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Abstract. The purpose of this paper is the study of non-weak commutative hypergroups

associated with hypergraphs. In this regards, we construct a hyperoperation on the set of

vertices of hypergraph and obtain some results and characterizations of them. Moreover,

according to this hyperoperation, we investigate conditions under which the hypergroupoid is

a join space hypergroup. Finally, we present an application to marketing social network.

1. Introduction

The concept of graph theory had been introduced by Euler in 1736. The graph theory is
an absolute useful tool to describe the connections between members of a discrete set and it
is applied in many different fields such as computer science, optimization, economics, number
theory, geometry, topology.
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The notion of graph should have been generalized to solve new and complex problems and
hence Berg had introduced the notion of hypergraph as generalization of graph around 1960.
Hypergraphs can connect a set of members through a hyperedge, while each edge in simple
graph can connect only two. This implies that simple graphs are a subset of hypergraphs.
Hence some properties of hypergraphs are generalization of simple graphs. The concept of
hypergraph has considered as a very useful piece of equipment to analyze and model complex
structures in different fields of computer science, optimization problems and discrete mathe-
matics. The presentation and properties regarding graphs and hypergraphs are available in
[1, 2].

Marty had taken first step in hyperstructures through presentation of hypergroup in 1934
[14]. Algebraic hyperstructures represent a proper generalization of classical algebraic struc-
tures. While in classical structure the composition of two items is one item, in hyperstructures
the composition of two items is a set. Hyperstructures have been taken into consideration by
many researchers. Some results in this area is available in [4, 6, 7, 17]. In 1990 Vougiouklis
introduced the notion of Hv-structures as a generalization of well-known algebraic hyperstruc-
tures such as semihypergroups, hypergroups, hyperrings and so on [16]. Hv-structures satisfy
the weak axioms where the non-empty intersection replaces the equality.

Analyzing the connections among graph theory, hypergraphs, binary relations and algebraic
structures has been considered in last centuries. Arthur Cayley had presented the definition
of Cayley graph in 1878 in order to encode the abstract structure of a group by using a set of
generators. It was first notable graph associated with a group as an algebraic structure and
meanwhile Cayley graphs have been developed in algebraic graph theory.

In last decades, connections between graph theory and hyperstructures have been noticed
by many researchers (see for instance [8, 9, 3, 11, 15, 12]). By considering Γ as a hyper-
graph, Corsini constructed and presented a hypergroupoid HΓ associated with Γ which was
commutative and called it hypergraph hypergroupoid [3]. Sufficient conditions were found to
make HΓ a hypergroup and it was proven that the hypergroup HΓ can be a join space un-
der specific conditions. Iranmanesh and Iradmusa constructed a hypergroup associated with
a hypergraph by defining a hyperoperation which was called PHO [12]. Farshi, Davvaz and
Mirvakili defined special ρ-relationship on the set of vertices in hypergraph and constructed a
ρ-hypergroup [9]. Further they constructed a degree hypergroupoid via defining an operation
on the set of degrees of vertices of a hypergraph which was a Hv-group. Sufficient conditions
were found to make degree hypergroupoid a degree hypergroup [8]. Nikkhah, Davvaz and Mir-
vakili constructed another degree hypergroupoid which was a Hv-group and they investigated
some properties to have a hypergroup [15]. Hamidi and Broumand considered the connections
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between hypergraphs and hypergroupoids and redefined the concept of hypergraph via the
concept of hypergroupoid [11].

Researches in this area is not limited to these cases, and other enthusiasts have conducted
some other researches. The point is, all hyperstructures were associated to graphs and hy-
pergraphs were commutative or weak commutative, while non-commutative structures are a
huge part of hyperstructures. Regarding all these, in this article we aim to present a hyper-
structure associated to a hypergraph which is not commutative. In this regard, we consider
a hypergraph and construct a hyperoperation on the set of its vertices. This hyperoperation
make a system on the set of vertices and we analyze its properties such as associativity, com-
mutativity, transposition axiom etc. Finally, we present a non-weak commutative Hv-group
associated with a specific hypergraph.

2. Preliminaries

In this section we recall all basic definitions and results we require of hyperstructures and
hypergraphs. Let H be a non-empty set and P∗(H) be the set of all non-empty subsets of
H and H ×H be the Cartesian product of H. In general, a hyperoperation ◦ on H is a map
from H × H to P∗(H). More exactly, for all x, y of H, we have x ◦ y ⊆ H. x ◦ y is called
the hyperproduct of x and y. If x ∈ H and A is a subset of H, then by x ◦ A we mean

x ◦ A =
∪
y∈A

x ◦ y. The hyperproduct of elements x1, . . . , xn of H is denoted by
n∏

i=1

xi and is

equal to x1 ◦
n∏

i=2

xi. An algebraic system (H, ◦) endowed with a hyperoperation is called a

hypergroupoid. A semihypergroup is a hypergroupoid (H, ◦) where ◦ is associative i.e. for all
x, y, z of H we have x ◦ (y ◦ z) = (x ◦ y) ◦ z. A semihypergroup (H, ◦) is called a hypergroup
whenever reproductive axiom is valid i.e., x ◦H = H ◦ x = H, for all x ∈ H. A hypergroup
is called commutative if x ◦ y = y ◦ x for all x, y ∈ H. A hypergroupoid is called an Hv-group
whenever reproductive axiom is valid and x ◦ (y ◦ z) ∩ (x ◦ y) ◦ z ̸= ∅. A join space is a
commutative hypergroup (H, ◦) such that the following condition holds for all a, b, c, d ∈ H:

a/b ∩ c/d ̸= ∅ =⇒ a ◦ d ∩ b ◦ c ̸= ∅,

where a/b = {x ∈ H | a ∈ x ◦ b}. But in non commutative hypergroups, hyperoperation has
given another inverse in addition to a/b: b\a = {x ∈ H | a ∈ b ◦ x}. So a non-commutative
join space or transposition hypergroup is a hypergroup where for all a, b, c, d ∈ H following
condition holds[13]:

b\a ∩ c/d ̸= ∅ =⇒ a ◦ d ∩ b ◦ c ̸= ∅.
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Figure 1. An example of hypergraph with 2 hyperedges.

A hypergraph is a pair Γ = (H,E = {Ei}ni=1), where H is a finite set of vertices and E =

{E1, . . . , Em} is a set of hyperedges which are non-empty subsets of H such that
m∪
i=1

Ei = H.

If for all 1 ≤ i ≤ m, |Ei| = 2 and if the hypergraph is simple, the hypergraph becomes an
ordinary simple graph and if there exist i such that Ei = 1, it is considered as a loop in
a graph. Figure 1 is an example of a hypergraph with 2 hyperedges E1 = {a1, a2, a3} and
E2 = {a2, a4, a5}.

Let Γ = (H,E) be a hypergraph and x, y ∈ H. A hyperedge sequence (E1, . . . , Ek) is called
a path of length k from x to y if the following conditions are satisfied:

(1) x ∈ E1 and y ∈ Ek,
(2) Ei ̸= Ej for i ̸= j,
(3) Ei ∩ Ei+1 ̸= ∅ for 1 ≤ i ≤ k − 1.

In a hypergraph, two vertices x and y are called connected if contains a path from x to y.
The vertices are called adjacent by a single hyperedge. We use x−−y to denote the adjacency
of vertices x and y. x−̸−y is also used whenever x and y are not adjacent to each other. A
hypergraph is said to be connected if every pair of vertices in the hypergraph is connected.
The degree of a vertex is the number of hyperedges which contains the vertex and is shown by
deg(x) (deg(x) = {Ei/x ∈ Ei}). For example in Figure 1, deg(a2) = 2 and deg(a1) = 1. The
length of shortest path between vertices x and y is denoted by d(x, y) and the diameter of Γ
is defined as follows:

diam(Γ) =

 max{d(x, y)}, if Γ is connected,

∞, otherwise.

In [3], Corsini considered a hypergraph Γ = (H, {Ei}i) and defined a hyperoperation ◦ on H

as follows:

∀x, y ∈ H2, x ◦ y = E(x) ∪ E(y),
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where E(x) =
∪

x∈Ei

Ei. The hypergroupoid HΓ = (H, ◦) is called a hypergraph hypergroupoid

or an h.g. hypergroupoid. An associative h.g hypergroup is called an h.g. hypergroup. Corsini
proved that:

Theorem 2.1. [3] The hypergroupoid HΓ has the following properties for each (x, y) ∈ H2:

(1) x ◦ y = x ◦ x ∪ y ◦ y,
(2) x ∈ x ◦ x,
(3) y ∈ x ◦ x ⇐⇒ x ∈ y ◦ y.

Also, he proved that:

Theorem 2.2. [3]

(1) A hypergroupoid (H, ◦) satisfying (1), (2) and (3) of Theorem 2.1 is a hypergroup if
and only if the following condition is valid:

∀(a, c) ∈ H2, c ◦ c ◦ c− c ◦ c ⊆ a ◦ a ◦ a.

(2) A hypergroup (H, ◦) satisfying (1), (2) and (3) of Theorem 2.1 is a join space.

3. Special hyperoperation

By using adjacency and paths in a graph, we can connect hypergraphs to hypergroups.

Definition 3.1. Let Γ = (H, {Ei}i) be a hypergraph. Define the hyperoperation ◦ on H as
follows:

∀(x, y) ∈ H2, x ◦ y = E(x) ∪ Ec(y),

where E(x) =
∪

x∈Ei

Ei and Ec(y) = H \ E(y).

Example 3.2. Consider the hypergraph in Figure 1 which is mentioned that E1 = {a1, a2, a3}
and E2 = {a2, a4, a5}, then Table 1 is obtained.

◦ a1 a2 a3 a4 a5

a1 H E1 H E1 E1

a2 H H H H H

a3 H E1 H E1 E1

a4 E2 E2 E2 H H

a5 E2 E2 E2 H H

Table 1. Cayley table.
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Notice that x ∈ E(x) for every x ∈ H. This point is an important issue specially about
simple, undirected and loopless graphs which we aim to study as an essential group of hyper-
graphs. Some of this graphs are provided in the next example.

Example 3.3. (1) Let Γ = Kn be a complete graph with n vertices, then (H, ◦) is a total
hypergroup, i.e., for every x, y ∈ H we have x ◦ y = H since E(x) = H. For instance
you can see K4 in Figure 2.

x

yz

t

Figure 2. K4.

(2) Let Γ = C4 be a cycle graph with 4 vertices, then for every x, y ∈ H, if x ̸= y then
x ◦ y = E(x) and x ◦ x = H.

(3) Let Γ = C5 be a cycle graph with 4 vertices, then for every x, y ∈ H,

x ◦ y =


H, x = y,

H \ {z}, x−−y−−z and x−̸−z,

E(x), otherwise.

(4) Let Γ = P3 and P3 : x−−y−−z, then for every x, y ∈ H, x ◦ y = E(x) if x ̸= y and
x ◦ x = H.

(5) Let Γ = P4 and P4 : x−−y−−z−−t, then Table 2 is obtained.

◦ x y z t

x H H \ {z} E(x) E(x)

y H H E(y) E(y)

z E(z) E(z) H H

t E(t) E(t) H \ {y} H

Table 2. Cayley table for P4.

Theorem 3.4. Let H be the vertex set of a hypergraph Γ, then the hypergroupoid H = (H, ◦)
has the following properties for each (x, y) ∈ H2:

(1) x ◦ x = H,
(2) x ∈ x ◦ y,
(3) y ∈ x ◦ y if and only if x−−y,
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(4) If x−̸−z and z ∈ x ◦ y then z−̸−y,
(5) x ◦ (x ◦ x) = (x ◦ x) ◦ x.

Proof. Omitted by obvious.

Theorem 3.5. H = (H, ◦) is a quasihypergroup.

Proof. It is easy to see that x ◦ H ⊆ H and H ◦ x ⊆ H, for every x ∈ H. By part (1) of
Theorem 3.4, we have H ⊆ x ◦ x ⊆ x ◦H ∪H ◦ x, where x ∈ H.

Theorem 3.6. H = (H, ◦) is an Hv-group.

Proof. Since E(x) ⊆ x ◦ (y ◦ z) ∩ (x ◦ y) ◦ z.

Lemma 3.7. If diam(Γ) ≤ 2 then x◦y∩y◦x ≠ ∅. Therefore H = (H, ◦) is a weak commutative
Hv-group.

Proof. By Theorem 3.6, H = (H, ◦) is an Hv-group. Now let x, y ∈ H, if x−−y then {x, y} ⊆
E(x) ∩ E(y) and so x ◦ y ∩ y ◦ x ̸= ∅. If x−̸−y, then there exists z ∈ H such that x−−z−−y,

hence z ∈ E(x) ∩ E(y) and therefore x ◦ y ∩ y ◦ x ̸= ∅.

Example 3.8. (1) Let Γ = Sn be a star graph, diam(Γ) = 2 and H = {a, v1, . . . , vn}
where a is universal vertex and n ≥ 2, then for every x, y ∈ H,

x ◦ y =



H, x = y,

H, x = a, y ̸= a,

{x, y}, x ̸= a, y = a,

H \ {y}, x ̸= a ̸= y, x ̸= y.

Therefore H = (H, ◦) is a weak commutative Hv-group.
(2) Let Γ = Wn be a wheel graph, diam(Γ) = 2 and H = {a, v1, . . . , vn} where a is

universal vertex and n ≥ 3, then for every x, y ∈ H,

x ◦ y =



H, x = y,

H, x = a, y ̸= a,

E(x), x ̸= a, y = a,

H \ {vi | vi ∈ E(y), vi−̸−x}, x ̸= a ̸= y, x ̸= y.

So H = (H, ◦) is a weak commutative Hv-group.

Lemma 3.9. diam(Γ) = 1 if and only if H = (H, ◦) is a commutative Hv-group.
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Proof. If diam(Γ) = 1, then for all x, y ∈ H we have x ◦ y = H and so H = (H, ◦) is a
commutative Hv-group. Conversely, let H = (H, ◦) be a commutative Hv-group and diam(Γ) >

1. Hence, there exist x, y, z ∈ H such that x−−y−−z and x−̸−z. Therefore z ∈ y◦x and z ̸∈ x◦y.
This means that (H, ◦) is not commutative which is contradiction.

Lemma 3.10. If diam(Γ) = 2 then (x ◦ y) ◦ z = H but in general x ◦ (y ◦ z) ̸= H.

Proof. Since diam(Γ) = 2 then E(E(x)) = ∪t∈E(x)E(t) = H and (x ◦ y) ◦ z = H for every
x, y, z ∈ H. But for example if Γ = C5 as is shown in Figure 3, then x◦(y◦z) = {z, t, x, r} ̸= H.

x

z

t

r

y

Figure 3. C5.

Theorem 3.11. diam(Γ) = 1 if and only if H = (H, ◦) is a commutative hypergroup.

Proof. If diam(Γ) = 1, then (x ◦ y) ◦ z = H and x ◦ (y ◦ z) = H for all x, y, z ∈ H and
commutativity is obvious by Lemma 3.9. Conversely when H = (H, ◦) is a commutative
hypergroup, it means ◦ is associative and commutative on H and it occurs when diam(Γ) = 1.

Theorem 3.12. Let H be the vertex set of a hypergraph Γ. Then the Hv-group H = (H, ◦)
has the following properties for all x, y, z ∈ H:

(1) x ◦ (x ◦ y) = H,
(2) (x ◦ y) ◦ x = H,
(3) If x−−y or x−̸−z, then x ◦ (y ◦ z) = H.

Proof. (1) Since E(x) ∈ x ◦ (x ◦ y) and Ec(x) ∈ x ◦ (x ◦ y).
(2) and (3) can be proved in the same way.
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Theorem 3.13. (1) If diam(Γ) = 2, then there exist x, y ∈ H such that x−̸−y and
x ◦ (y ◦ x) ̸= H while (x ◦ y) ◦ x = H.

(2) If diam(Γ) ≥ 3, then there exist x, y ∈ H such that (x◦y)◦y ̸= H while x◦(y◦y) = H.

Proof. (1) y /∈ E(x) and y ∈ y ◦ x, therefore Ec(y) ∈ x ◦ (y ◦ x). These mean y /∈ x ◦ (y ◦ x),
while (x ◦ y) ◦ x = H by Lemma 3.10.

(2) Since diam(Γ) ≥ 3, there exist x, y ∈ H such that d(x, y) ≥ 3. Since x ◦ y = H \ E(y),
z−̸−y for every z ∈ x ◦ y. Therefore y /∈ (x ◦ y) ◦ y.

As we know x ◦ x = H for every x ∈ H. Therefore we can define a relation on H:

Definition 3.14. [5] Let (H, ◦) be a hypergroup. Then define a relation β on H as follows:

(1) xβny ⇐⇒ ∃a1, a2, . . . , an ∈ H, such that {x, y} ∈
n∏

i=1

ai.

Let β =
∪

n βn. Let β∗ transitive closer of β.

In hypergroup β is an equivalence relation and so

Proposition 3.15. Let Γ = (H,E) and diam(Γ) = 1, then βΓ and β∗ coincide where β = β∗.

Proof. Since H = (H, ◦) is a hypergroup.

Example 3.16. Let Γ = Kn, diam(Γ) = 1 and H = (H, ◦) be a hypergroup for all n ∈ N. If
we define βΓ on H as it is defined in relation 1, then βΓ is an equivalence relation on H and
it coincides with β∗.

The equivalence of the β relation in Hv-groups is an open problem. Here we do not have a
hypergroup for diam(Γ) ≥ 2, but the relation βΓ is an equivalence relation.

Example 3.17. Let Γ = C5, diam(Γ) = 2 and H = (H, ◦) be an Hv-group. Then βΓ = H×H

because x ◦ x = H and so βΓ = β∗
Γ.

Proposition 3.18. Let Γ = (H,E) and diam(Γ) ≥ 2, then βΓ = β∗
Γ.

Proof. Since x◦x = H so for every a, b ∈ H we have aβΓb and so βΓ is an equivalence relation.
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Example 3.19. (1) Let Γ = C6 then for every x, y ∈ H,

x ◦ y =



H, x = y,

H \ {z}, x−−y−−z and x−̸−z,

H \ {y, t}, x−−z−−y−−t and x−̸−t,

E(x), d(x, y) = 3.

Then H = (H, ◦) is not weak commutative. When d(x, y) = 3 we have E(x)∩E(y) = ∅.
It means x ◦ y ∩ y ◦ x = ∅.

(2) Let Γ = C7 then (H, ◦) is a weak commutative Hv-group. diam(Γ) = 3 and |H| = 7,
so for every x, y ∈ H there exist z such that z /∈ E(x) and z /∈ E(y). Hence z ∈ x ◦ y
and z ∈ y ◦ x.

(3) Let Γ = Cn and diam(Γ) ≥ 4 then for every x, y ∈ H,

x ◦ y =



H, x = y,

H \ {z}, x−−y−−z and x−̸−z,

H \ {y, t}, x−−z−−y−−t and x−̸−t,

H \ E(y), d(x, y) ≥ 3.

H = (H, ◦) is a weak commutative Hv-group.

Theorem 3.20. If Γ = Cn, n ≥ 3 and n ̸= 6, then H = (H, ◦) is a weak commutative
Hv-group.

Proof. Let Γ = Cn and n ≤ 5, so diam(Γ) ≤ 2 and H = (H, ◦) is a weak commutative Hv-
group by Lemma 3.7. Now consider n ≥ 7, hence diam(Γ) ≥ 3, |H| ≥ 7 and there exist z ∈ H

for every x, y ∈ H such that z ∈ x ◦ y ∩ y ◦ x.
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Example 3.21. (1) Let Γ = Pn be a linear graph and H = {v1, . . . , vn}. We know
1 ≤ deg(vi) ≤ 2 and diam(Γ) = n− 1. For every vi, vj ∈ H,

vi ◦ vj =



H, vi = vj ,

H \ {vi+2}, j = i+ 1 (d(vi, vj) = 1),

H \ {vi+2, vi+3}, j = i+ 2 (d(vi, vj) = 2),

H \ E(vj), d(vi, vj) ≥ 3 (j ≥ i+ 3 or j ≤ i− 3),

H \ {vi−2}, j = i− 1 (d(vi, vj) = 1),

H \ {vi−2, vi−3}, j = i− 2 (d(vi, vj) = 2),

H, j = 1, i = 2, (d(vi, vj) = 1),

H \ {v1}, j = 1, i = 3, (d(vi, vj) = 2),

H, j = n, i = n− 1, (d(vi, vj) = 1),

H \ {vn}, j = n, i = n− 2, (d(vi, vj) = 2).

(2) Let Γ = Pn and n ≤ 3, then (H, ◦) is a weak commutative Hv-group.
(3) Let Γ = P7 and diam(Γ) = 6, then (H, ◦) is a weak commutative Hv-group.

Theorem 3.22. If Γ = Pn and 4 ≤ n ≤ 6, then H = (H, ◦) is not a weak commutative
Hv-group.

Proof. since 3 ≤ diam(Γ) ≤ 5, there exist x, y such that d(x, y) = 3, E(x) ∩ E(y) = ∅ and
x ◦ y = E(x), y ◦ x = E(y). Therefore x ◦ y ∩ y ◦ x = ∅.

Theorem 3.23. If Γ = Pn and n ≥ 7, then H = (H, ◦) is a weak commutative Hv-group.

Proof. It is easy to see when d(x, y) ≤ 2 for every x, y ∈ H, then x ◦ y ∩ y ◦ x ̸= ∅.
Now let d(x, y) ≥ 3, then vi ◦ vj = H \E(vj), vj ◦ vi = H \E(vi) and E(vi)∩E(vj) = ∅. Since
diam(Γ) ≥ 6, |H| ≥ 7, therefore there exist vk ∈ H such that vk /∈ E(vi) and vk /∈ E(vj).
That means vk ∈ vi ◦ vj and vk ∈ vj ◦ vi.

Definition 3.24. Let F = (V,E), |V | = n and n ≥ 2. Now consider a ∈ V as center of F
such that deg(a) = n− 1. F is called a−friendship graph.

Example 3.25. (1) Let Sn be a star graph with one central vertex and n − 1 vertices
which are adjacent to the central vertex. Sn is an a−friendship graph.

(2) Let Wn be a wheel graph which is formed by joining a vertex as center to all vertices
of a cycle. Wn ia an a−friendship graph.

(3) Let Fn be a friendship graph which is formed by connecting n copies of cycle graph C3

with a common vertex as center. Fn is an a−friendship graph.
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a1 u1
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v2 v3 v4

v5

v6v7

Figure 4. An example of (a1, a2)−friendship graph.

(4) Let Wd(k, n) be a windmill graph which is constructed for k ≥ 2 and n ≥ 2 by
joining n copies of the complete graph Kk at a shared universal vertex. Wd(k, n) is
an a−friendship graph.

Definition 3.26. Let G1 = (V1, E1) be a1−friendship graph and G2 = (V2, E2) be
a2−friendship graph. Now define the connected graph G = (V1 ∪ V2, E) such that for ev-
ery e = x1x2 of E which is an edge of G and x1, x2 ∈ V1 ∪ V2, one of the following occurs:

(1) e ∈ E1,
(2) e ∈ E2,
(3) x1 ∈ V1 \ {a1} and x2 ∈ V2 \ {a2}.

G is called (a1, a2)−friendship graph.

Example 3.27. (1) Figure 4 shows an (a1, a2)−friendship graph. Black edges should be
existed, green edge between u1 and v1 should be existed too, but it can be replaced
with one of other green edges. This means at least one edge between ui and vi should
be existed. Blue and other green edges are arbitrary and their existence depend on the
connections in the graph. The vertices and same edges can be more in same graphs.

(2) C6 which is a cycle graph with 6 vertices, is a (x, t)−friendship graph. It is shown in
Figure 5.

(3) P4: x−−y−−z−−t is an (x, t)−friendship graph.
(4) P5: x−−y−−z−−t−−r is an (x, t)−friendship graph or (y, r)−friendship graph.
(5) P6: x−−y−−z−−t−−r−−s is a (y, r)−friendship graph.
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x

y

z

t

s

r

Figure 5. C6 as an (x, t)−friendship graph.

Proposition 3.28. If G be an (a1, a2)−friendship graph, then 3 ≤ diam(G) ≤ 5.

Proof. d(a1, a2) = 3 according to the Definition 3.26 and moreover, G includes a1−friendship
graph and a2−friendship graph.

Lemma 3.29. Let G be an (a1, a2)−friendship graph and Γ = G, then for every x, y ∈ V ,

x ◦ y =



V, x = y,

V1, x = a1, y = a2,

V2, x = a2, y = a1,

V \ {vi | vi ∈ V2, vi−−y} , x = a1, a1 ̸= y ̸= a2,

V \ {vi | vi ∈ V1, vi−−y} , x = a2, a1 ̸= y ̸= a2,

E(x) ∪ V2, a1 ̸= x ̸= a2, y = a1,

E(x) ∪ V1, a1 ̸= x ̸= a2, y = a2,

V \ E(y), a1 ̸= x ̸= a2, a1 ̸= y ̸= a2.

Theorem 3.30. Let Γ = G be a connected hypergraph, G = (V,E) is an (a1, a2)−friendship
graph if and only if V = (V, ◦) is a non-weak commutative Hv-group.

Proof. Since d(a1, a2) = 3 and V1 ∩ V2 = ∅, while a1 ◦ a2 = V1 and a2 ◦ a1 = V2. Therefore
a1 ◦ a2 ∩ a2 ◦ a1 = ∅. Conversely let V = (V, ◦) be a non-weak commutative Hv−group and
suppose that G is not an (a1, a2)−friendship graph. This implies that for every x, y ∈ V such
that E(x) ∩ E(y) = ∅, there is t ∈ V such that t /∈ E(x) but t ∈ Ec(y) and likewise t /∈ E(y)

but t ∈ Ec(x). Hence t ∈ x ◦ y ∩ y ◦ x and it is contradiction.

Corollary 3.31. Let G = (V,E) be an (a1, a2)−friendship graph and G′ = (V ′, E′) be a
subgraph of G = (V,E) such that a1, a2 ∈ V ′ and d(a1, a2) = 3. If Γ = G′ then V′ = (V ′, ◦) is
a non-weak commutative Hv-group.
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y1 y2

v1

v2
v3 u5

u4 x
u3

u1

u2

Figure 6. An (X,Y )−friendship hypergraph.

Theorem 3.32. Let Γ = (H,E) be a connected hypergraph and diam(Γ) ≥ 6, then (H, ◦) is a
weak commutative Hv-group.

Proof. Since diam(Γ) ≥ 6, there is at least one path which its length is 6. This implies that
for every x, y ∈ H there exist t ∈ H such that t ∈ x ◦ y ∩ y ◦ x.

We can generalize the concept of friendship graphs to hypergraphs as follows:

Definition 3.33. Let Ω = (H,E) be a hypergraph with n hyperedges. Now suppose that
X ⊆ H such that for every x ∈ X and y ∈ H \ {x} there exist i such that x, y ∈ Ei. In other
words x is adjacent of y and x−−y. Ω is called an X−friendship hypergraph.
Now let Ω1 = (H1, {Ei}i) where 1 ≤ i ≤ n be an X−friendship hypergraph and Ω2 =

(H2, {Ej}j) where 1 ≤ j ≤ m be a Y−friendship hypergraph, now define connected hypergraph
Γ = (H1 ∪ H2, {Ek}k) such that for every Ek where t > m + n and 1 ≤ k ≤ t, one of the
following occurs:

(1) Ek ⊆ {Ei}i,
(2) Ek ⊆ {Ej}j ,
(3) for every z ∈ Ek, z ∈ (H1 \X) ∪ (H2 \ Y ).

Γ is called an (X,Y )−friendship hypergraph.

Example 3.34. Figure 6 is an (X,Y )−friendship hypergraph such that X = {x} and Y =

{y1, y2}. Further x−−ui for every ui where 1 ≤ i ≤ 5 and y1−−vi, y2−−vi for every vj where
1 ≤ j ≤ 3, also d(x, y1) = 3 and d(x, y2) = 3.

Theorem 3.35. Let Γ = (H,E) be a connected hypergraph, Γ is an (X,Y )−friendship hyper-
graph if and only if H = (H, ◦) is a non-weak commutative Hv-group.

Proof. Omitted by obvious.
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Being connected is an essential condition in 3.30, but the question is that what is com-
mutativity condition in disconnected graphs and hypergraphs. We are going to provide some
examples and answer this question.

Example 3.36. (1) Let Γ be an edgeless graph with 2 vertices x and y. Then x◦y∩y◦x =

∅. Therefore H = (H, ◦) is a non-weak commutative Hv-group where H = {x, y}.
(2) Let Γ = (H,E) be a disconnected graph with two connected components which is

shown below. It is clear that H = (H, ◦) is a non-weak commutative Hv-group.

ab

c

d e

(3) Let Γ = (H,E) be a disconnected graph with two connected components which is
shown below. Clearly H = (H, ◦) is a weak commutative Hv-group.

ab

d

c e

f

(4) Let Γ = (H,E) be a disconnected graph with three connected components which is
shown below. H = (H, ◦) is a weak commutative Hv-group.

ab

c

d e

f g

h

Theorem 3.37. Let Γ = (H,E) be a disconnected hypergraph with at least 3 connected com-
ponents, then H = (H, ◦) is a weak commutative Hv-group.

Proof. It is clear that (H, ◦) is not commutative, but about weak commutativity, consider 3

connected components for Γ. Ec(x) ∩ Ec(y) ̸= ∅ For every x, y ∈ H, so x ◦ y ∩ y ◦ x ̸= ∅.

Theorem 3.38. Let G = (H,E) and Γ = G be a disconnected hypergraph with 2 connected
components Gi = (Hi, Ei), i ∈ {1, 2}. H = (H, ◦) is a weak commutative Hv-group if and only
if there exist i ∈ {1, 2} such that if |Gi| = n, then deg(x) < n− 1 for every x ∈ Hi.



188 S. Mirvakili, M. Faraji, P. Ghiasvand and M. Hamidi

Proof. Let H = (H, ◦) be a weak commutative Hv-group and suppose that |G1| = n, |G2| = m

and there exist a1 ∈ H1, a2 ∈ H2 such that deg(a1) = n − 1 and deg(a2) = m − 1. Then
a1◦a2∩a2◦a1 = ∅ which is contradiction. Conversely suppose that |G1| = n and deg(x) < n−1

for every x ∈ H1. This implies that there exist z ∈ H1 such that x−̸−z and z ∈ Ec(x). On the
other hand z ∈ Ec(y) for every y ∈ H2. Therefore x ◦ y ∩ y ◦ x ̸= ∅. The proof is immediate
in other cases.

Corollary 3.39. Let G = (H,E) and Γ = G be a disconnected hypergraph with 2 connected
components Gi = (Hi, Ei), i ∈ {1, 2}. If Gi is an ai-friendship graph for every i ∈ {1, 2}, then
H = (H, ◦) is a non-weak commutative Hv-group.

Proof. Since a1 ◦ a2 ∩ a2 ◦ a1 = ∅.

Here we are going to discuss join space hypergroup and transposition condition.

Theorem 3.40. Let Γ = (H,E); diam(Γ) = 1 if and only if H = (H, ◦) is a join space
Hv-group.

Proof. By the Theorem 3.11 and since a ◦ b = H for every a, b ∈ H.

Theorem 3.41. Let Γ = (H,E) be a connected hypergraph.

(1) If diam(Γ) = 2 or diam(Γ) ≥ 6, then H = (H, ◦) is a transposition Hv-group.
(2) If 3 ≤ diam(Γ) ≤ 5, then the result of part (1) does not hold.

Proof. (1) Let diam(Γ) = 2, then for every a, b ∈ H, if a−−b the proof is immediate. But if
a−̸−b, it implies that there exist e such that a−−e−−b, so for every c, d ∈ H; e ∈ a ◦ d ∩ b ◦ c.
Obviously transposition condition holds. Now let diam(Γ) ≥ 6, then for every a, b, c, d ∈ H;
a ◦ d ∩ b ◦ c ̸= ∅. Clearly transposition condition satisfies.

(2) Let diam(Γ) = 3 and there exist a, b, c, d ∈ H such that a−−c−−d−−b. Therefore
a ◦ d ∩ b ◦ c = ∅ while b\a ∩ c/d ̸= ∅. Now let diam(Γ) = 4 and there exist a path like below
in the graph:

a b c

de

This is obvious that a ◦ e ∩ e ◦ b = ∅ while e\a ∩ b/e ̸= ∅. Finally let diam(Γ) = 5 and there
exist a path like below in the graph:
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a b c

def

Clearly a ◦ e ∩ e ◦ b = ∅ while e\a ∩ b/e ̸= ∅.

Theorem 3.42. Let G = (H,E) and Γ = G be a disconnected hypergraph with 2 connected
components Gi = (Hi, Ei), i ∈ {1, 2}. If Gi is an ai-friendship graph for every i ∈ {1, 2}, then
H = (H, ◦) is not a transposition Hv-group.

Proof. Consider Γ a hypergraph as is shown below:

ab

c

d e

It is easy to see that a ◦ e ∩ e ◦ b = ∅ while e\a ∩ b/e ̸= ∅.

Corollary 3.43. Let G = (H,E) and Γ = G be a disconnected hypergraph with 2 connected
components Gi = (Hi, Ei), i ∈ {1, 2} and there exist i such that |Gi| = n and deg(x) < n− 1

for every x ∈ Hi. Then H = (H, ◦) is a transposition Hv-group.

Proof. Since a ◦ d ∩ b ◦ c ̸= ∅ for every a, b, c, d ∈ H.

Corollary 3.44. Let G = (H,E) and Γ = G be a disconnected hypergraph with at least 3

connected components, then H = (H, ◦) is a transposition Hv-group.

Proof. Clearly a ◦ d ∩ b ◦ c ̸= ∅ for every a, b, c, d ∈ H.

4. An application to marketing in social networks

Social networks are being constructed whenever a set of related nodes are formed. These
nodes might be of the type of individuals, groups or organizations. Investigating the relation-
ship between nodes and studying the flow of knowledge and information among these nodes
are important issues about social networks.

One of the specialized fields related to social networks is Social Network Analysis or SNA
which is referred to sociology in last centuries. Sociologists are interested in using mathematical
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achievements in graph theory and network analysis to recognize and analyze the connections
in human societies. Here we aim to use theoretical concepts and give an example related to
marketing in social networks to show how we can use our results to analyze the connections
in network graphs.

Now consider one of the most popular social medias which is used in specific area(such as
a small town etc). Let G = (V,E) be a subgraph of main network graph of this social media,
V be the set of its users in that specific area and E includes all edges among the members
of V which shows the connection among them. Now let x, y ∈ V be two nodes belonging to
two small and same businesses with similar products or services and similar prices without
any competitive advantage. These two try to attract more clients in related same market.
There are some factors that can help us to use graph theory and hyperoperation defined on
the vertices and compare the possibility of their success. Let Γ = G, then:

A. Here E(x) denotes all contacts of x and they can be considered as potential clients.
|E(x)| can show us the number of people whom x attracts. E(x) ∩ E(y) can give us
more information.

B. Ec(x) denotes people who are not in the list of contacts of x, they should get attracted.
They can get attracted by y as well.

C. diam(Γ) can show us the expansion of graph, contacts and clients. Let for instance
diam(Γ) = 1, this means x−−y. Moreover |E(x)| = |E(y)| = |V | which shows x and y

are absolute competitors for each other. The more it increases, the less the burden of
competition annoys them.

D. d(x, y) is another factor that can help us to analyze connection between x and y. This
factor beside diameter of graph can help us to get some results about their connection.
Let for instance d(x, y) = 1, this can create situation similar to when diam(Γ) = 1.

Now let define hyperoperation as follows:

x ◦ y = E(x) ∪ Ec(y).

This hyperoperation can show the potential market for x. It includes two groups of people,
some who are connected to x and some who are not connected to y yet and x can attract them
to its own businesses.

Considering all the factors above, we can compare x◦y and y ◦x and get some results. Also
comparing |x ◦ y| and |y ◦ x| can be useful.

Example 4.1. (1) Let G be an (a1, a2)−friendship graph. Hence 3 ≤ diam(Γ) ≤ 5 and
x◦y∩y◦x = ∅, they do not have common potential clients. This can be ideal condition
for them. Comparing |x ◦ y| and |y ◦ x| in real examples can give us more information.
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(2) Let diam(Γ) ≥ 6. In this situation x ◦ y ∩ y ◦ x ≠ ∅, but the number of non shared
contacts gets more and more. It can help them to attract their own clients instead of
focusing on the competition.

Now all materials are provided to give an example of real world:

Example 4.2. Let G = (V,E) in Figure 7 be a graph which shows connections among finite set
of people in a specific social media such that V = {a, b, c, d, e, f, g, h}. In this graph the nodes

a

b

c

d

e f

g

h

Figure 7. The connections among contacts of a and b.

a and b belong to two confectioners that attract the majority of their customers in this social
media. It is easy to see that G is an (a, b)−friendship graph, d(a, b) = 3 and a ◦ b ∩ b ◦ a = ∅.
It means a and b do not have any common potential clients and there is no competition. But
we should consider that G is a graph with diameter 4 and circumstances may change soon.
Further, |E(a)| ≥ |E(b)|, hence |a ◦ b| ≥ |b ◦ a| which means a has been more successful so far.
Now consider the graph G is changed as is shown in Figure 8. In this case a ◦ b ∩ b ◦ a = {d}.
We can consider them business competitors now.

a

b

c

d

e f

g

h

Figure 8. The graph in new situation.
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