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ON THE REE GROUPS 2G2(q) CHARACTERIZED BY A SIZE OF A
CONJUGACY CLASS

BEHNAM EBRAHIMZADEH∗ AND AHMAD KHAKSARI

Abstract. One of the important problem in finite groups theory is group characterization by

specific property. Properties, such as element order, the set of element with the same order,

etc. In this paper, we prove that Ree group 2G2(q), where q±
√
3q+1 is a prime number can

be uniquely determined by its order and one conjugacy class size.

1. Introduction

One of the important problems in finite group theory is a characterization of a group by spe-
cific property. Properties often involve element orders, the set of elements with the same order,
the largest elements order, their graphs and etc. Next, we say the group G is characterized by
property M if every group fulfilling M is isomorphic to G.

Let G be a finite group, the set of all conjugacy class sizes of a group G will be denoted by
N(G). Also, we denote the conjugacy class of size of prime number p by mp(G). For every
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integer n denote by π(n) the set of all prime divisors of n. The prime graph π(G) of G is
constructed upon the vertex set π(|G|) in such a way that two distinct primes p and q are
joined by an edge if and only if G has an element of order pq.

Let t(G) be the number of connected components of π(G). These components will be
denoted by π1, π2,...,πt(G). If G is of even order, then π1 is chosen to be the component in which
2 is a vertex. We denote m1, m2,...,mt(G) to be the integers such that |G| = m1, ...,mt(G) and
π(mi) is the vertex set of πi. If mi is odd, call πi an odd order component [12]. The starting
point for our discussion is from a conjecture of J. G. Thompson, which is Problem 12.38 in
the Kourovka notebook [24] is as follows:
Thompson’s conjecture. Let G be a group with trivial center. If M is a non-abelian simple
group satisfying N(G) = N(M), then G ∼= M. Next, for example the authors in([2, 7, 4, 5, 6,
9, 10, 14, 18, 19]), proved that the sporadic simple groups, Alt10, PSL(4, 4) and PSL(2, p),
PSL(n, 2), 2Dn(2),2Dn+1(2), Cn(2), Altn where n ∈ {p, p + 1, p + 2} and Symp where p is
a prime number,the projective special linear groups PSL(5, q) where p = q4+q3+q2+q+1

(5,q−1) be a
prime number, where q is a prime power and the projective special unitary groups PSU(5, q),
where p = q4−q3+q2−q+1

(5,q+1) be a prime number are characterizable by using the order of the group
and the conjugacy class of size. The group G is called a 2-Frobenius group if there is a normal
series 1⊴H ⊴K ⊴G such that G/H and K are Frobenius groups with kernels K/H and H

respectively. In this paper, we prove that Ree groups 2G2(q), where q ±
√
3q + 1 is a prime

number can be uniquely determined by its order and one conjugacy class of size. In fact, we
prove the following main theorem.
Main Theorem. Let G be a group such that |G| = |2G2(q)|. If p = q ±

√
3q + 1 is a prime,

then G ∼= 2G2(q) if and only if G has a conjugacy class of size mp(G) = |2G2(q)|
p .

2. Preliminaries

Lemma 2.1. [17] Let G be a Frobenius group of even order with kernel K and complement
H. Then

(1) t(G) = 2, π(H) and π(K) are vertex sets of the connected components of Γ(G),
(2) |H| divides |K| − 1,
(3) K is nilpotent.

Lemma 2.2. [8] Let G be a 2-Frobenius group of even order. Then

(1) t(G) = 2, π(H) ∪ π(G/K) = π1 and π(K/H) = π2,
(2) G/K and K/H are cyclic groups satisfying |G/K| divides |Aut(K/H)|.

Lemma 2.3. [29] Let G be a finite group with t(G) ≥ 2. Then one of the following statements
holds:
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(1) G is a Frobenius group,
(2) G is a 2-Frobenius group,
(3) G has a normal series 1⊴H ⊴K ⊴G such that H and G/K are π1-groups, K/H is

a non-abelian simple group, H is a nilpotent group and |G/K| divides |Out(K/H)|.

Lemma 2.4. [27] Let G be a non-abelian simple group such that (5, |G|) = 1. Then G is
isomorphic to one of the following groups:

(1) An(q
′), n = 1, 2, q′ ≡ ±2(mod 5),

(2) G2(q
′), q′ ≡ ±2(mod 5),

(3) 2A2(q
′), q′ ≡ ±2(mod 5),

(4) 3D4(q
′),q′ ≡ ±2(mod 5),

(5) 2G2(q
′), q′ = 32m+1, m ≥ 1.

Lemma 2.5. [30] Let q, k, l be natural numbers. Then

(1) (qk − 1, ql − 1) = q(k,l) − 1.

(2) (qk + 1, ql + 1) =

q(k,l) + 1 if both k
(k,l) and l

(k,l) are odd,

(2, q + 1) otherwise.

(3) (qk − 1, ql + 1) =

q(k,l) + 1 if k
(k,l) is even and l

(k,l) is odd,

(2, q + 1) otherwise.

In particular, for every q ≥ 2 and k ≥ 1 the inequality (qk − 1, qk + 1) ≤ 2 holds.

Notation: We note that Xi the set of all cyclic subgroups of G order ti where t1 = q−1
2 ,

t2 =
q+1
4 , t3 = q −

√
3q + 1, t4 = q +

√
3q + 1, t5 = q3.

Lemma 2.6. [25] Assume Xi be as above and Bi ∈ Xi for 1 ≤ i ≤ 5 and x ∈ G is non-trivial.
Then

(1) if x ∈ B1 then |xG| = q3(q3 + 1),
(2) if x ∈ B2 then |xG| = q3(q2 − q + 1)(q − 1),
(3) if x ∈ B3 then |xG| = q3(q + 1)(q +

√
3q + 1)(q − 1),

(4) if x ∈ B4 then |xG| = q3(q + 1)(q −
√
3q + 1)(q − 1),

(5) if x ∈ B5 we have if x ∈ Z(B5) then |xG| = (q3 + 1)(q − 1).

3. Proof of the Main Theorem

In this section, we prove the main theorem in the following lemmas. For this purpose,
we denote the Ree groups 2G2(q) and prime number q ±

√
3q + 1 by R and p respectively.

Furthermore by [28], 2G2(q) has conjugacy class of size mp(G) = |2G2(q)|
p . First we denote

that if G ∼= 2G2(q), then mp(G) = mp(
2G2(q)) and |G| = |2G2(q)|. Now, assume mp(G) =
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mp(
2G2(q)) and |G| = |2G2(q)|. The aim is to prove G ∼= 2G2(q). By the assumption on q,

there exists an element α of order p in G such that CG(α) =< α > and CG(α) is a sylow
p-subgroup of G. By the sylow’s theorem, we have that CG(β) =< β > for any element β

in G of order p. In the following we prove p is an isolated vertex in Γ(G). We note that
|2G2(q)| = q3(q3 + 1)(q − 1) and mp(

2G2(q)) =
|2G2(q)|

p .

Lemma 3.1. p is an isolated vertex in Γ(G).

Proof. We shall prove that p is an isolated vertex of Γ(G). Suppose to contrary. Then there
is t ∈ π(G) − {p} such that tp ∈ πe(G). So tp ≥ 2p = 2(q ±

√
3q + 1) > q +

√
3q + 1, thus

k(G) > q +
√
3q + 1. As a result t(G) ≥ 2.

So by lemma 2.3 we have the following lemmas.

Lemma 3.2. The group G is neither a Frobenius group and a 2-Frobenius group.

Proof. (You can see lemma 3.2 of [13])

Lemma 3.3. The group G is isomorphic to the group R.

Proof. By lemma 3.1, p is an isolated vertex of Γ(G). Thus t(G) > 1 and G satisfies one of the
cases of lemma 2.3. At the moment by lemma 3.2 and lemma 2.2 implies that G is neither a
Frobenius group and a 2-Frobenius group. Thus only the case (c) of lemma 2.3 occure. So G

has a normal series 1⊴H⊴K⊴G such that H and G/K are π1-groups, K/H is a non-abelian
simple group. Since p is an isolated vertex of Γ(G), we have p | |K/H|. On the other hand,
5 ∤ |G|, so K/H is isomorphic one of the groups lemma 2.4.
Step 1. Suppose that K/H ∼= A1(q

′), q′ ≡ ±2(mod 5). On the other hand, by[29],
π(A1(q

′)) = q′ ± 1 or q
′±1
2 . We know that |A1(q

′)| divide |G|, q′(q′2 − 1) | q3(q3 + 1)(q − 1).
Now, we consider p = q′± 1, so q±

√
3q+1 = q′± 1. As aresult 32m+1± 3m+1+1 = q′± 1. So

we deduce q′ = 32m+1± 3m+1, and also q′ = 32m+1± 3m+1+2. Since that |A1(q
′)| ∤ |G|, where

this is a contradiction. Now, if p = q′±1
2 , then q ±

√
3q + 1 = q′±1

2 . Since that q′ = p′m, where
this is a contradiction. If K/H ̸∼= 2A2(q

′) and K/H ̸∼= A2(q
′), then we have a contradiction,

similarily.
Step 2. Suppose that K/H ∼= G2(q

′) where q′ ≡ ±2(mod 5). On the other hand, by [29],
π(G2(q

′) = q′2±q′+1. We know that |G2(q
′)| divide |G|, so q′6(q′6−1)(q′2−1) | q3(q3+1)(q−1).

Now, we consider p = q′2 ± q′ + 1, so q ±
√
3q + 1 = q′2 ± q′ + 1. It follows that

32m+1 ± 3m+1 + 1 = q′2 ± q′ + 1, so 3m+1(3m + 1) = q′(q′ + 1). Since that (3m+1, 3m + 1) = 1,
so q′ = 3m + 1 and q′ + 1 = 3m+1, where this is a contradiction.
Step 3. Suppose that K/H ∼= 3D4(q

′), q ≡ ±2(mod 5). On the other hand, by [29],



Alg. Struc. Appl. Vol. 11 No. 2 (2024) 165-171. 169

π(3D4(q
′)) = q′4 − q′2 + 1. We know that |3D4(q

′)| divided |G|, so q′12(q′8 + q′4 + 1)(q′6 −
1)(q′2− 1) | q3(q3+1)(q− 1). Now, we consider p = q′4− q′2+1, so q±

√
3q+1 = q′4− q′2+1.

It follows that 32m+1 ± 3m+1 + 1 = q′4 − q′2 + 1, thus 3m+1(3m ± 1) = q′2(q′2 − 1). Since that
(3m+1, 3m ± 1) = 1 so 3m+1 = q′2 and 3m + 1 = q′2 − 1. Since that |3D4(q

′)| ∤ |G|, where this
is a contradiction.
Hence, K/H ∼= 2G2(q

′). Now since that |K/H| = |R| = |G| and also p ∈ π(K/H) so p = p′.
So q±

√
3q+1 = q′ ±

√
3q′ +1. Thus q = q′. On the other hand, 1⊴H ⊴K ⊴G, thus H = 1,

G = K ∼= R.
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