Algebraic Structures and Their Applications

Algebraic Structures and Their Applications Vol． 11 No． 2 （2024）pp 115－130．

Research Paper

MODULAR GROUP ALGEBRA WITH UPPER LIE NILPOTENCY INDEX $11 p-9$

KULDEEP SINGH，HARISH CHANDRA＊AND SUCHI BHATT

Abstract

Let $K G$ be the modular group algebra of a group G over a field K of character－ istic $p>0$ ．Recently，we have seen the classification of group algebras $K G$ with upper Lie nilpotency index $t^{L}(K G)$ up to $10 p-8$ ．In this paper，our aim is to classify the modular group algebra $K G$ with upper Lie nilpotency index $11 p-9$ ，for $G^{\prime}=\gamma_{2}(G)$ as an abelian group．

1．Introduction

Let $K G$ be the group algebra of a group G over a field K of characteristic $p>0$ ．The group algebra $K G$ can be treated as a Lie algebra，by defining the Lie commutator as $[x, y]=x y-y x, \forall x, y \in K G$ ．By induction，we let $\left[x_{1}, x_{2}, \ldots x_{n}\right]=\left[\left[x_{1}, x_{2}, \ldots x_{n-1}\right], x_{n}\right]$ ， where $x_{1}, x_{2}, \ldots x_{n} \in K G$ ．The $n^{\text {th }}$ lower Lie power $K G^{[n]}$ of $K G$ is the associated ideal gen－ erated by the Lie commutators $\left[x_{1}, x_{2}, \ldots x_{n}\right]$ ，where $K G^{[1]}=K G$ ．Using induction，the $n^{\text {th }}$

DOI：10．22034／as．2023．17039．1440
MSC（2010）：Primary：16S34，17B30．
Keywords：Dimension subgroups，Group algebras，Lie nilpotency index．
Received： 25 July 2021，Accepted： 25 May 2023.
＊Corresponding author
upper Lie power $K G^{(n)}$ of $K G$ is the associated ideal generated by all the Lie commutators $[x, y]$, where $x \in K G^{(n-1)}, y \in K G$ and $K G^{(1)}=K G$. Now $K G$ called upper Lie nilpotent (lower Lie nilpotent) if there exists n such that $K G^{(n)}=0\left(K G^{[n]}=0\right)$. The least positive integer n such that $K G^{(n)}=0$ and $K G^{[n]}=0$ is said to be upper Lie nilpotency index and lower Lie nilpotency index of $K G$, denoted by $t^{L}(K G)$ and $t_{L}(K G)$ respectively. Other basic notations and definitions can be seen in [1]. Shalev [14] initiated the study of group algebras with maximum Lie nilpotency index. This problem was completed in [5]. Some interesting results on the next smaller Lie nilpotency index can be easily seen in [3, 4, 5, 6]. In [2], Bovdi and Kurdics discussed the upper and lower Lie nilpotency index of a modular group algebra of metabelian group G and determine the nilpotency class of the group of units. Sharma, Srivastava and Bist [11, 12] proved a classical result which states that if G is a non-abelian nilpotent group with $\left|G^{\prime}\right|=p^{n}$, then $p+1 \leq t_{L}(K G) \leq t^{L}(K G) \leq p^{n}+1$. Thus we can say that $p+1$ is the minimal and $p^{n}+1$ is the maximal Lie nilpotency index. Therefore, it is clear that $2 p, 3 p-1$ and $4 p-2$ are the next possible minimal Lie nilpotency indices. Shalev initiated the classification of Lie nilpotent group algebras whose Lie nilpotency indices are $t_{L}(K G)=2 p$ and $3 p-1$, for $p \geq 5$ and obtained certain interesting results (see [13]). Sahai [7] classified the group algebras $K G$ which are Lie nilpotent having Lie nilpotency indices $2 p$, $3 p-1$ and $4 p-2$, for all $p>0$. A complete description of the Lie nilpotent group algebras with next possible Lie nilpotency indices $5 p-3,6 p-4,7 p-5,8 p-6$ and $9 p-7$ is given in [8, 9, 10]. Recently, Bhatt and Chandra in [1], classified the group algebra $K G$ which are Lie nilpotent with upper Lie nilpotency index $10 p-8$.

In this paper, we have characterized the group algebras with upper Lie nilpotency index $11 p-9$, with G^{\prime} as an abelian group.

2. Preliminaries

We have used the following Lemma in the characterization of group algebra with upper Lie nilpotency index $11 p-9$ for computations of $d_{(m)}$'s in each case with $G^{\prime}=\gamma_{2}(G)$.

Lemma 2.1. (14]) Let K be a field with Char $K=p>0$ and G be a nilpotent group such that $\left|G^{\prime}\right|=p^{n}$ and $\exp \left(G^{\prime}\right)=p^{l}$.
(1) If $d_{(l+1)}=0$ for some $l<p m$, then $d_{(p m+1)} \leq d_{(m+1)}$.
(2) If $d_{(m+1)}=0$, then $d_{(s+1)}=0$ for all $s \geq m$ with $\vartheta_{p^{\prime}}(s) \geq \vartheta_{p^{\prime}}(m)$, where $\vartheta_{p^{\prime}}(x)$ is the maximal divisor of x which is relatively prime to p.

3. Main Result

Theorem 3.1. Let G be a group and K be a field of characteristics $p>0$ such that $K G$ is Lie nilpotent. Then $t^{L}(K G)=11 p-9$ if and only if one of the following condition satisfied:
(1) $G^{\prime} \cong\left(C_{7}\right)^{5}, \gamma_{3}(G)=1$;
(2) (a) $G^{\prime} \cong C_{5^{2}} \times\left(C_{5}\right)^{2}, G^{\prime 5} \subseteq \gamma_{3}(G) \cong\left(C_{5}\right)^{3}, \gamma_{4}(G) \cong\left(C_{5}\right)^{2}, \gamma_{5}(G) \cong C_{5}, \gamma_{6}(G)=1$;
(b) $G^{\prime} \cong\left(C_{5}\right)^{4},\left|G^{\prime 5} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{5}\right)^{3}, \gamma_{4}(G) \cong C_{5} \times C_{5}, \gamma_{5}(G) \cong C_{5}$, $\gamma_{6}(G)=1 ;$
(3) (a) $G^{\prime} \cong C_{25} \times\left(C_{5}\right)^{3},\left|G^{\prime 5} \cap \gamma_{3}(G)\right|=1, \gamma_{4}(G) \cong C_{5}, \gamma_{3}(G) \cong\left(C_{5}\right)^{2}, \gamma_{5}(G)=1$ or $\left|G^{\prime 5} \cap \gamma_{3}(G)\right|=5, \gamma_{4}(G) \cong C_{5}, \gamma_{3}(G) \cong\left(C_{5}\right)^{3}, \gamma_{5}(G)=1$;
(b) $G^{\prime} \cong\left(C_{5}\right)^{5},\left|G^{\prime 5} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{5}\right)^{3}, \gamma_{4}(G) \cong C_{5}, \gamma_{5}(G)=1$;
(4) (a) $G^{\prime} \cong\left(C_{p}\right)^{5},\left|G^{\prime p} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{p}\right)^{3}, \gamma_{4}(G) \cong\left(C_{p}\right)^{2}, \gamma_{5}(G) \cong C_{p}$, $\gamma_{6}(G)=1$, for $p \geq 5 ;$
(b) $G^{\prime} \cong C_{9} \times\left(C_{3}\right)^{3}, G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{3}, \gamma_{4}(G) \cong\left(C_{3}\right)^{2}, \gamma_{5}(G) \cong C_{3}, \gamma_{6}(G)=1$;
(c) $G^{\prime} \cong\left(C_{3}\right)^{5},\left|G^{\prime 3} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{3}\right)^{3}, \gamma_{4}(G) \cong\left(C_{3}\right)^{2}, \gamma_{5}(G) \cong C_{3}$, $\gamma_{6}(G)=1 ;$
(5) (a) $G^{\prime} \cong C_{8} \times C_{2} \times C_{2}, G^{2} \subseteq \gamma_{3}(G) \cong C_{4} \times C_{2}, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}, \gamma_{5}(G) \cong C_{2}, \gamma_{6}(G)=1$;
(b) $G^{\prime} \cong C_{4} \times C_{4} \times C_{2}, G^{\prime 2} \subseteq \gamma_{3}(G) \cong C_{4} \times C_{2}, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}, \gamma_{5}(G) \cong C_{2}, \gamma_{6}(G)=1$;
(c) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{3}, G^{2} \subseteq \gamma_{3}(G) \cong C_{4} \times C_{2}, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}, \gamma_{5}(G) \cong C_{2}, \gamma_{6}(G)=1$;
(d) $G^{\prime} \cong\left(C_{2}\right)^{5},\left|G^{2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong C_{4} \times C_{2}, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}, \gamma_{5}(G) \cong C_{2}$, $\gamma_{6}(G)=1 ;$
(6) (a) $G^{\prime} \cong C_{8} \times\left(C_{2}\right)^{4}, G^{\prime 2} \subseteq \gamma_{3}(G) \cong C_{4}, \gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1$;
(b) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{5}, G^{2} \subseteq \gamma_{3}(G) \cong C_{4}, \gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1$;
(c) $G^{\prime} \cong\left(C_{2}\right)^{7},\left|G^{2} \cap \gamma_{3}(G)\right|=1, \gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1$;
(d) $G^{\prime} \cong C_{4} \times C_{4} \times\left(C_{2}\right)^{3}, G^{2} \subseteq \gamma_{3}(G) \cong C_{4}, \gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1$;
(7) (a) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{4},\left|\gamma_{3}(G)\right|=2^{3},\left|G^{2} \cap \gamma_{3}(G)\right|=2, \gamma_{3}(G) \cong C_{4} \times C_{2}, \gamma_{4}(G) \cong C_{2}$, $\gamma_{5}(G)=1$ or $\left|\gamma_{3}(G)\right|=2^{2},\left|G^{2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong C_{4}, \gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1$;
(b) $G^{\prime} \cong C_{8} \times\left(C_{2}\right)^{3},\left|G^{2} \cap \gamma_{3}(G)\right|=4, \gamma_{3}(G) \cong C_{4} \times C_{2}, \gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1$ or $\left|\gamma_{3}(G)\right|=2^{2},\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2, \gamma_{3}(G) \cong C_{4}, \gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1$;
(c) $G^{\prime} \cong C_{4} \times C_{4} \times C_{2} \times C_{2},\left|\gamma_{3}(G)\right|=2^{3},\left|G^{2} \cap \gamma_{3}(G)\right|=4, \gamma_{3}(G) \cong C_{4} \times C_{2}$, $\gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1$ or $\left|\gamma_{3}(G)\right|=2^{2},\left|G^{2} \cap \gamma_{3}(G)\right|=2, \gamma_{3}(G) \cong C_{4}, \gamma_{4}(G) \cong C_{2}$, $\gamma_{5}(G)=1$;
(d) $G^{\prime} \cong\left(C_{2}\right)^{6},\left|\gamma_{3}(G)\right|=2^{3},\left|G^{2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong C_{4} \times C_{2}, \gamma_{4}(G) \cong C_{2}$, $\gamma_{5}(G)=1 ;$
(8) (a) $G^{\prime} \cong C_{9} \times C_{9} \times C_{3},\left|G^{\prime 3} \cap \gamma_{3}(G)\right|=3, \gamma_{3}(G) \cong C_{3} \times C_{3}, \gamma_{4}(G) \cong C_{3}, \gamma_{5}(G)=1$ or $G^{\prime 3} \subseteq \gamma_{3}(G) \cong C_{3}^{3}, \gamma_{4}(G) \cong C_{3}, \gamma_{5}(G)=1$;
(b) $G^{\prime} \cong C_{9} \times C_{9} \times C_{3}, G^{\prime 3} \subseteq \gamma_{3}(G) \cong C_{3}^{3}, \gamma_{4}(G) \cong C_{3}, \gamma_{5}(G)=1$;
(c) $G^{\prime} \cong C_{9} \times\left(C_{3}\right)^{3},\left|G^{\prime 3} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong C_{3} \times C_{3}, \gamma_{4}(G) \cong C_{3}, \gamma_{5}(G)=1$, $G^{\prime 3} \subseteq \gamma_{3}(G) \cong C_{3}^{3}, \gamma_{4}(G) \cong C_{3}, \gamma_{5}(G)=1 ;$
(d) $G^{\prime} \cong\left(C_{3}\right)^{5}, G^{\prime 3} \subseteq \gamma_{3}(G) \cong C_{3}^{3}, \gamma_{4}(G) \cong C_{3} \gamma_{5}(G)=1$;
(9) $G^{\prime} \cong\left(C_{p}\right)^{5},\left|G^{\prime p} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{p}\right)^{4}, \gamma_{4}(G) \cong\left(C_{p}\right)^{2}, \gamma_{5}(G)=1$, for $p \geq 5$;
(10) (a) $G^{\prime} \cong C_{9} \times C_{9} \times C_{3},\left|G^{\prime 3} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong C_{3} \times C_{3}, \gamma_{4}(G) \cong C_{3}, \gamma_{5}(G)=1$ or $\left|G^{\prime 3} \cap \gamma_{3}(G)\right|=3$, $\gamma_{3}(G) \cong\left(C_{3}\right)^{3}, \gamma_{4}(G) \cong C_{3}, \gamma_{5}(G)=1$ or $G^{\prime 3} \subseteq \gamma_{3}(G) \cong C_{3}^{4}$, $\gamma_{4}(G) \cong C_{3}, \gamma_{5}(G)=1 ;$
(b) $G^{\prime} \cong C_{9} \times C_{9} \times C_{3},\left|G^{\prime 3} \cap \gamma_{3}(G)\right|=3, \gamma_{3}(G) \cong C_{3}^{3}, \gamma_{4}(G) \cong\left(C_{3}\right)^{2}, \gamma_{5}(G)=1$ or $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{4}, \gamma_{4}(G) \cong\left(C_{3}\right)^{2}, \gamma_{5}(G)=1$;
(c) $G^{\prime} \cong C_{9} \times\left(C_{3}\right)^{3},\left|G^{\prime 3} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{3}\right)^{3}, \gamma_{4}(G) \cong C_{3}, \gamma_{5}(G)=1$ or $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{4}, \gamma_{4}(G) \cong C_{3}, \gamma_{5}(G)=1$;
(d) $G^{\prime} \cong C_{9} \times\left(C_{3}\right)^{3},\left|G^{\prime 3} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{3}\right)^{3}, \gamma_{4}(G) \cong\left(C_{3}\right)^{2}, \gamma_{5}(G)=1$ or $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{4}, \gamma_{4}(G) \cong\left(C_{3}\right)^{2}, \gamma_{5}(G)=1$;
(e) $G^{\prime} \cong\left(C_{3}\right)^{5}, G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{4}, \gamma_{4}(G) \cong C_{3}, \gamma_{5}(G)=1$;
(f) $G^{\prime} \cong\left(C_{3}\right)^{5}, G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{4}, \gamma_{4}(G) \cong\left(C_{3}\right)^{2}, \gamma_{5}(G)=1$;
(11) (a) $G^{\prime} \cong C_{4} \times C_{4} \times C_{2},\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{2}\right)^{2}, \gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1$ or $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2, \gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1$ or $G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}$, $\gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1$;
(b) $G^{\prime} \cong C_{4} \times C_{4} \times C_{2},\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2, \gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}, \gamma_{5}(G)=1$ or $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}, \gamma_{5}(G)=1$;
(c) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{3},\left|G^{2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1$ or $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1$;
(d) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{3},\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}, \gamma_{5}(G)=1$ or $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}, \gamma_{5}(G)=1$;
(e) $G^{\prime} \cong\left(C_{2}\right)^{5}, G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1$;
(f) $G^{\prime} \cong\left(C_{2}\right)^{5}, G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}, \gamma_{5}(G)=1$;
(12) $G^{\prime} \cong\left(C_{p}\right)^{6},\left|G^{\prime p} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{p}\right)^{3}, \gamma_{4}(G) \cong\left(C_{p}\right)^{2}, \gamma_{5}(G)=1$, for $p \geq 5$;
(13) (a) $G^{\prime} \cong C_{9} \times C_{9} \times C_{3} \times C_{3},\left|G^{\prime 3} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong C_{3} \times C_{3}, \gamma_{4}(G) \cong C_{3}, \gamma_{5}(G)=1$ or $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{3}, \gamma_{4}(G) \cong C_{3}, \gamma_{5}(G)=1$;
(b) $G^{\prime} \cong C_{9} \times C_{9} \times C_{3} \times C_{3},\left|G^{\prime 3} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong C_{3} \times C_{3}, G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{3}$, $\gamma_{4}(G) \cong C_{3}^{2}, \gamma_{5}(G)=1$;
(c) $G^{\prime} \cong C_{9} \times\left(C_{3}\right)^{4},\left|G^{\prime 3} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong C_{3} \times C_{3}, \gamma_{4}(G) \cong C_{3}, \gamma_{5}(G)=1$ or $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{3}, \gamma_{4}(G) \cong C_{3}, \gamma_{5}(G)=1$;
(d) $G^{\prime} \cong C_{9} \times\left(C_{3}\right)^{4}, G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{3}, \gamma_{4}(G) \cong\left(C_{3}\right)^{2}, \gamma_{5}(G)=1$;
(e) $G^{\prime} \cong\left(C_{3}\right)^{6}, G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{3}, \gamma_{4}(G) \cong C_{3}, \gamma_{5}(G)=1$;
(f) $G^{\prime} \cong\left(C_{3}\right)^{6}, G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{3}, \gamma_{4}(G) \cong\left(C_{3}\right)^{2}, \gamma_{5}(G)=1$;
(14) (a) $G^{\prime} \cong C_{4} \times C_{4} \times C_{2} \times C_{2},\left|G^{2} \cap \gamma_{3}(G)\right|=2$, $\gamma_{3}(G) \cong C_{2}^{2}, \gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1$ or $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1$;
(b) $G^{\prime} \cong C_{4} \times C_{4} \times C_{2} \times C_{2}, G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}, \gamma_{5}(G)=1$;
(c) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{4},\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong C_{2}^{2}, \gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1$ or $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1$;
(d) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{4}, G^{\prime 3} \subseteq \gamma_{3}(G) \cong C_{2}^{3}, \gamma_{4}(G) \cong C_{2}^{2}, \gamma_{5}(G)=1$;
(e) $G^{\prime} \cong\left(C_{2}\right)^{6}, G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1$;
(f) $G^{\prime} \cong\left(C_{2}\right)^{6}, G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}, \gamma_{5}(G)=1$;
(15) (a) $G^{\prime} \cong\left(C_{9}\right)^{2} \times\left(C_{3}\right)^{3}, G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{2}, \gamma_{4}(G) \cong C_{3}, \gamma_{5}(G)=1$;
(b) $G^{\prime} \cong C_{9} \times\left(C_{3}\right)^{5}, G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{2}, \gamma_{4}(G) \cong C_{3}, \gamma_{5}(G)=1$;
(c) $G^{\prime} \cong\left(C_{3}\right)^{7}, G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{2}, \gamma_{4}(G) \cong C_{3}, \gamma_{5}(G)=1$;
(16) $G^{\prime} \cong\left(C_{p}\right)^{6},\left|G^{\prime p} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{p}\right)^{4}, \gamma_{4}(G) \cong C_{p}, \gamma_{5}(G)=1$, for $p \geq 5$;
(17) (a) $G^{\prime} \cong C_{9} \times\left(C_{3}\right)^{4},\left|G^{\prime 3} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{3}\right)^{3}, \gamma_{4}(G) \cong C_{3}, \gamma_{5}(G)=1$ or $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{4}, \gamma_{4}(G) \cong C_{3}, \gamma_{5}(G)=1$;
(b) $G^{\prime} \cong\left(C_{3}\right)^{6}, G^{\prime 3} \subseteq \gamma_{3}(G) \cong C_{3}^{4}, \gamma_{4}(G) \cong C_{3}, \gamma_{5}(G)=1$;
(18) (a) $G^{\prime} \cong C_{4} \times C_{4} \times C_{2} \times C_{2},\left|G^{2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{2}\right)^{2}, \gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1$ or $\left|G^{2} \cap \gamma_{3}(G)\right|=2, \gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1$ or $G^{\prime 2} \subseteq \gamma_{3}(G) \cong C_{2}^{4}$, $\gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1 ;$
(b) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{4},\left|G^{2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1$ or $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1$;
(c) $G^{\prime} \cong\left(C_{2}\right)^{6}, G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1$;
(19) $G^{\prime} \cong\left(C_{p}\right)^{7},\left|G^{\prime p} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{p}\right)^{3}, \gamma_{4}(G) \cong C_{p}, \gamma_{5}(G)=1$, for $p \geq 5$;
(20) (a) $G^{\prime} \cong C_{9} \times\left(C_{3}\right)^{5},\left|G^{\prime 3} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong C_{3} \times C_{3}, \gamma_{4}(G) \cong C_{3}, \gamma_{5}(G)=1$ or $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{3}, \gamma_{4}(G) \cong C_{3}, \gamma_{5}(G)=1$;
(b) $G^{\prime} \cong\left(C_{3}\right)^{7}, G^{\prime 3} \subseteq \gamma_{3}(G) \cong C_{3}^{3}, \gamma_{4}(G) \cong C_{3}, \gamma_{5}(G)=1$;
(21) (a) $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{3},\left|G^{2} \cap \gamma_{3}(G)\right|=2, \gamma_{3}(G) \cong C_{2} \times C_{2}, \gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1$ or $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1$;
(b) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{5},\left|G^{2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong C_{2} \times C_{2}, \gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1$ or $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1$;
(c) $G^{\prime} \cong\left(C_{2}\right)^{7}, G^{\prime 2} \subseteq \gamma_{3}(G) \cong C_{2}^{3}, \gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1$;
(22) $G^{\prime} \cong\left(C_{p}\right)^{8},\left|G^{\prime p} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{p}\right)^{2}, \gamma_{4}(G) \cong C_{p}, \gamma_{5}(G)=1$, for $p \geq 5$;
(23) (a) $G^{\prime} \cong C_{9} \times\left(C_{3}\right)^{6}, G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{2}, \gamma_{4}(G) \cong C_{3}, \gamma_{5}(G)=1$;
(b) $G^{\prime} \cong\left(C_{3}\right)^{8}, G^{\prime 3} \subseteq \gamma_{3}(G) \cong C_{3}^{2}, \gamma_{4}(G) \cong C_{3}, \gamma_{5}(G)=1$;
(24) (a) $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{4}, G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{2}, \gamma_{4}(G) \cong C_{2} \gamma_{5}(G)=1$;
(b) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{6}, G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{2}, \gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1$;
(c) $G^{\prime} \cong\left(C_{2}\right)^{8}, G^{\prime 2} \subseteq \gamma_{3}(G) \cong C_{2}^{2}, \gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1$;
(25) (a) $G^{\prime} \cong C_{9} \times\left(C_{3}\right)^{7}, G^{\prime 3} \subseteq \gamma_{3}(G) \cong C_{3}, \gamma_{4}(G) \cong C_{3}, \gamma_{5}(G)=1$;
(b) $G^{\prime} \cong\left(C_{3}\right)^{9}, G^{\prime 3} \subseteq \gamma_{3}(G) \cong C_{3}, \gamma_{4}(G) \cong C_{3}, \gamma_{5}(G)=1$;
(26) $G^{\prime} \cong\left(C_{p}\right)^{6},\left|G^{\prime p} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{p}\right)^{5}, \gamma_{4}(G)=1, p \geq 3$;
(27) (a) $G^{\prime} \cong\left(C_{4}\right)^{3},\left|G^{2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{2}\right)^{2}, \gamma_{4}(G)=1$ or $\left|G^{2} \cap \gamma_{3}(G)\right|=2$, $\gamma_{3}(G) \cong\left(C_{2}\right)^{2}, \gamma_{4}(G)=1$ or $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2^{2}, \gamma_{3}(G) \cong\left(C_{2}\right)^{2}, \gamma_{4}(G)=1$ or $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{5}, \gamma_{4}(G)=1$;
(b) $G^{\prime} \cong C_{4} \times C_{4} \times C_{2} \times C_{2},\left|G^{2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong C_{2}^{3}, \gamma_{4}(G)=1$ or $G^{2} \subseteq$ $\gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \gamma_{4}(G)=1$ or $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{5}, \gamma_{4}(G)=1$;
(c) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{4},\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \gamma_{4}(G)=1$ or $G^{\prime 2} \subseteq \gamma_{3}(G) \cong$ $\left(C_{2}\right)^{5}, \gamma_{4}(G)=1$;
(d) $G^{\prime} \cong\left(C_{2}\right)^{6}, G^{\prime 2} \subseteq \gamma_{3}(G) \cong C_{2}^{5}, \gamma_{4}(G)=1$;
(28) $G^{\prime} \cong\left(C_{p}\right)^{7},\left|G^{\prime p} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{p}\right)^{4}, \gamma_{4}(G)=1$, for $p \geq 3$;
(29) (a) $G^{\prime} \cong\left(C_{4}\right)^{3} \times C_{2},\left|G^{2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong C_{2}, \gamma_{4}(G)=1$ or $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2$, $\gamma_{3}(G) \cong\left(C_{2}\right)^{2}, \gamma_{4}(G)=1$ or $\left|G^{2} \cap \gamma_{3}(G)\right|=2^{2}, \gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G)=1$ or $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \gamma_{4}(G)=1$;
(b) $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{3},\left|G^{2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{2}\right)^{2}, \gamma_{4}(G)=1$ or $\left|G^{2} \cap \gamma_{3}(G)\right|=2$, $\gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G)=1$ or $G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \gamma_{4}(G)=1$;
(c) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{5},\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G)=1$ or $G^{2} \subseteq \gamma_{3}(G) \cong$ $\left(C_{2}\right)^{4}, \gamma_{4}(G)=1$;
(d) $G^{\prime} \cong\left(C_{2}\right)^{7}, G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \gamma_{4}(G)=1$;
(30) $G^{\prime} \cong\left(C_{p}\right)^{8},\left|G^{\prime p} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{p}\right)^{3}, \gamma_{4}(G)=1, p \geq 3$;
(31) (a) $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{4}, G^{\prime 2} \subseteq \gamma_{3}(G) \cong C_{2}, \gamma_{4}(G)=1$ or $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{2}$, $\gamma_{4}(G)=1$ or $G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G)=1$;
(b) $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{4},\left|G^{2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong C_{2}, \gamma_{4}(G)=1$ or $\left|G^{2} \cap \gamma_{3}(G)\right|=2$, $\gamma_{3}(G) \cong\left(C_{2}\right)^{2}, \gamma_{4}(G)=1$ or $G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G)=1$;
(c) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{6},\left|G^{2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{2}\right)^{2}, \gamma_{4}(G)=1$ or $G^{\prime 2} \subseteq \gamma_{3}(G) \cong$ $\left(C_{2}\right)^{3}, \gamma_{4}(G)=1$;
(d) $G^{\prime} \cong\left(C_{2}\right)^{8}, G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G)=1$;
(32) (a) $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{5}, G^{\prime 2} \subseteq \gamma_{3}(G) \cong C_{2}, \gamma_{4}(G)=1$ or $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{2}$, $\gamma_{4}(G)=1 ;$
(b) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{7},\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong C_{2}, \gamma_{4}(G)=1$ or $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{2}$, $\gamma_{4}(G)=1$;
(c) $G^{\prime} \cong\left(C_{2}\right)^{9}, G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{2}, \gamma_{4}(G)=1$;
(33) $G^{\prime} \cong\left(C_{p}\right)^{10},\left|G^{\prime p} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong C_{p}, \gamma_{4}(G)=1$, for $p \geq 3$;
(34) (a) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{8}, G^{2} \subseteq \gamma_{3}(G) \cong C_{2}, \gamma_{4}(G)=1$; (b) $G^{\prime} \cong\left(C_{2}\right)^{10}, G^{\prime 2} \subseteq \gamma_{3}(G) \cong C_{2}$, $\gamma_{4}(G)=1 ;$
(35) $G^{\prime} \cong\left(C_{p}\right)^{11},\left|G^{\prime p} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G)=1$, for all $p>0$.

Proof. Let $t^{L}(K G)=11 p-9$, thus $l=\frac{t^{L}(K G)-2}{p-1}=11$ and therefore $d_{(2)}+2 d_{(3)}+3 d_{(4)}+4 d_{(5)}+$ $5 d_{(6)}+6 d_{(7)}+7 d_{(8)}+8 d_{(9)}+9 d_{(10)}+10 d_{(11)}+11 d_{(12)}=11$. Now from [8], $d_{(12)}=0, d_{(11)}=0$,
$d_{(10)}=0$ and $d_{(9)}=0$. If $d_{(8)} \neq 0$, then we have the following possibilities: $d_{(2)}=4, d_{(8)}=1$ or $d_{(2)}=1, d_{(4)}=1, d_{(8)}=1$ or $d_{(2)}=2, d_{(3)}=1, d_{(8)}=1$. Now $d_{(2)}=4, d_{(8)}=1$ is possible if and only if $p=7, G^{\prime} \cong\left(C_{7}\right)^{5}$ and $\gamma_{3}(G)=1$. The remaining cases are discarded by Lemma 2.1. If $d_{(8)}=0$, then we have $d_{(2)}+2 d_{(3)}+3 d_{(4)}+4 d_{(5)}+5 d_{(6)}+6 d_{(7)}=11$. Let $d_{(7)} \neq 0$, then we have the following cases: $d_{(2)}=d_{(5)}=d_{(7)}=1, d_{(3)}=d_{(4)}=d_{(6)}=0$ or $d_{(2)}=d_{(7)}=1$, $d_{(3)}=2, d_{(4)}=d_{(5)}=d_{(6)}=0$ or $d_{(2)}=2, d_{(3)}=d_{(5)}=d_{(6)}=0, d_{(4)}=d_{(7)}=1$ or $d_{(2)}=3$, $d_{(3)}=d_{(7)}=1, d_{(4)}=d_{(5)}=d_{(6)}=0$ or $d_{(2)}=5, d_{(3)}=d_{(4)}=d_{(5)}=d_{(6)}=0, d_{(7)}=1$.

Let $d_{(2)}=d_{(5)}=d_{(7)}=1, d_{(3)}=d_{(4)}=d_{(6)}=0$. If $p=2$, then by Lemma 2.1(1), $d_{(7)} \leq d_{(4)}$, a contradiction. If $p \neq 2$, then by Lemma 2.1(2), $\vartheta_{p^{\prime}}(4) \geq \vartheta_{p^{\prime}}(3)$ implies that $d_{(5)}=0$, a contradiction. Hence this case is not possible. Using similar arguments the other cases can be easily discarded.

So let $d_{(7)}=0$, then we have $d_{(2)}+2 d_{(3)}+3 d_{(4)}+4 d_{(5)}+5 d_{(6)}=11$ and the possibilities for $d_{(6)}=0$ or 1 or 2 . If $d_{(6)}=2$, then we have the case $d_{(2)}=1, d_{(3)}=d_{(4)}=d_{(5)}=0$ and in view of Lemma 2.1, this is not possible.

Now if $d_{(6)}=1$, then we have the following cases: $d_{(2)}=d_{(3)}=d_{(4)}=1, d_{(5)}=0$ or $d_{(2)}=2$, $d_{(3)}=d_{(4)}=0, d_{(5)}=1$ or $d_{(2)}=d_{(3)}=2, d_{(4)}=d_{(5)}=0$ or $d_{(2)}=3, d_{(3)}=d_{(5)}=0, d_{(4)}=1$ or $d_{(2)}=6, d_{(3)}=d_{(4)}=d_{(5)}=0$.

Let $d_{(2)}=d_{(3)}=d_{(4)}=d_{(6)}=1, d_{(5)}=0$. If $p \neq 5$, then by Lemma 2.1(2), $\vartheta_{p^{\prime}}(5) \geq \vartheta_{p^{\prime}}(4)$ implies $d_{(6)}=0$, which is not possible. Now if $p=5$, then $\left|G^{\prime}\right|=5^{4},\left|D_{(6), K}(G)\right|=5$, $\left|D_{(5), K}(G)\right|=5,\left|D_{(4), K}(G)\right|=5^{2},\left|D_{(3), K}(G)\right|=5^{3}$. Let G^{\prime} be an abelian group, then the possibilities for G^{\prime} are: (a) $G^{\prime} \cong C_{25} \times C_{25}$ (b) $G^{\prime} \cong C_{25} \times C_{5} \times C_{5}$ (c) $G^{\prime} \cong\left(C_{5}\right)^{4}$. If $G^{\prime} \cong C_{25} \times C_{25}$, then $G^{\prime 5} \cong C_{5} \times C_{5}$, which is not possible as $\left|G^{\prime 5}\right| \leq 5$. If $G^{\prime} \cong C_{25} \times C_{5} \times C_{5}$, then $G^{\prime 5} \cong C_{5}$ and $G^{\prime} \cong C_{25} \times C_{5} \times C_{5}, G^{\prime 5} \subseteq \gamma_{3}(G) \cong\left(C_{5}\right)^{3}, \gamma_{4}(G) \cong C_{5} \times C_{5}, \gamma_{5}(G) \cong C_{5}$ and $\gamma_{6}(G)=1$. If $G^{\prime} \cong\left(C_{5}\right)^{4}$, then $\left|G^{\prime 5} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{5}\right)^{3}, \gamma_{4}(G) \cong C_{5} \times C_{5}$, $\gamma_{5}(G) \cong C_{5}$ and $\gamma_{6}(G)=1$.

Let $d_{(2)}=2, d_{(3)}=d_{(4)}=0, d_{(5)}=d_{(6)}=1$. Then again in view of Lemma 2.1 this case is not possible.

Let $d_{(2)}=d_{(3)}=2 d_{(4)}=d_{(5)}=0, d_{(6)}=1$. If $p \neq 5$, and $d_{(5)}=0$, then by Lemma $2.1(2), \vartheta_{p^{\prime}}(5) \geq \vartheta_{p^{\prime}}(4)$ implies $d_{(6)}=0$, which is a contradiction. If $p=5$, then $\left|G^{\prime}\right|=5^{5}$, $\left|D_{(6), K}(G)\right|=5,\left|D_{(5), K}(G)\right|=5,\left|D_{(4), K}(G)\right|=5$ and $\left|D_{(3), K}(G)\right|=5^{3}$. Let G^{\prime} is abelian, then we have the following possibilities for $G^{\prime}:$ (a) $G^{\prime} \cong C_{25} \times C_{25} \times C_{5}$ (b) $G^{\prime} \cong C_{25} \times\left(C_{5}\right)^{3}$ (c) $G^{\prime} \cong\left(C_{5}\right)^{5}$. Clearly $G^{\prime} \cong C_{25} \times C_{25} \times C_{5}$ is not possible as $\left|G^{\prime 5}\right| \leq 5$. If $G^{\prime} \cong C_{25} \times\left(C_{5}\right)^{3}$, then
$\left|G^{\prime 5} \cap \gamma_{3}(G)\right|=1, \gamma_{4}(G) \cong C_{5}, \gamma_{3}(G) \cong\left(C_{5}\right)^{2}$ and $\gamma_{5}(G)=1$ or $\left|G^{\prime 5} \cap \gamma_{3}(G)\right|=5, \gamma_{4}(G) \cong C_{5}$, $\gamma_{3}(G) \cong\left(C_{5}\right)^{3}$ and $\gamma_{5}(G)=1$. If $G^{\prime} \cong\left(C_{5}\right)^{5}$, then $\left|G^{\prime 5} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{5}\right)^{3}$, $\gamma_{4}(G) \cong C_{5}$ and $\gamma_{5}(G)=1$.
Let $d_{(2)}=3, d_{(3)}=d_{(5)}=0, d_{(4)}=d_{(6)}=1$ and $d_{(2)}=6, d_{(3)}=d_{(4)}=d_{(5)}=0, d_{(6)}=1$. Again these two cases are discarded by Lemma 2.1.

If $d_{(6)}=0$, then $d_{(2)}+2 d_{(3)}+3 d_{(4)}+4 d_{(5)}=11$ and $d_{(5)}=0$ or 1 or 2 . Let $d_{(5)}=2$, then we have the following cases $d_{(2)}=1, d_{(3)}=1, d_{(4)}=0$ or $d_{(2)}=3, d_{(3)}=0, d_{(4)}=0$. These cases are not possible by Lemma 2.1.
Let $d_{(5)}=1$, then $d_{(2)}+2 d_{(3)}+3 d_{(4)}=7$ and we have the following possibilities: $d_{(2)}=1$, $d_{(3)}=3, d_{(4)}=0$ or $d_{(2)}=1, d_{(3)}=0, d_{(4)}=2$ or $d_{(2)}=2, d_{(3)}=1, d_{(4)}=1$ or $d_{(2)}=5$, $d_{(3)}=1, d_{(4)}=0$ or $d_{(2)}=3, d_{(3)}=2, d_{(4)}=0$ or $d_{(2)}=7, d_{(3)}=0, d_{(4)}=0$.

Let $d_{(2)}=1, d_{(3)}=3, d_{(4)}=0, d_{(5)}=1$ or $d_{(2)}=1, d_{(3)}=0, d_{(4)}=2, d_{(5)}=1$, then by Lemma 2.1 these cases are not possible for any p.
Let $d_{(2)}=2, d_{(3)}=1, d_{(4)}=1, d_{(5)}=1$. Then $\left|G^{\prime}\right|=p^{5}$, for every $p>0$ and $\left|D_{(3), K}(G)\right|=p^{3}$, $\left|D_{(4), K}(G)\right|=p^{2},\left|D_{(5), K}(G)\right|=p$ and $D_{(6), K}(G)=1$. Let G^{\prime} be an abelian group. If $p \geq 5$, then $G^{\prime} \cong\left(C_{p}\right)^{5},\left|G^{\prime p} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{p}\right)^{3}, \gamma_{4}(G) \cong\left(C_{p}\right)^{2}$ and $\gamma_{5}(G) \cong C_{p}, \gamma_{6}(G)=1$. If $p=3$, then $\left|D_{(6), K}(G)\right|=1,\left|D_{(5), K}(G)\right|=3,\left|D_{(4), K}(G)\right|=3^{2},\left|D_{(3), K}(G)\right|=3^{3}$ and $\left|G^{\prime}\right|=3^{5}$. Hence we have the following possibilities: (a) $G^{\prime} \cong C_{9} \times C_{9} \times C_{3}$ (b) $G^{\prime} \cong C_{9} \times\left(C_{3}\right)^{3}$ (c) $G^{\prime} \cong\left(C_{3}\right)^{5}$. If $G^{\prime} \cong C_{9} \times C_{9} \times C_{3}$, then this case is not possible as $G^{\prime 9}=1$. If $G^{\prime} \cong C_{9} \times\left(C_{3}\right)^{3}$, then $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{3}, \gamma_{4}(G) \cong\left(C_{3}\right)^{2}, \gamma_{5}(G) \cong C_{3}, \gamma_{6}(G)=1$. If $G^{\prime} \cong \times\left(C_{3}\right)^{5}$, then $\left|G^{\prime 3} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{3}\right)^{3}, \gamma_{4}(G) \cong\left(C_{3}\right)^{2}, \gamma_{5}(G) \cong C_{3}, \gamma_{6}(G)=1$. If $p=2$, then $\left|D_{(6), K}(G)\right|=1,\left|D_{(5), K}(G)\right|=2,\left|D_{(4), K}(G)\right|=4,\left|D_{(3), K}(G)\right|=8$ and $\left|G^{\prime}\right|=2^{5}$. Let G^{\prime} be an abelian group. We have the following possibilities: (a) $G^{\prime} \cong C_{8} \times C_{4}$ (b) $G^{\prime} \cong C_{8} \times C_{2} \times C_{2}$ (c) $G^{\prime} \cong C_{4} \times C_{4} \times C_{2}(\mathrm{~d}) G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{3}$ (e) $G^{\prime} \cong\left(C_{2}\right)^{5}$. Since $G^{\prime} \cong C_{8} \times C_{4}$ is not possible as $\left|G^{\prime 2}\right|=8$. If $G^{\prime} \cong C_{8} \times C_{2} \times C_{2}$, then $G^{2} \subseteq \gamma_{3}(G) \cong C_{4} \times C_{2}, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}, \gamma_{5}(G) \cong C_{2}$, $\gamma_{6}(G)=1$. If $G^{\prime} \cong C_{4} \times C_{4} \times C_{2}$, then $G^{2} \subseteq \gamma_{3}(G) \cong C_{4} \times C_{2}, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}, \gamma_{5}(G) \cong C_{2}$, $\gamma_{6}(G)=1$. If $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{3}$, then $G^{2} \subseteq \gamma_{3}(G) \cong C_{4} \times C_{2}, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}, \gamma_{5}(G) \cong C_{2}$, $\gamma_{6}(G)=1$. If $G^{\prime} \cong\left(C_{2}\right)^{5}$, then $\left|G^{2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong C_{4} \times C_{2}, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}, \gamma_{5}(G) \cong C_{2}$, $\gamma_{6}(G)=1$.

Let $d_{(2)}=5, d_{(3)}=1, d_{(4)}=0, d_{(5)}=1$, then by Lemma 2.1, this case is not possible for all $p \neq 2$. If $p=2$, then $\left|D_{(6), K}(G)\right|=1,\left|D_{(5), K}(G)\right|=2,\left|D_{(4), K}(G)\right|=2,\left|D_{(3), K}(G)\right|=4$ and $\left|G^{\prime}\right|=2^{7}$. Let G^{\prime} be an abelian group, then we have the following possibilities: (a) $G^{\prime} \cong C_{8} \times C_{8} \times C_{2}(\mathrm{~b}) G^{\prime} \cong C_{8} \times C_{4} \times C_{2} \times C_{2}$ (c) $G^{\prime} \cong C_{8} \times\left(C_{2}\right)^{4}$ (d) $G^{\prime} \cong C_{8} \times C_{4} \times C_{4}$ (e)
$G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{5}$ (f) $G^{\prime} \cong\left(C_{4}\right)^{3} \times C_{2}$ (g) $G^{\prime} \cong C_{4} \times C_{4} \times\left(C_{2}\right)^{3}$ (h) $G^{\prime} \cong\left(C_{2}\right)^{7}$. Now clearly $G^{\prime} \cong C_{8} \times C_{8} \times C_{2}$ or $C_{8} \times C_{4} \times C_{2} \times C_{2}$ or $C_{8} \times C_{4} \times C_{4}$ or $\left(C_{4}\right)^{3} \times C_{2}$ are not possible as $\left|G^{\prime 4}\right| \leq 2$. If $G^{\prime} \cong C_{8} \times\left(C_{2}\right)^{4}$, then $G^{\prime 2} \subseteq \gamma_{3}(G) \cong C_{4}, \gamma_{4}(G) \cong C_{2}$ and $\gamma_{5}(G)=1$. If $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{5}$, then $G^{\prime 2} \subseteq \gamma_{3}(G) \cong C_{4}, \gamma_{4}(G) \cong C_{2}$ and $\gamma_{5}(G)=1$. If $G^{\prime} \cong\left(C_{2}\right)^{7}$, then $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1, \gamma_{4}(G) \cong C_{2}$ and $\gamma_{5}(G)=1$. If $G^{\prime} \cong C_{4} \times C_{4} \times\left(C_{2}\right)^{3}$, then $G^{\prime 2} \subseteq \gamma_{3}(G) \cong C_{4}$, $\gamma_{4}(G) \cong C_{2}$ and $\gamma_{5}(G)=1$.

Let $d_{(2)}=3, d_{(3)}=2, d_{(4)}=0, d_{(5)}=1$, then by Lemma 2.1 this case is not possible for all $p \neq 2$. If $p=2$, then $\left|D_{(6), K}(G)\right|=1,\left|D_{(5), K}(G)\right|=2,\left|D_{(4), K}(G)\right|=2,\left|D_{(3), K}(G)\right|=8$ and $\left|G^{\prime}\right|=2^{6}$. Let G^{\prime} be an abelian group, then we have the following possibilities: (a) $G^{\prime} \cong C_{8} \times C_{8}(\mathrm{~b}) G^{\prime} \cong C_{8} \times C_{4} \times C_{2}(\mathrm{c}) G^{\prime} \cong C_{8} \times\left(C_{2}\right)^{3}(\mathrm{~d}) G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{4}(\mathrm{e}) G^{\prime} \cong\left(C_{4}\right)^{3}$ (f) $G^{\prime} \cong C_{4} \times C_{4} \times C_{2} \times C_{2}(\mathrm{~g}) G^{\prime} \cong\left(C_{2}\right)^{6}$. Since $\left|G^{\prime 2}\right| \leq 4$, therefore $G^{\prime} \cong C_{8} \times C_{8}$ or $C_{8} \times C_{4} \times C_{2}$ or $\left(C_{4}\right)^{3}$ are not possible. If $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{4},\left|\gamma_{3}(G)\right|=2^{3}$ then $\left|G^{2} \cap \gamma_{3}(G)\right|=2$, $\gamma_{3}(G) \cong C_{4} \times C_{2}, \gamma_{4}(G) \cong C_{2}$ and $\gamma_{5}(G)=1$. If $\left|\gamma_{3}(G)\right|=2^{2}$ then $\left|G^{2} \cap \gamma_{3}(G)\right|=1$, $\gamma_{3}(G) \cong C_{4}, \gamma_{4}(G) \cong C_{2}$ and $\gamma_{5}(G)=1$. If $G^{\prime} \cong C_{8} \times\left(C_{2}\right)^{3}$, then we have for $\left|\gamma_{3}(G)\right|=2^{3}$, $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=4, \gamma_{3}(G) \cong C_{4} \times C_{2}, \gamma_{4}(G) \cong C_{2}$ and $\gamma_{5}(G)=1$ and for $\left|\gamma_{3}(G)\right|=2^{2}$, $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2, \gamma_{3}(G) \cong C_{4}, \gamma_{4}(G) \cong C_{2}$ and $\gamma_{5}(G)=1$. If $G^{\prime} \cong C_{4} \times C_{4} \times C_{2} \times C_{2}$, then we have for $\left|\gamma_{3}(G)\right|=2^{3},\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=4, \gamma_{3}(G) \cong C_{4} \times C_{2}, \gamma_{4}(G) \cong C_{2}$ and $\gamma_{5}(G)=1$ and if $\left|\gamma_{3}(G)\right|=2^{2}$, then $\left|G^{2} \cap \gamma_{3}(G)\right|=2, \gamma_{3}(G) \cong C_{4}, \gamma_{4}(G) \cong C_{2}$ and $\gamma_{5}(G)=1$. If $G^{\prime} \cong\left(C_{2}\right)^{6}$, then we have for $\left|\gamma_{3}(G)\right|=2^{3},\left|G^{2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong C_{4} \times C_{2}, \gamma_{4}(G) \cong C_{2}$ and $\gamma_{5}(G)=1$.

Let $d_{5}=0$, then $d_{(2)}+2 d_{(3)}+3 d_{(4)}=11$ and we have $d_{(4)}=0$ or 1 or 2 or 3 . Let $d_{(4)}=3$, then we have only one case $d_{(2)}=2, d_{(3)}=0, d_{(4)}=3$ and by Lemma 2.1 this case is not possible for all $p \neq 3$. If $p=3$, then $\left|D_{(5), K}(G)\right|=1,\left|D_{(4), K}(G)\right|=3^{3},\left|D_{(3), K}(G)\right|=3^{3}$ and $\left|G^{\prime}\right|=3^{5}$. Let G^{\prime} be an abelian group hence we have the following possibilities: (a) $G^{\prime} \cong C_{9} \times C_{9} \times C_{3}(\mathrm{~b}) G^{\prime} \cong C_{9} \times\left(C_{3}\right)^{3}(\mathrm{c}) G^{\prime} \cong\left(C_{3}\right)^{5}$. Let $G^{\prime} \cong C_{9} \times C_{9} \times C_{3}$. If $\left|\gamma_{4}(G)\right|=3$, then $\left|\gamma_{3}(G)\right|=3^{2}, 3^{3}$, then $\left|G^{\prime 3} \cap \gamma_{3}(G)\right|=3, \gamma_{3}(G) \cong C_{3} \times C_{3}, \gamma_{4}(G) \cong C_{3}, \gamma_{5}(G)=1$ and $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{3}, \gamma_{4}(G) \cong C_{3}$ and $\gamma_{5}(G)=1$. If $\left|\gamma_{4}(G)\right|=3^{2}$, then $\left|\gamma_{3}(G)\right|=3^{3}$ and $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{3}, \gamma_{4}(G) \cong C_{3}$ and $\gamma_{5}(G)=1$. Let $G^{\prime} \cong C_{9} \times\left(C_{3}\right)^{3}$, then $\left|G^{\prime 3} \cap \gamma_{3}(G)\right|=1$, $\gamma_{3}(G) \cong C_{3} \times C_{3}, \gamma_{4}(G) \cong C_{3} \gamma_{5}(G)=1$ and $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{3}, \gamma_{4}(G) \cong C_{3} \gamma_{5}(G)=1$. Let $G^{\prime} \cong\left(C_{3}\right)^{5}$, then $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{3}, \gamma_{4}(G) \cong C_{3} \gamma_{5}(G)=1$.

Let $d_{(4)}=2$, then $d_{(2)}+2 d_{(3)}=5$. Now we have the following cases: $d_{(2)}=1, d_{(3)}=2$, $d_{(4)}=2$ or $d_{(2)}=3, d_{(3)}=1, d_{(4)}=2$ or $d_{(2)}=2, d_{(3)}=0, d_{(4)}=2$.

Let $d_{(2)}=1, d_{(3)}=2, d_{(4)}=2$, this case is possible for all $p>0$ and $\left|G^{\prime}\right|=p^{5}$, for every $p>0$. Thus $\left|D_{(3), K}(G)\right|=p^{4},\left|D_{(4), K}(G)\right|=p^{2},\left|D_{(5), K}(G)\right|=1$. Let G^{\prime} be an abelian group. Let $p \geq 5$, then $G^{\prime} \cong\left(C_{p}\right)^{5},\left|G^{\prime p} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{p}\right)^{4}, \gamma_{4}(G) \cong\left(C_{p}\right)^{2}$ and $\gamma_{5}(G)=1$. If $p=3$, then $\left|D_{(5), K}(G)\right|=1,\left|D_{(4), K}(G)\right|=3^{2},\left|D_{(3), K}(G)\right|=3^{4}$ and $\left|G^{\prime}\right|=3^{5}$ hence we have the following possibilities: (a) $G^{\prime} \cong C_{9} \times C_{9} \times C_{3}$ (b) $G^{\prime} \cong C_{9} \times\left(C_{3}\right)^{3}$ (c) $G^{\prime} \cong\left(C_{3}\right)^{5}$. Let $G^{\prime} \cong C_{9} \times C_{9} \times C_{3}$. If $\left|\gamma_{4}(G)\right|=3$, then $\left|\gamma_{3}(G)\right|=3^{2}$ or 3^{3} or $3^{4},\left|G^{\prime 3} \cap \gamma_{3}(G)\right|=1$, $\gamma_{3}(G) \cong C_{3} \times C_{3}, \gamma_{4}(G) \cong C_{3}, \gamma_{5}(G)=1$ or $\left|G^{\prime 3} \cap \gamma_{3}(G)\right|=3, \gamma_{3}(G) \cong\left(C_{3}\right)^{3}, \gamma_{4}(G) \cong C_{3}$, $\gamma_{5}(G)=1$ or $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{4}, \gamma_{4}(G) \cong C_{3}$ and $\gamma_{5}(G)=1$. If $\left|\gamma_{4}(G)\right|=3^{2}$, then $\left|\gamma_{3}(G)\right|=3^{3}$ or 3^{4} thus $\left|G^{\prime 3} \cap \gamma_{3}(G)\right|=3, \gamma_{3}(G) \cong\left(C_{3}\right)^{3}, \gamma_{4}(G) \cong\left(C_{3}\right)^{2}, \gamma_{5}(G)=1$ or $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{4}, \gamma_{4}(G) \cong\left(C_{3}\right)^{2}, \gamma_{5}(G)=1$. Now Let $G^{\prime} \cong C_{9} \times\left(C_{3}\right)^{3}$. If $\left|\gamma_{4}(G)\right|=3$, then $\left|\gamma_{3}(G)\right|=3^{2}$ or 3^{3} or 3^{4} thus $\left|G^{\prime 3} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{3}\right)^{3}, \gamma_{4}(G) \cong C_{3}, \gamma_{5}(G)=1$ or $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{4}, \gamma_{4}(G) \cong C_{3}$ and $\gamma_{5}(G)=1$. If $\left|\gamma_{4}(G)\right|=3^{2}$, then $\left|\gamma_{3}(G)\right|=3^{3}$ or 3^{4} thus $\left|G^{\prime 3} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{3}\right)^{3}, \gamma_{4}(G) \cong\left(C_{3}\right)^{2}, \gamma_{5}(G)=1$ or $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{4}$, $\gamma_{4}(G) \cong\left(C_{3}\right)^{2}$ and $\gamma_{5}(G)=1$. Let $G^{\prime} \cong\left(C_{3}\right)^{5}$. If $\left|\gamma_{4}(G)\right|=3$, then $\left|\gamma_{3}(G)\right|=3^{2}$ or 3^{3} or 3^{4} thus $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{4}, \gamma_{4}(G) \cong C_{3}, \gamma_{5}(G)=1$ and if $\left|\gamma_{4}(G)\right|=3^{2}$, then $\left|\gamma_{3}(G)\right|=3^{3}$ or 3^{4} thus $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{4}, \gamma_{4}(G) \cong\left(C_{3}\right)^{2}, \gamma_{5}(G)=1$. If $p=2$, then $\left|D_{(5), K}(G)\right|=1$, $\left|D_{(4), K}(G)\right|=4,\left|D_{(3), K}(G)\right|=2^{4}$ and $\left|G^{\prime}\right|=2^{5}$. Let G^{\prime} be an abelian group, then we have the following possibilities: (a) $G^{\prime} \cong C_{4} \times C_{4} \times C_{2}$ (b) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{3}$ (c) $G^{\prime} \cong\left(C_{2}\right)^{5}$. Let $G^{\prime} \cong C_{4} \times C_{4} \times C_{2}$. If $\left|\gamma_{4}(G)\right|=2$, then $\left|\gamma_{3}(G)\right|=2^{2}$ or 2^{3} or 4^{4} and thus $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1$, $\gamma_{3}(G) \cong\left(C_{2}\right)^{2}, \gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1$ or $\left|G^{2} \cap \gamma_{3}(G)\right|=2, \gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G) \cong C_{2}$, $\gamma_{5}(G)=1$ or $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \gamma_{4}(G) \cong C_{2}$ and $\gamma_{5}(G)=1$. If $\left|\gamma_{4}(G)\right|=2^{2}$, then $\left|\gamma_{3}(G)\right|=2^{3}$ or 2^{4} and thus $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2, \gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}, \gamma_{5}(G)=1$ or $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \gamma_{4}(G) \cong C_{2}^{2}, \gamma_{5}(G)=1$. Let $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{3}$. If $\left|\gamma_{4}(G)\right|=2$, then $\left|\gamma_{3}(G)\right|=2^{2}$ or 2^{3} or 4^{4} and thus $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1$ or $G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \gamma_{4}(G) \cong C_{2}$ and $\gamma_{5}(G)=1$. If $\left|\gamma_{4}(G)\right|=2^{2}$, then $\left|\gamma_{3}(G)\right|=2^{3}$ or 2^{4} and thus $\left|G^{2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}, \gamma_{5}(G)=1$ or $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}$, $\gamma_{4}(G) \cong\left(C_{2}\right)^{2}$ and $\gamma_{5}(G)=1$. Let $G^{\prime} \cong\left(C_{2}\right)^{5}$. If $\left|\gamma_{4}(G)\right|=2$, then $\left|\gamma_{3}(G)\right|=2^{2}$ or 2^{3} or 4^{4} and thus $G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \gamma_{4}(G) \cong C_{2}$ and $\gamma_{5}(G)=1$. If $\left|\gamma_{4}(G)\right|=2^{2}$, then $\left|\gamma_{3}(G)\right|=2^{3}$ or 2^{4} and thus $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}$ and $\gamma_{5}(G)=1$.

Let $d_{(2)}=3, d_{(3)}=1, d_{(4)}=2$, then this case is possible for all $p>0$ and $\left|G^{\prime}\right|=p^{6}$, for every $p>0$. Thus $\left|D_{(3), K}(G)\right|=p^{3},\left|D_{(4), K}(G)\right|=p^{2},\left|D_{(5), K}(G)\right|=1$. Let G^{\prime} be an abelian group. If $p \geq 5$, then $G^{\prime} \cong\left(C_{p}\right)^{6},\left|G^{\prime p} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{p}\right)^{3}, \gamma_{4}(G) \cong\left(C_{p}\right)^{2}$ and $\gamma_{5}(G)=1$. If $p=3$, then $\left|D_{(5), K}(G)\right|=1,\left|D_{(4), K}(G)\right|=3^{2},\left|D_{(3), K}(G)\right|=3^{3}$ and $\left|G^{\prime}\right|=3^{6}$, hence we have the following possibilities: (a) $G^{\prime} \cong\left(C_{9}\right)^{3}$ (b) $G^{\prime} \cong C_{9} \times C_{9} \times C_{3} \times C_{3}$ (c) $G^{\prime} \cong C_{9} \times\left(C_{3}\right)^{4}$ (d) $G^{\prime} \cong\left(C_{3}\right)^{6}$. Clearly $G^{\prime} \cong\left(C_{9}\right)^{3}$ is not possible. Now let $G^{\prime} \cong C_{9} \times C_{9} \times C_{3} \times C_{3}$. If
$\left|\gamma_{4}(G)\right|=3$, then $\left|\gamma_{3}(G)\right|=3^{2}$ or 3^{3} and thus $\left|G^{\prime 3} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong C_{3} \times C_{3}, \gamma_{4}(G) \cong C_{3}$, $\gamma_{5}(G)=1$ or $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{3}, \gamma_{4}(G) \cong C_{3} \gamma_{5}(G)=1$. If $\left|\gamma_{4}(G)\right|=3^{2}$, then $\left|\gamma_{3}(G)\right|=3^{3}$, $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{3}, \gamma_{4}(G) \cong\left(C_{3}\right)^{2}, \gamma_{5}(G)=1$. Let $G^{\prime} \cong C_{9} \times\left(C_{3}\right)^{4}$. If $\left|\gamma_{4}(G)\right|=3$, then $\left|\gamma_{3}(G)\right|=3^{2}$ or 3^{3} and thus $\left|G^{\prime 3} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong C_{3} \times C_{3}, \gamma_{4}(G) \cong C_{3}, \gamma_{5}(G)=1$ or $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{3}, \gamma_{4}(G) \cong C_{3}, \gamma_{5}(G)=1$. If $\left|\gamma_{4}(G)\right|=3^{2}$, then $\left|\gamma_{3}(G)\right|=3^{3}$ and thus $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{3}, \gamma_{4}(G) \cong\left(C_{3}\right)^{2}, \gamma_{5}(G)=1$. Now, let $G^{\prime} \cong\left(C_{3}\right)^{6}$. If $\left|\gamma_{4}(G)\right|=3$, then $\left|\gamma_{3}(G)\right|=3^{2}$ or 3^{3} and thus $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{3}, \gamma_{4}(G) \cong C_{3}, \gamma_{5}(G)=1$. If $\left|\gamma_{4}(G)\right|=3^{2}$, then $\left|\gamma_{3}(G)\right|=3^{3}$ and thus $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{3}, \gamma_{4}(G) \cong\left(C_{3}\right)^{2}, \gamma_{5}(G)=1$. Now let $p=2$, then $\left|D_{(5), K}(G)\right|=1,\left|D_{(4), K}(G)\right|=4,\left|D_{(3), K}(G)\right|=2^{3}$ and $\left|G^{\prime}\right|=2^{6}$. If G^{\prime} be an abelian group, then we have the following possibilities: (a) $G^{\prime} \cong\left(C_{4}\right)^{3}$ (b) $G^{\prime} \cong C_{4} \times C_{4} \times C_{2} \times C_{2}$ (c) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{4}$ (d) $G^{\prime} \cong\left(C_{2}\right)^{6}$. Let $G^{\prime} \cong\left(C_{4}\right)^{3}$, then clearly this case is not possible. Now let $G^{\prime} \cong C_{4} \times C_{4} \times C_{2} \times C_{2}$. If $\left|\gamma_{4}(G)\right|=2$, then $\left|\gamma_{3}(G)\right|=2^{2}$ or 2^{3} and thus $\left|G^{2} \cap \gamma_{3}(G)\right|=2$, $\gamma_{3}(G) \cong\left(C_{2}\right)^{2}, \gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1$ or $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1$. If $\left|\gamma_{4}(G)\right|=2^{2}$, then $\left|\gamma_{3}(G)\right|=2^{3}$ and thus $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}, \gamma_{5}(G)=1$. Let $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{4}$. If $\left|\gamma_{4}(G)\right|=2$, then $\left|\gamma_{3}(G)\right|=2^{2}$ or 2^{3} and thus $\left|G^{2} \cap \gamma_{3}(G)\right|=1$, $\gamma_{3}(G) \cong\left(C_{2}\right)^{2}, \gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1$ or $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1$. If $\left|\gamma_{4}(G)\right|=2^{2}$, then $\left|\gamma_{3}(G)\right|=2^{3}$ and thus $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}, \gamma_{5}(G)=1$. Let $G^{\prime} \cong\left(C_{2}\right)^{6}$. If $\left|\gamma_{4}(G)\right|=2$, then $\left|\gamma_{3}(G)\right|=2^{2}$ or 2^{3} and thus $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G) \cong C_{2}$, $\gamma_{5}(G)=1$. If $\left|\gamma_{4}(G)\right|=2^{2}$, then $\left|\gamma_{3}(G)\right|=2^{3}$ and thus $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G) \cong\left(C_{2}\right)^{2}$, $\gamma_{5}(G)=1$.

Let $d_{(2)}=5, d_{(3)}=0, d_{(4)}=2$, then by Lemma 2.1 this case is possible only when $p=3$. Thus $\left|D_{(5), K}(G)\right|=1,\left|D_{(4), K}(G)\right|=3^{2},\left|D_{(3), K}(G)\right|=3^{2}$ and $\left|G^{\prime}\right|=3^{7}$. Let G^{\prime} be an abelian group, hence we have the following possibilities: (a) $G^{\prime} \cong\left(C_{9}\right)^{3} \times C_{3}$ (b) $G^{\prime} \cong\left(C_{9}\right)^{2} \times\left(C_{3}\right)^{3}$ (c) $G^{\prime} \cong C_{9} \times\left(C_{3}\right)^{5}$ (d) $G^{\prime} \cong\left(C_{3}\right)^{7}$. Clearly $G^{\prime} \cong\left(C_{9}\right)^{3} \times C_{3}$ is not possible. If $G^{\prime} \cong\left(C_{9}\right)^{2} \times\left(C_{3}\right)^{3}$, then $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{2}, \gamma_{4}(G) \cong C_{3}, \gamma_{5}(G)=1$. If $G^{\prime} \cong C_{9} \times\left(C_{3}\right)^{5}$, then $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{2}, \gamma_{4}(G) \cong C_{3}, \gamma_{5}(G)=1$. If $G^{\prime} \cong\left(C_{3}\right)^{7}$, then $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{2}$, $\gamma_{4}(G) \cong C_{3}, \gamma_{5}(G)=1$.

Let $d_{(4)}=1$, then $d_{(2)}+2 d_{(3)}=8$ and we have the following cases $d_{(2)}=2, d_{(3)}=3, d_{(4)}=1$ or $d_{(2)}=4, d_{(3)}=2, d_{(4)}=1$ or $d_{(2)}=6, d_{(3)}=1, d_{(4)}=1$ or $d_{(2)}=8, d_{(3)}=0, d_{(4)}=1$.

Let $d_{(2)}=2, d_{(3)}=3, d_{(4)}=1$, this case is possible for all $p>0$ and $\left|G^{\prime}\right|=p^{6}$ for every $p>0$. Thus $\left|D_{(3), K}(G)\right|=p^{4},\left|D_{(4), K}(G)\right|=p,\left|D_{(5), K}(G)\right|=1$. Let G^{\prime} be an abelian group. If $p \geq 5$, then $G^{\prime} \cong\left(C_{p}\right)^{6},\left|G^{\prime p} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{p}\right)^{4}, \gamma_{4}(G) \cong C_{p}$ and $\gamma_{5}(G)=1$. If $p=3$, then $\left|D_{(5), K}(G)\right|=1,\left|D_{(4), K}(G)\right|=3,\left|D_{(3), K}(G)\right|=3^{4}$ and $\left|G^{\prime}\right|=3^{6}$, hence we have
the following possibilities: (a) $G^{\prime} \cong\left(C_{9}\right)^{3}$ (b) $G^{\prime} \cong C_{9} \times C_{9} \times C_{3} \times C_{3}$ (c) $G^{\prime} \cong C_{9} \times\left(C_{3}\right)^{4}$ (d) $G^{\prime} \cong\left(C_{3}\right)^{6}$. Clearly $G^{\prime} \cong\left(C_{9}\right)^{3}$ and $G^{\prime} \cong C_{9} \times C_{9} \times C_{3} \times C_{3}$ are not possible. Let $G^{\prime} \cong C_{9} \times\left(C_{3}\right)^{4}$. If $\left|\gamma_{4}(G)\right|=3$, then $\left|\gamma_{3}(G)\right|=3^{2}$ or 3^{3} or 3^{4} and therefore $\left|G^{\prime 3} \cap \gamma_{3}(G)\right|=1$, $\gamma_{3}(G) \cong\left(C_{3}\right)^{3}, \gamma_{4}(G) \cong C_{3}, \gamma_{5}(G)=1$ or $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{4}, \gamma_{4}(G) \cong C_{3}, \gamma_{5}(G)=1$. Let $G^{\prime} \cong\left(C_{3}\right)^{6}, G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{4}, \gamma_{4}(G) \cong C_{3}, \gamma_{5}(G)=1$. If $p=2$, then $\left|D_{(5), K}(G)\right|=1$, $\left|D_{(4), K}(G)\right|=2,\left|D_{(3), K}(G)\right|=2^{4}$ and $\left|G^{\prime}\right|=2^{6}$ hence we have the following possibilities: (a) $G^{\prime} \cong\left(C_{4}\right)^{3}$ (b) $G^{\prime} \cong C_{4} \times C_{4} \times C_{2} \times C_{2}$ (c) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{4}$ (d) $G^{\prime} \cong\left(C_{2}\right)^{6}$. Clearly $G^{\prime} \cong\left(C_{4}\right)^{3}$ this case is not possible. Let $G^{\prime} \cong C_{4} \times C_{4} \times C_{2} \times C_{2}$. If $\left|\gamma_{4}(G)\right|=2$, then $\left|\gamma_{3}(G)\right|=2^{2}$ or 2^{3} or 2^{4} and thus $\left|G^{2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong C_{2}^{2}, \gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1$ or $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2$, $\gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1$ or $G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1$. Let $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{4}$. If $\left|\gamma_{4}(G)\right|=2$, then $\left|\gamma_{3}(G)\right|=2^{2}$ or 2^{3} or 2^{4} and thus $\left|G^{2} \cap \gamma_{3}(G)\right|=1$, $\gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1$ or $G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1$. Let $G^{\prime} \cong\left(C_{2}\right)^{6}$. If $\left|\gamma_{4}(G)\right|=2$, then $\left|\gamma_{3}(G)\right|=2^{2}$ or 2^{3} or 2^{4} and thus $G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}$, $\gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1$.

Let $d_{(2)}=4, d_{(3)}=2, d_{(4)}=1$, then this case is possible for all $p>0$ and $\left|G^{\prime}\right|=p^{7}$ for every $p>0$. Thus $\left|D_{(3), K}(G)\right|=p^{3},\left|D_{(4), K}(G)\right|=p,\left|D_{(5), K}(G)\right|=1$. Let G^{\prime} be an abelian group. If $p \geq 5$, then $G^{\prime} \cong\left(C_{p}\right)^{7},\left|G^{\prime p} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{p}\right)^{3}, \gamma_{4}(G) \cong C_{p}$ and $\gamma_{5}(G)=1$. If $p=3$, then $\left|D_{(5), K}(G)\right|=1,\left|D_{(4), K}(G)\right|=3,\left|D_{(3), K}(G)\right|=3^{3}$ and $\left|G^{\prime}\right|=3^{7}$, hence we have the following possibilities: (a) $G^{\prime} \cong\left(C_{9}\right)^{3} \times C_{3}$ (b) $G^{\prime} \cong\left(C_{9}\right)^{2} \times\left(C_{3}\right)^{3}$ (c) $G^{\prime} \cong C_{9} \times\left(C_{3}\right)^{5}(\mathrm{~d}) G^{\prime} \cong\left(C_{3}\right)^{7}$. Clearly $G^{\prime} \cong\left(C_{9}\right)^{3} \times C_{3}$ and $G^{\prime} \cong\left(C_{9}\right)^{2} \times\left(C_{3}\right)^{3}$ are not possible. Let $G^{\prime} \cong C_{9} \times\left(C_{3}\right)^{5}$. If $\left|\gamma_{4}(G)\right|=3$, then $\left|\gamma_{3}(G)\right|=3^{2}$ or 3^{3} and thus $\left|G^{\prime 3} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong C_{3} \times C_{3}, \gamma_{4}(G) \cong C_{3}, \gamma_{5}(G)=1$ or $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{3}$, $\gamma_{4}(G) \cong C_{3}, \gamma_{5}(G)=1$. Let $G^{\prime} \cong\left(C_{3}\right)^{7}$. If $\left|\gamma_{4}(G)\right|=3$, then $\left|\gamma_{3}(G)\right|=3^{2}$ or 3^{3} and thus $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{3}, \gamma_{4}(G) \cong C_{3}, \gamma_{5}(G)=1$. If $p=2$, then $\left|D_{(5), K}(G)\right|=1,\left|D_{(4), K}(G)\right|=2$, $\left|D_{(3), K}(G)\right|=2^{3}$ and $\left|G^{\prime}\right|=2^{7}$, hence we have the following possibilities: (a) $G^{\prime} \cong\left(C_{4}\right)^{3} \times C_{2}$ (b) $G^{\prime} \cong\left(C_{4}\right)^{2} \times C_{2}^{3}$ (c) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{5}$ (d) $G^{\prime} \cong\left(C_{2}\right)^{7}$. Clearly $G^{\prime} \cong\left(C_{4}\right)^{3} \times C_{2}$ is not possible. Let $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{3}$. If $\left|\gamma_{4}(G)\right|=2$, then $\left|\gamma_{3}(G)\right|=2^{2}$ or 2^{3} and thus $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2$, $\gamma_{3}(G) \cong C_{2} \times C_{2}, \gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1$ or $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1$. Let $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{5}$. If $\left|\gamma_{4}(G)\right|=2$, then $\left|\gamma_{3}(G)\right|=2^{2}$ or 2^{3} and thus $\left|G^{2} \cap \gamma_{3}(G)\right|=1$, $\gamma_{3}(G) \cong C_{2} \times C_{2}, \gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1$ or $G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1$. Let $G^{\prime} \cong\left(C_{2}\right)^{7}$. If $\left|\gamma_{4}(G)\right|=2$, then $\left|\gamma_{3}(G)\right|=2^{2}$ or 2^{3} and thus $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G) \cong C_{2}$ $\gamma_{5}(G)=1$.

Let $d_{(2)}=6, d_{(3)}=1, d_{(4)}=1$, then this case is possible for all $p>0$ and $\left|G^{\prime}\right|=p^{8}$, for every $p>0$. Thus $\left|D_{(3), K}(G)\right|=p^{2},\left|D_{(4), K}(G)\right|=p,\left|D_{(5), K}(G)\right|=1$. Let G^{\prime} be an
abelian group. If $p \geq 5$, then $G^{\prime} \cong\left(C_{p}\right)^{8},\left|G^{\prime p} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{p}\right)^{2}, \gamma_{4}(G) \cong C_{p}$ and $\gamma_{5}(G)=1$. If $p=3$, then $\left|D_{(5), K}(G)\right|=1,\left|D_{(4), K}(G)\right|=3,\left|D_{(3), K}(G)\right|=3^{2}$ and $\left|G^{\prime}\right|=3^{8}$ hence we have the following possibilities: (a) $G^{\prime} \cong\left(C_{9}\right)^{4}$ (b) $G^{\prime} \cong\left(C_{9}\right)^{3} \times\left(C_{3}\right)^{2}$ (c) $G^{\prime} \cong\left(C_{9}\right)^{2} \times\left(C_{3}\right)^{4}$ (d) $G^{\prime} \cong C_{9} \times\left(C_{3}\right)^{6}$ (e) $G^{\prime} \cong\left(C_{3}\right)^{8}$. Clearly $G^{\prime} \cong\left(C_{9}\right)^{4}, G^{\prime} \cong\left(C_{9}\right)^{3} \times\left(C_{3}\right)^{2}$ and $G^{\prime} \cong\left(C_{9}\right)^{2} \times\left(C_{3}\right)^{4}$ are not possible. If $G^{\prime} \cong C_{9} \times\left(C_{3}\right)^{6}$, then $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{2}$, $\gamma_{4}(G) \cong C_{3}, \gamma_{5}(G)=1$. If $G^{\prime} \cong\left(C_{3}\right)^{8}$, then $G^{\prime 3} \subseteq \gamma_{3}(G) \cong\left(C_{3}\right)^{2}, \gamma_{4}(G) \cong C_{3}, \gamma_{5}(G)=1$. Let $p=2$, then $\left|D_{(5), K}(G)\right|=1,\left|D_{(4), K}(G)\right|=2,\left|D_{(3), K}(G)\right|=2^{2}$ and $\left|G^{\prime}\right|=2^{8}$. Hence we have the following possibilities: (a) $G^{\prime} \cong\left(C_{4}\right)^{4}$ (b) $G^{\prime} \cong\left(C_{4}\right)^{3} \times\left(C_{2}\right)^{2}$ (c) $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{4}$ (d) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{6}(\mathrm{e}) G^{\prime} \cong\left(C_{2}\right)^{8}$. Clearly $G^{\prime} \cong\left(C_{4}\right)^{4}$ and $G^{\prime} \cong\left(C_{4}\right)^{3} \times\left(C_{2}\right)^{2}$ are not possible. If $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{4}$, then $G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{2}, \gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1$. If $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{6}$, then $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{2}, \gamma_{4}(G) \cong C_{2} \gamma_{5}(G)=1$. If $G^{\prime} \cong\left(C_{2}\right)^{8}$, then $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{2}$, $\gamma_{4}(G) \cong C_{2}, \gamma_{5}(G)=1$.

Let $d_{(2)}=8, d_{(3)}=0, d_{(4)}=1$, then by Lemma 2.1 this case is possible only when $p=3$. Thus $\left|D_{(3), K}(G)\right|=3,\left|D_{(4), K}(G)\right|=3,\left|D_{(5), K}(G)\right|=1$ and $\left|G^{\prime}\right|=2^{9}$. Let G^{\prime} be an abelian group then we have the following possibilities: (a) $G^{\prime} \cong\left(C_{9}\right)^{4} \times C_{3}$ (b) $G^{\prime} \cong\left(C_{9}\right)^{3} \times\left(C_{3}\right)^{3}$ (c) $G^{\prime} \cong\left(C_{9}\right)^{2} \times\left(C_{3}\right)^{5}$ (d) $G^{\prime} \cong C_{9} \times\left(C_{3}\right)^{7}$ (e) $G^{\prime} \cong\left(C_{3}\right)^{9}$. Clearly $G^{\prime} \cong\left(C_{9}\right)^{4} \times C_{3}$, $G^{\prime} \cong\left(C_{9}\right)^{3} \times\left(C_{3}\right)^{3}$ and $G^{\prime} \cong\left(C_{9}\right)^{2} \times\left(C_{3}\right)^{5}$ are not possible. If $G^{\prime} \cong C_{9} \times\left(C_{3}\right)^{7}$, then $G^{\prime 3} \subseteq \gamma_{3}(G) \cong C_{3}, \gamma_{4}(G) \cong C_{3}, \gamma_{5}(G)=1$. If $G^{\prime} \cong\left(C_{3}\right)^{9}$, then $G^{\prime 3} \subseteq \gamma_{3}(G) \cong C_{3}, \gamma_{4}(G) \cong C_{3}$ $\gamma_{5}(G)=1$.

Let $d_{(4)}=0$, then $d_{(2)}+2 d_{(3)}=11$ and we have the following cases: $d_{(2)}=1, d_{(3)}=5$ or $d_{(2)}=3, d_{(3)}=4$ or $d_{(2)}=5, d_{(3)}=3$ or $d_{(2)}=7, d_{(3)}=2$ or $d_{(2)}=9, d_{(3)}=1$ or $d_{(2)}=11$, $d_{(3)}=0$.

Let $d_{(2)}=1, d_{(3)}=5$, then this case is possible for all $p>0$ and $\left|G^{\prime}\right|=p^{6}$, for every $p>0$. Thus $\left|D_{(3), K}(G)\right|=p^{5},\left|D_{(4), K}(G)\right|=1$. Let G^{\prime} be an abelian group. If $p \geq 3$, then $G^{\prime} \cong\left(C_{p}\right)^{6},\left|G^{\prime p} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{p}\right)^{5}$ and $\gamma_{4}(G)=1$. If $p=2$, then $\left|D_{(4), K}(G)\right|=1$, $\left|D_{(3), K}(G)\right|=2^{5}$ and $\left|G^{\prime}\right|=2^{6}$ hence we have the following possibilities: (a) $G^{\prime} \cong\left(C_{4}\right)^{3}(\mathrm{~b})$ $G^{\prime} \cong C_{4} \times C_{4} \times C_{2} \times C_{2}$ (c) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{4}$ (d) $G^{\prime} \cong\left(C_{2}\right)^{6}$. If $G^{\prime} \cong\left(C_{4}\right)$, then $\left|G^{2} \cap \gamma_{3}(G)\right|=1$, $\gamma_{3}(G) \cong\left(C_{2}\right)^{2}, \gamma_{4}(G)=1$ or $\left|G^{2} \cap \gamma_{3}(G)\right|=2, \gamma_{3}(G) \cong\left(C_{2}\right)^{2}, \gamma_{4}(G)=1$ or $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2^{2}$, $\gamma_{3}(G) \cong\left(C_{2}\right)^{2}, \gamma_{4}(G)=1$ or $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{5}, \gamma_{4}(G)=1$. If $G^{\prime} \cong C_{4} \times C_{4} \times C_{2} \times C_{2}$, then $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G)=1$ or $G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \gamma_{4}(G)=1$ or $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{5}, \gamma_{4}(G)=1$. If $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{4}$, then $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{2}\right)^{4}$, $\gamma_{4}(G)=1$ or $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{5}, \gamma_{4}(G)=1$. If $G^{\prime} \cong\left(C_{2}\right)^{6}$, then $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{5}$,
$\gamma_{4}(G)=1$.

Let $d_{(2)}=3, d_{(3)}=4$, then this case is possible for all $p>0$ and $\left|G^{\prime}\right|=p^{7}$, for every $p>0$. Thus $\left|D_{(3), K}(G)\right|=p^{4},\left|D_{(4), K}(G)\right|=1$. Let G^{\prime} be an abelian group. If $p \geq 3$, then $G^{\prime} \cong\left(C_{p}\right)^{7},\left|G^{\prime p} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{p}\right)^{4}$ and $\gamma_{4}(G)=1$. If $p=2$, then $\left|D_{(4), K}(G)\right|=1$, $\left|D_{(3), K}(G)\right|=2^{4}$ and $\left|G^{\prime}\right|=2^{7}$, hence we have the following possibilities: (a) $G^{\prime} \cong\left(C_{4}\right)^{3} \times C_{2}$ (b) $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{3}$ (c) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{5}$ (d) $G^{\prime} \cong\left(C_{2}\right)^{7}$. If $G^{\prime} \cong\left(C_{4}\right)^{3} \times C_{2}$, then $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong C_{2}, \gamma_{4}(G)=1$ or $\left|G^{2} \cap \gamma_{3}(G)\right|=2, \gamma_{3}(G) \cong\left(C_{2}\right)^{2}, \gamma_{4}(G)=1$ or $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2^{2}, \gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G)=1$ or $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \gamma_{4}(G)=1$. If $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{3}$, then $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{2}\right)^{2}, \gamma_{4}(G)=1$ or $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2$, $\gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G)=1$ or $G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \gamma_{4}(G)=1$. If $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{5}$, then $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G)=1$ or $G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \gamma_{4}(G)=1$. If $G^{\prime} \cong\left(C_{2}\right)^{7}$, then $G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{4}, \gamma_{4}(G)=1$.

Let $d_{(2)}=5, d_{(3)}=3$, then this case is possible for all $p>0$ and $\left|G^{\prime}\right|=p^{8}$ for every $p>0$. Thus $\left|D_{(3), K}(G)\right|=p^{3},\left|D_{(4), K}(G)\right|=1$. Let G^{\prime} be an abelian group. If $p \geq 3$, then $G^{\prime} \cong\left(C_{p}\right)^{8},\left|G^{\prime p} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{p}\right)^{3}$ and $\gamma_{4}(G)=1$. If $p=2$, then $\left|D_{(4), K}(G)\right|=1$, $\left|D_{(3), K}(G)\right|=2^{3}$ and $\left|G^{\prime}\right|=2^{8}$, hence we have the following possibilities: (a) $G^{\prime} \cong\left(C_{4}\right)^{4}$ (b) $G^{\prime} \cong\left(C_{4}\right)^{3} \times\left(C_{2}\right)^{2}$ (c) $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{4}$ (d) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{6}$ (e) $G^{\prime} \cong\left(C_{2}\right)^{8}$. Clearly $G^{\prime} \cong\left(C_{4}\right)^{4}$ and $G^{\prime} \cong\left(C_{4}\right)^{3} \times\left(C_{2}\right)^{2}$ is not possible. If $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{4}$, then $G^{\prime 2} \subseteq \gamma_{3}(G) \cong C_{2}, \gamma_{4}(G)=1$ or $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{2}, \gamma_{4}(G)=1$ or $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{3}$, $\gamma_{4}(G)=1$. If $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{4}$, then $\left|G^{2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong C_{2}, \gamma_{4}(G)=1$ or $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=2, \gamma_{3}(G) \cong\left(C_{2}\right)^{2}, \gamma_{4}(G)=1$ or $G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G)=1$. If $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{6}$, then $\left|G^{2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{2}\right)^{2}, \gamma_{4}(G)=1$ or $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{3}$, $\gamma_{4}(G)=1$. If $G^{\prime} \cong\left(C_{2}\right)^{8}$ this is possible, then $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{3}, \gamma_{4}(G)=1$.

Let $d_{(2)}=7, d_{(3)}=2$, this case is possible for all $p>0$ and $\left|G^{\prime}\right|=p^{9}$, for every $p>0$. Thus $\left|D_{(3), K}(G)\right|=p^{2},\left|D_{(4), K}(G)\right|=1$. Let G^{\prime} be an abelian group. If $p \geq 3$, then $G^{\prime} \cong\left(C_{p}\right)^{9},\left|G^{\prime p} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong\left(C_{p}\right)^{2}$ and $\gamma_{4}(G)=1$. If $p=2$, then $\left|D_{(4), K}(G)\right|=1$, $\left|D_{(3), K}(G)\right|=2^{2}$ and $\left|G^{\prime}\right|=2^{9}$ hence we have the following possibilities: (a) $G^{\prime} \cong\left(C_{4}\right)^{4} \times C_{2}$ (b) $G^{\prime} \cong\left(C_{4}\right)^{3} \times\left(C_{2}\right)^{3}$ (c) $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{5}$ (d) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{7}$ (e) $G^{\prime} \cong\left(C_{2}\right)^{9}$. If $G^{\prime} \cong\left(C_{4}\right)^{4} \times C_{2}$ and $G^{\prime} \cong\left(C_{4}\right)^{3} \times\left(C_{2}\right)^{3}$, then these cases are not possible. If $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{5}$, then $G^{\prime 2} \subseteq \gamma_{3}(G) \cong C_{2}, \gamma_{4}(G)=1$ or $G^{\prime 2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{2}, \gamma_{4}(G)=1$. If $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{7}$, then $\left|G^{\prime 2} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong C_{2}, \gamma_{4}(G)=1$ or $G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{2}, \gamma_{4}(G)=1$. If $G^{\prime} \cong\left(C_{2}\right)^{9}$, then $G^{2} \subseteq \gamma_{3}(G) \cong\left(C_{2}\right)^{2}, \gamma_{4}(G)=1$.

Let $d_{(2)}=9, d_{(3)}=1$, then this case is not possible for all $p>0$. Now $\left|G^{\prime}\right|=p^{10}$, for every $p>0$. Thus $\left|D_{(3), K}(G)\right|=p,\left|D_{(4), K}(G)\right|=1$. Let G^{\prime} be an abelian group. If $p \geq 3$, then $G^{\prime} \cong\left(C_{p}\right)^{10},\left|G^{\prime p} \cap \gamma_{3}(G)\right|=1, \gamma_{3}(G) \cong C_{p}$ and $\gamma_{4}(G)=1$. If $p=2$, then $\left|D_{(4), K}(G)\right|=1$, $\left|D_{(3), K}(G)\right|=2$ and $\left|G^{\prime}\right|=2^{10}$, hence we have the following possibilities: (a) $G^{\prime} \cong\left(C_{4}\right)^{5}$ (b) $G^{\prime} \cong\left(C_{4}\right)^{4} \times\left(C_{2}\right)^{2}$ (c) $G^{\prime} \cong\left(C_{4}\right)^{3} \times\left(C_{2}\right)^{4}$ (d) $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{6}$ (e) $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{8}$ (f) $G^{\prime} \cong\left(C_{2}\right)^{10}$. It is clear that $G^{\prime} \cong\left(C_{4}\right)^{5}, G^{\prime} \cong\left(C_{4}\right)^{4} \times\left(C_{2}\right)^{2}, G^{\prime} \cong\left(C_{4}\right)^{3} \times\left(C_{2}\right)^{4}$ and $G^{\prime} \cong\left(C_{4}\right)^{2} \times\left(C_{2}\right)^{6}$ are not possible. If $G^{\prime} \cong C_{4} \times\left(C_{2}\right)^{8}, G^{\prime 2} \subseteq \gamma_{3}(G) \cong C_{2}, \gamma_{4}(G)=1$. If $G^{\prime} \cong\left(C_{2}\right)^{10}, G^{2} \subseteq \gamma_{3}(G) \cong C_{2}, \gamma_{4}(G)=1$.

Let $d_{(2)}=11, d_{(3)}=0$, then this case is possible for all $p>0$. Now $\left|G^{\prime}\right|=p^{11}$, for every $p>0$. Thus $\left|D_{(3), K}(G)\right|=1$ and G^{\prime} be abelian group. Thus $G^{\prime} \cong\left(C_{p}\right)^{11},\left|G^{\prime p} \cap \gamma_{3}(G)\right|=1$ and $\gamma_{3}(G)=1$, for all $p>0$.

Converse can be easily done by computing $d_{(m)}$'s in each case.

References

[1] S. Bhatt and H. Chandra, A note on modular group algebras with upper Lie nilpotency indices, Alg. Disc. Math., 33 No. 2 (2022) 1-20.
[2] V. Bovdi and J. Kurdics, Lie properties of the group algebra and the nilpotency class of the group of units, J. Algebra, 212 (1999) 28-64.
[3] V. Bovdi, Modular group algebras with almost maximal Lie nilpotency indices II, Sci. Math. Jpn., 65 (2007) 267-271.
[4] V. Bovdi, T. Juhasz and E. Spinelli, Modular group algebras with almost maximal Lie nilpotency indices, Algebr. Represt. Theory, 9 No. 3 (2006) 259-266.
[5] V. Bovdi and E. Spinelli, Modular group algebras with maximal Lie nilpotency indices, Publ. Math. Debrecen, 65 No. 1-2 (2004) 243-252.
[6] V. Bovdi and J. B. Srivastava, Lie nilpotency indices of modular group algebra, Algebra Colloq., $\mathbf{1 7}$ No. 1-2 (2010) 17-26.
[7] M. Sahai, Group algebras with almost minimal Lie nilpotency index, Publ. Math. Debrecen, 87 No. 1-2 (2015) 47-55.
[8] M. Sahai and B. Sharan, On Lie nilpotent modular group algebras, Comm. Algebra, 46 No. 3 (2018) 1199-1206.
[9] M. Sahai and B. Sharan, Modular group algebras of Lie nilpotency index $8 p-6$, Asian-Eur. J. Math., 11 (2018) 1850039.
[10] M. Sahai and B. Sharan, A note on the upper Lie nilpotency index of a group algebra, Asian-Eur. J. Math., 12 (2020) 2050010.
[11] R. K. Sharma and J. B. Srivastava, Lie ideals in group rings, J. Pure Appl. Algebra, 63 (1990) 67-80.
[12] R. K. Sharma and V. Bist, A note on Lie nilpotent group rings, Bull. Austral. Math. Soc., 45 (1992) 503-506.
[13] A. Shalev, The nilpotency class of the unit group of a modular group algebra III, Arch. Math., 60 (1993) 136-145.
[14] A. Shalev, Lie dimension subgroups, Lie nilpotency indices and the exponent of the group of normalized units, J. London Math. Soc., 43 (1991) 23-36.

Kuldeep Singh

Department of Mathematics and Scientific Computing,
M. M. M. University of Technology, Gorakhpur, India.
singhkuldeepgkp98@gmail.com
Harish Chandra
Department of Mathematics and Scientific Computing,
M. M. M. University of Technology, Gorakhpur, India.
hcmsc@mmmut.ac.in

Suchi Bhatt

Department of Mathematics and Scientific Computing, M. M. M. University of Technology, Gorakhpur, India.

