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ON THE MAXIMAL RANDIC ENERGY OF TREES WITH GIVEN
DIAMETER

SHIVA SEPIDBON, NADER JAFARI RAD* AND AKBAR JAHANBANTI

ABSTRACT. For given integers n,d withn > 5and 4 < d <n —1, let T} be the family of all
trees of order n and diameter d. In this paper, we study trees T' € T} with maximal Randié¢
energy. We prove that if T € Ty is a tree with maximal Randi¢ energy then T is obtained
from a path P = vovs ...vq by adding n; path(s) Ps to each vertex v;, for i = 2,3,4,...,d—2,

where n; € {[";Jfg?’ , L%j}. In particular, we present families of trees satisfying the

Gutman-Furtula-Bozkurt Conjecture proposed in [Linear Algebra Appl., 442 (2014), 50-57].

1. INTRODUCTION

Let G = (V, E) be a graph with vertex set V' = {v1,v9,...,v,} and edge set F = E(G), and
let |[V(G)| =n and |E(G)| = m. If the vertices v; and v; are adjacent, we write v;v; € F(G).
For ¢ = 1,2,...n, let d,, = dg(v;) be the degree of the vertex v;. If d,, = 1, then v; is a
pendant vertex. A set of edges M of a graph G is a matching if no pair of edges of M share a
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vertex. A matching of size k is referred as a k-matching. The eccentricity of a vertex v is the
greatest distance from v to any other vertex of G. The diameter of a graph is the maximum
over eccentricities of all vertices of the graph and is denoted by d. A diametrical path of a
graph is the shortest path whose length is equal to the diameter of the graph.

For an integer p > 0, the tree SP of order n = 2p + 1, containing p pendant vertices, each
attached to a vertex of degree 2, and a vertex of degree p, is called the p-sun.
For integers p,q > 0, the tree DSP? of order n = 2(p + ¢ + 1), obtained from a p-sun and a
g-sun, by connecting their central vertices, is called a (p, q)-double sun.

The adjacency matric A = A(G) of a graph G is defined by its entries as a;; = 1 if
vV € E(G) and 0 otherwise. Let A\; > Ao > -+ > A, be eigenvalues of the adjacency matrix
of G. According to the eigenvalues of the adjacency matrix, the energy of a graph is defined

as
E=EG) =) N
=1

The concept of energy of a graph was first used by Gutman in chemistry to approximate
m-electron energy, see([[], [8], [9])-

The Randi¢ matriz is defined as r;; = \/#ij if vjv; € E(G) and 0 otherwise. The Randié
matrix is real symmetric, so we can order its eigenvalues so that p; > p2 > --- > p,. The

Randi¢ energy (see [3]) is defined as
Er(G) = Ipil-
i=1

Gutman, Furtula and Bozkurt presented the following conjecture in [§] about the connected

graphs with maximal Randié energy.

Conjecture 1.1 ([6]). Let G be a connected graph on n vertices. Then

Er(SP), ifn=2p+1is odd,
en(c) <
Er(DSPT), ifn=2(p+q+1) is even.

Gao et al. in [§] presented the minimal Randié¢ energy of trees with a given diameter. Gao in
[M], showed that the generalized double suns of odd order satisfy Conjecture EI The validity
of Conjecture @ over some other families of graphs is shown by Allem, Braga, Pastine and
Molina, [, 2].

Let T} be the class of trees of order n with diameter 4 < d < n — 1. Let T € T} and

My(T) be the set of all k-matchings of T, for 1 < k < [§]. For e = wv € E(T) and

1
a = {e1,ea,...,ex} € Mp(T), we denote Rp(e) = Rp(uv) = pRmyAmE and Rp(ag) =
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Hle Rr(e;). The R-polynomial of T can be written as
15)

Or(T,w) =| ol — R(T) |= S (~1)b(R(T), k)a" =,
k=0
where b(R(T'),0) =1 and b(R(T),k) = > Rr(oy)for 1 <k < [F] (see [10]).
ap€M(T)

Theorem 1.2 ([10]). Let T1,T> € T}, and their R-polynomials be

15) 15]
Or(T,x) =Y (—D)"b(R(T1), k)a"%*, ¢p(Ty,x) =Y (—1)*b(R(Ty), k)a"*,
k=0 k=0
respectively. If b(R(T1),k) > b(R(T2),k) for all k > 1, and there is an integer number k such

that b(R( 1) ) > b(R(Tg) k) then SR(Tl) > gR(TQ)

[NIE]
[NIE]

In this paper, we study trees with a given diameter and maximal Randi¢ energy, therefore,
we find families of graphs satisfying Conjecture @ We prove forn > 5and 4 <d <n—1, if
T € T} be a tree with maximal Randi¢ energy then 7' is obtained from a path P = vgv; ... v4 by
adding n; path(s) Ps to each vertex v;, fori = 2,3,4,...,d—2, where n; € {[”{dd_*é?’}, L"Q_dd_J%BJ}.

2. OPERATIONS

In this section, we introduce some operations which are useful to obtain the maximum
Randi¢ energy trees of order n and diameter d. The following operations m and E were intro-

duced in [p] and [11], respectively.

Operation 1 ([5]). Suppose that T is a tree, in addition, we assume that Ty is a subtree of
T, such that vi € V(T1), t > 3 and dp(v1) > 3. Define T" = T — {vivs,v104 ..., 0104} +

{vovs,v3v4 ..., 04104 }. The above-referred graphs are illustrated in Figure B

Operation 1

DRy S—
(i Vo V-1 Ut

FIGURE 1. Trees T and T” for Operation m

We now present Operations E, a and H as follows:

Operation 2. Suppose that T is a tree, in addition, we assume that T1 is a subtree of T.

Define T' =T — {us—1us} + {vius}. The above-referred trees are illustrated in Figure @
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FIGURE 2. Trees T and T” for Operation E

Operation 3. Suppose that T is a tree, in addition, we assume that 11 is a subtree of
T, such that vi € V(T1) and dr(vi) > 3. Define T' = T — {viu} + {vu}, dp(v1) > 2,
dp(v1) = dpr(v1) + 1. The above-referred trees are illustrated in Figure B

Operation 3

e s o O—O —_— «° s o—0—0
v vy U3 Vt—1 Ut v U2 v3 U1 U U

FIGURE 3. Trees T and T” for Operation E

Operation 4. Suppose that T is a tree and Ty is a subtree of T', such that vy € V(T1). Define
T =T — {u—1u } + {wsur }. The above-referred trees are illustrated in Figure .

FIGURE 4. Trees T and T’ for Operation @

Operation 5 ([L1]). Suppose that T is a tree and Ty is a subtree of T', with vy € V(11) such
that dp(v1) > 2,t > 7. Define T' =T —{vqvs ... v} +{vivavs ... v }. The above-referred trees

are illustrated in Figure B
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Operation 5
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FIGURE 5. Trees T and T” for Operation E

3. USEFUL LEMMAS

In this section, we show that if a tree 7" is obtained from a tree T' by Operations m, E, E, H
and B then Er(T) < Er(T”). The following two lemmas corresponding to Operations @ and
@ were presented in [p] and [11], respectively.

Lemma 3.1 ([p]). Let T and T’ be two trees satisfying the conditions of Operation B Then
Er(T) < ER(T).

We next present our lemmas for Operations E, E and @

Lemma 3.2. Let T and T’ be two trees satisfying the conditions of Operation @ Then
Er(T) = Er(T").

Proof. Let the R-polynomials of T"and T” be

3] L3]
Or(T,x) =Y (=DFO(R(T), k)a" 2, ¢p(T’,x) = > (~1)*b(R(T'), k)" ",
k=0 k=0

V|3

respectively, where b(R(T),0) = b(R(T"),0) = 1. Then we have

b(R(T’), 1) — b(R(T), 1) = RT/(us_gus_l) + Ry ('Ut—l'Ut) + RT/(vtus)

—Rr(us—2us—1) — Ry(us—1us) — Rr(vi—1vt)

1 1 1
T (wa)dr (us1) | drr(orn)dar (o) dar (o) da (us)
1 1 1
_dT(Us—Q)dT(Us—l) B dr(us—1)dr(us) - dr(ve—1)dr(vt)
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That is, b(R(T"),1) = b(R(T), 1).
For k =2,...,[5], we denote P| = viujus...us_2 and P, = vjva...v;_1, then we have
b(R(T'), k)= > Ry (ay)
aR €My (T1U(p1Up2))
1 1
+( + ) Z RT’(Oék—l)
A (ts—2)dr (us—) — drv(vi)dr(us) ap_1EMy_1(T1U(p1—us—2)Up2)
1 1
+( X ) > Ry (aj—s2)
d ’ S— d ’ S— d I d / S
r (u 2) T (u 1) r (vt) T (u ) o2 €Mp_o(T1U(p1—us—2)Up2)
1 1
+( + ) > Ry(ag-1)
drr(vi-1)dr-(ve) — dr(ve)dr (us) ap_1E€EM_1(T1Up1U(p2—vt—1))
+( 1 n 1
drr(us—2)dr (us—1)  dyr(ve—1)drr (ve)
1
PR — > Rer(a 1)
dr (Ut)dT, <us) o1 EMy_1(ThU(p1—us—2)U(p2—v¢—1))
H 1 y 1
drr(us—2)dp (us—1)  dpr(ve—1)dp (ve)
1 1
n X ) > Ry (o—2)
dT/(us_2)dT/(us_1) dT/(Ut)dT/(us) ap_2€My_o(ThU(p1—us—2)U(p2—vi—1))
= Z RT’(ak) + Z Ry (Oékfl)
aR €My, (T1U(p1Up2)) ap—1€EMp_1 (D{p1—us—2)Up2)
1 3
+7 3 Ryr(ak—2) + 5 > Ry (ou—1)
op—2€Mj_o(ThU(p1—us—2)Up2) o1 €My _1(ThUp1U(p2—vi—1))
5
+Z Z RT’(Oék—l)
ap_1EMy_1 (ThU(p1—us—2)U(p2—vi—1))
3
+§ Z Ry (ou—2).
ap—2€My_o(T1U(p1—us—2)U(p2—vi—1))
Similarly, we have
b(R(T), k)= > Ry (ay)
aR €M (T1U(p1Up2))
1 1
+( + ) > Rr(ak-1)
d S— d S— d S— d S
7 (ts—2)dr(us-1) 7 (ts-1)dr(us) ap—1EMp_1 (T1U(p1—us—2)Up2)
1 1
+( + ) > Ry (c—1)
dr(us—1)dr(ug d _1)d
T(u 1) T(u ) T(Ut 1) T(Ut) o1 EMp_1 (T1Up1U(p2—vi—1))
1 1
+ X Rr(ay—
(dT(Us—l)dT(Us) dT(Ut—1)dT(Ut)) Z r(cn-2)

ap—2€Mp_o(T1Up1U(p2—vi—1))
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1 1
+
dr(us—2)dr(us—1)  dr(us—1)dr(us)
1
+—> Z RT(Ctkfl)
dT(Ut—l)dT(Ut) a1 €M1 (T1U(p1—us—2)U(p2—vi—1))
1 y 1
dr(us—2)dr(us—1)  dr(vi—1)dr(ve)
1 1
+ x ) > Rr(ag-2)

dT(us_l)dT(us) dT(Ut—l)dT(Ut) op—2€EMp_o(T1U(p1—us—2)U(p2—vi—1))

+(

+(

3

= > Rr(ak) + 7 > Rr(ag-1)
ap €My (T1U(p1Up2)) ag—1E€EMp_1(T1U(p1—us—2)Up2)
1
+ Z RT(Oék_l) + 1 Z RT(ak_Q)
ap—1€EMp_1(T1Up1U(p1—vi—1)) ap—2€Mj_2(T1Up1U(p2—vi—1))
5 3
+ > Rr(og—1) + ¢ > Rr(ag—2).
ap_1E€EMy_1(T1U(p1—us—2)U(p2—vi—1)) ag_2€Mp_o(T1U(p1—us—2)U(p2—vt—1))
since
> Rr(ay) = > Ry (a),
aR €My (T1Up1Up2) aR €My (T1Up1Up2)
> Rr(og-1) = > Ry (ag-1),
ag—1€Mp_1(T1Up1U(p2—vi—1)) ap—1€Mj_1 (T1U(p1—us—2)Up2)
Z Rr(ag—2) = Z Ryr(ag—2),
ap_2E€Mj_2(T1Up1U(p2—vi—1)) ap—2€Mj_o(T1U(p1—us—2)Up2)
> Ry (ag-1) = > Ry (o-1),
ap—1€EMp_1(T1U(p1—us—2)Up2) ap_1€EMp_1(T1Up1U(p2—vi—1))
> Rr(ak-—1) = > Ry(ag-1),
ag_1EM_1(T1U(p1—us—2)U(p2—ve—1)) ag_1EMy_1(T1U(p1—us—2)U(p2—ve—1))
> Rr(ak—2) = > Ry (ag—2),
ag—2EMy_2(T1U(p1—us—2)U(p2—v¢—1)) ag—2E€EMy_2(T1U(p1—us—2)U(p2—vi—1))

it is easy to see that b(R(T"),k) — b(R(T), k) =0. This implies b(R(T"),1) = b(R(T),1). By
Theorem @, the lemma holds.

Lemma 3.3. Let T and T’ be two trees satisfying the conditions of Operation B Then
Er(T) < ER(T).

Proof. Let the R-polynomials of T" and T” be

3] L
¢R(T7$) - (_1)kb(R(T)7 k)xn_ka ¢R(T/7x)
k=0 k=0

V|3
[

(=D b(R(T"), k)a" ",
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respectively, where b(R(T),0) = b(R(T"),0) = 1. Then we have
b(R(T’), 1) =b(R(T),1) = Ry (viva) + Rypr(vi—1ve) + Ry (vpuw)

—RT(vlu) — RT(’Uva) — RT(Ut_lvt)
1 1 1
+ +
dT/(’Ul)dT/(UQ) dT/(Ut_l)dT/ (Ut) dT/ (Ut)dT/ (u)
1 1 1
dr(v))dr(uw)  dr(vi)dr(ve)  dr(ve—1)dr(ve)
SRS S S SR .
2dT/ ('Ul) 4 2 dT(’Ul) 2dT (Ul) 2
1 1 3

= -+ — > 0.
4 2dp(v1)  2dp(v1)

This implies b(R(T"),1) > b(R(T), 1).

For k=2,...,[%], we denote p = vav3...v;—1. Then
1
b(R(T"), k) = > Rolan)+— > Ry (ag-1)
drr (ve)dr (w)
a €M (T1Up) ap_1€Mj,_1(T1Up)
1
T Z Ryr(ag-1)
dp d
v (ve)dr () ag—1€EMp_1(T1U(p—v2))
1 1
+( + ) > Ry(ag—1)
dpr(vi—1)dpr (ve) — drr(ve)dg (u) s €M TAU(p—v11)
1 1
—+ + Rri(ag_
Grodr ) © dnedn (@) 2 (o)

ap—1EMp_1(T1U(p—{v2,vt-1})

= > Rp(o)+ % > Ryr(og-1)

ar €My (T1Up) ap_1€My_1(T1Up)
1 3
+§ Z RT/<CV]g71) + Z Z RT/(Oékfl)
ap_1€Mp_1(T1U(p—v2)) ag—1E€EMg_1(T1U(p—vi-1)
3
+Z Z RT/(Oék_l).

ap_1EMp_1 (T1U(p—{v2,vt-1})

Similarly, we have

WRID)E) = Y RT<ak>+W 3 Rr(ax1)

OckEMk(TlLJp) ag_1EMy_1(T1Up—vi_1)
1
TR S— 3 Re(ag_1)
dT(Ut_l)dT(vt) ap_1€Mp_1(T1U(p—{v2,vt-1})
1
= Z RT(ak) + 5 Z RT(Oékfl)
a €My (T1Up) ag—1EMy_1(T1Up—vi—1)
1
+§ Z Rr(ak-1).

ag—1E€EMy_1(T1U(p—{v2,v¢—1})
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Note that
Z RTl(ak) == Z RT(ak‘)a
ak €My (T1Up) ay €My (T1Up)
Z RT/(ak_l) = Z RT(ak—l)a
ap_1E€EMy_1 (T1U(p—ve—1) ap_1EM_1(T1U(p—vs—1)
Z Ry(ap_1) = Z Rr(ag—1),
ap—1EMp_1(T1U(p—{v2,vs—-1}) agp_1EM_1 (T1U(p—{va2,vt—1})
So, we get
1 1
b(R(T"), k) = b(R(T), k) = 3 Z Ry (ag—1) + 3 Z Ry (1)
ap_1€My_1(T1Up) ap_1€Mp_1(T1U(p—v2)
1
+ Z Ry (o—1)
ap_1E€EMp_1(T1U(p—vi—1))
1
+Z Z Ryo(og—1).

ap_1EMp_1(T1U(p—{v2,vt—1})

On the other hand, since

> Ryi(ag-1) > > Ry (ag-1),
ag_1€My_1(T1Up) ag—1EMy_1(T1U(p—{v2,vt-1})

> Ry(ag-1) > > Ryr(ag-1),
ap—1€Mp_1(T1U(p—v2)) ap_1EMp_1(T1U(p—{v2,v¢-1})

> Ry(ag-1) > > Ry (ag-1),
ag—1€EMg_1(T1U(p—vi-1) ap_1€Mp_1(T1U(p—{v2,vt—1})

we get
3
b(R(T"), k) = b(R(T), k) > 5 > Ry(ag-1) > 0.

ap—1€My_1 (T1U(p—{v2,vt-1})

that is, b(R(T"), k) > b(R(T), k). By Theorem [L.J, the lemma holds. 7

Lemma 3.4. Let T and T' be two trees satisfying the conditions of Operation . Then
Er(T) = Er(T").

Proof. Let the R-polynomials of T" and T” be
15] L

Or(T ) = ) (~1)"b(R(T), k)", ¢p(T" )
k=0 k=0

V|3
[

(=D b(R(T"), k)a" ",
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respectively, where b(R(T),0) = b(R(T"),0) = 1. Then we have
b(R(T/)’ 1) - b(R(T), 1) = RT’ (Ut72ut71) + RT’(wsflws) + RT’ (wsut)

—Rp(u—ous—1) — Rr(ug—1u) — Ry(ws—1ws)

1 1 1
— + +
dr(u—2)dp (ue—1)  dpr(ws—1)dp (wg) — dpr(ws)dyr (uyg)
1 1 1

Cdp(w—)dr(u—)  dp(w—1)dr(u)  dr(ws—1)dr(ws)
= 4+ --—-—: —0.
Thus the above eequality is equivalent to b(R(T”),1) = b(R(T),1).
For k=2,...,|2], we use p; = v1vgv3 and p2 = voujus ... Uus—2, P3 = V3WIW2 ... Ws_1. By the

2
same argument as lemma @, we can prove that b(R(T"), k) = b(R(T), k).

In [11], the following lemma is proved.

Lemma 3.5 ([L1]). Let T and T" be two trees satisfying the conditions of Operation B Then
Er(T) < ER(T').

4. MAIN RESULT

Let T'(ng,ns,...,ng—2) be the class of trees T such that T is obtained from a path P =
vov1 - ..vg by adding n; path(s) Ps to each vertex v;, for i = 2,3,4,...,d — 2, where n; €
{["?;idjé?’}, L"{ddjéﬂ}. Also, let T'(n2,ns,...,nq—2) be the class of trees T" such that 7" is
obtained from a tree T' € T'(na,ns, ..., nq—2) by adding a leaf to one of the path(s) ps.

Theorem 4.1. Let T € T} be a tree with mazximal Randi¢ energy, where 4 < d <n —1 and
n > 5. If n is odd and d is even or n is even and d is odd, then T € T(ng,ns3,...,ng_2). If

both n and d are odd or both n and d are even, then T € T'(ng,ng,...,ng_2).

Proof. Let T' € T} be a tree with maximal Randi¢ energy, where 4 < d <n —1 and n > 5.
We prove that if n is odd and d is even or n is even and d is odd, then there is a tree
T € T(ng,n3,...,ng_o) such that Eg(T) < Er(T’), and if both n and d are odd or both n
and d are even, then there is a tree T € T"(n2,ng, ..., ng—2) such that Er(T) < Er(T”). Let
P = vgvyvs ... vg be a diametrical path in 7. By Lemma @, there is a tree T € T} such that
Er(T) < Er(T1). By Lemmas @ and @, there is a tree Ty € T} such that Eg(T1) < Er(T3).
Now, if there is a pendant vertex on the tree T5, applying Operation E, then there is a tree
T3 € T} as show in Figure E such that Er(Th) < Er(T3).

Note that by Lemma @ we have even number of vertices in each path connected to the
diametrical path in Figure B Finally by Lemma @ there is a tree Ty € T(ng,ns,...,Ng_2) as
shown in Figure H such that Er(T3) < Er(Ty). O
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FIGURE 6. The tree T5.

) e o o Vd—4 Vd—3 Vd—2

U3 V4
U1 Vd—1
TN ] LN ] e o0 L ] o e 0 LN
Vo

Vg

FIGURE 7. The tree Ty.

As a consequence of Theorem @, we obtain the following which proves the validity of

Conjecture @ for particular classes of trees.

Corollary 4.2. Let T € T}}. Then

Er(SP) if d=4 and n=2p+1

Er(T) <
Er(DSPT) if d=5 and n=2(p+q+1).

5. CONCLUSION

In this paper, using Operations m, E, E, @ and a we have determined trees T' € T} with

maximal Randi¢ energy. In particular, we presented families of trees satisfying Conjecture @
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