rings*, Asian-Eur. J. Math., **13** No. 1 (2020), 2050026.
- [20] A. Khaksari, *ϕ-2-prime ideals*, Int. J. Pure Appl. Math., **99** No. 1 (2015) 1-10.
- [21] E. Kasner, *An extension of the group concept (reported by L.G. Weld)*, Bull. Amer. Math. Soc., **10** (1904) 290-291.
- [22] V. Leoreanu-Fotea, *Canonical n-ary hypergroups*, Ital. J. Pure Appl. Math., **24** (2008) 247-254.
- [23] V. Leoreanu-Fotea and B. Davvaz, *n-hypergroups and binary relations*, European J. Combin., **29** (2008) 1027-1218.
- [24] V. Leoreanu-Fotea and B. Davvaz, *Roughness in n-ary hypergroups*, Inform. Sci., **178** (2008) 4114-4124.
- [25] X. Ma, J. Zhan and B. Davvaz, *Applications of rough soft sets to Krasner* (*m, n*)*-hyperrings and corresponding decision making methods*, Filomat, **32** (2018) 6599-6614.
- [26] F. Marty, *Sur une generalization de la notion de groupe*, In 8 *th* Congress Math. Scandenaves, Stockholm, 1934.
- [27] S. Mirvakili and B. Davvaz, *Relations on Krasner* (*m, n*)*-hyperrings*, European J. Combin., **31** (2010) 790-802.
- [28] S. Mirvakili and B. Davvaz, *Constructions of* (*m, n*)*-hyperrings*, Mat. Vesn., **67** No. 1 (2015) 1-16.
- [29] M. Norouzi, R.Ameri and V. Leoreanu-Fotea, *Normal hyperideals in Krasner* (*m, n*)*-hyperrings*, An. St. Univ. Ovidius Constanta, **26** No. 3 (2018) 197-211.
- [30] S. Omidi and B. Davvaz, *Contribution to study special kinds of hyperideals in ordered semihyperrings*, J. Taibah Univ. Sci., **11** (2017) 1083-1094.
- [31] S. Ostadhadi-Dehkordi and B. Davvaz, *A Note on isomorphism theorems of Krasner* (*m, n*)*-hyperrings*, Arab. J. Math., **5** (2016) 103-115.
- [32] T. Vougiouklis, *Hyperstructures and their Representations*, Hadronic Press Inc., Florida, 1994.
- [33] M. M. Zahedi and R. Ameri, *On the prime, primary and maximal subhypermodules*, Ital. J. Pure Appl. Math., **5** (1999) 61-80.
- [34] J. Zhan, B. Davvaz and K. P. Shum, *Generalized fuzzy hyperideals of hyperrings*, Comput. Math. Appl., **56** (2008) 1732-1740.

Mahdi Anbarloei

Department of Mathematics, Faculty of Sciences Imam Khomeini International University Qazvin, Iran.

m.anbarloei@sci.ikiu.ac.ir