Algebraic Structures and Their Applications

Research Paper

THE DUALS OF ANNIHILATOR CONDITIONS FOR MODULES

FARANAK FARSHADIFAR＊

Abstract

Let R be a commutative ring with identity and let M be an R－module．The purpose of this paper is to introduce and investigate the submodules of an R－module M which satisfy the dual of Property \mathcal{A} ，the dual of strong Property \mathcal{A} ，and the dual of proper strong Property \mathcal{A} ．Moreover，a submodule N of M which satisfy Property $\mathcal{S}_{\mathcal{J}}(\mathcal{N})$ and Property $\mathcal{I}_{\mathcal{J}}^{\mathcal{M}}(\mathcal{N})$ will be introduced and investigated．

1．Introduction

Throughout this paper，R will denote a commutative ring with identity and \mathbb{Z} will denote the ring of integers．

Let M be an R－module．The set of zero divisors of R on M is $Z_{R}(M)=\{r \in R \mid r m=$ 0 for some nonzero $m \in M\}$ and the set of torsion elements of M with respect to R is $T_{R}(M)=\{m \in M \mid r m=0$ for some $0 \neq r \in R\}$ ．

DOI：10．22034／as．2023．18995．1588
MSC（2010）：Primary：13C13，13A99．
Keywords：Dual of Property \mathcal{A} ，Dual of proper strong Property \mathcal{A} ，Dual of strong Property \mathcal{A} ，Finitely generated， Property $\mathcal{I}_{\mathcal{J}}^{\mathcal{M}}(\mathcal{N})$, Property $\mathcal{S}_{\mathcal{J}}(\mathcal{N})$ ．

Received： 17 September 2022，Accepted： 08 July 2023.
＊Corresponding author

An R-module M satisfies Property \mathcal{A} (resp., Property \mathcal{T}) if for every finitely generated ideal I of R (resp., finitely generated submodule N of M) with $I \subseteq Z_{R}(M)$ (resp., $N \subseteq T_{R}(M)$), there exists a nonzero $m \in M$ (resp., $r \in R$) with $\operatorname{Im}=0$ (resp., $r N=0$), or equivalently $\left(0:_{M} I\right) \neq 0\left(\right.$ resp., $\left.A n n_{R}(N) \neq 0\right)[2]$. An R-module M satisfies strong Property \mathcal{A} (resp., strong Property \mathcal{T}) if for any $r_{1}, \ldots, r_{n} \in Z_{R}(M)$ (resp., $m_{1}, \ldots, m_{n} \in T_{R}(M)$), there exists a non-zero $m \in M$ (resp., $r \in R$) with $r_{1} m=\cdots=r_{n} m=0$ (resp., $r m_{1}=\cdots=r m_{n}=0$) [2]. An R-module M satisfies proper strong Property \mathcal{A} if for any proper finitely generated ideal $I=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ of R such that $a_{i} \in Z_{R}(M)$ we have $\left(0:_{M} I\right) \neq 0[1]$. The class of modules satisfies proper strong Property \mathcal{A} lying properly between the class of modules satisfies strong Property \mathcal{A} and Property \mathcal{A} [1, Corollary 2.12].

Let M be an R-module. The subset $W_{R}(M)$ of R (that is the dual notion of $Z_{R}(M)$) is defined by $\{r \in R \mid r M \neq M\}$ [19]. A non-zero submodule N of M is said to be secondal if $W_{R}(N)$ is an ideal of R. In this case, $W_{R}(N)$ is a prime ideal of R [6].

Recently, the annihilator conditions on modules over commutative rings have attracted the attention of several researchers. A brief history of this can be found in [2, 1]. The purpose of this paper is to introduce and study the dual of Property \mathcal{A}, the dual of strong Property \mathcal{A}, and the dual of proper strong Property \mathcal{A} for modules over a commutative ring. Also, for a submodule N of an R-module M we introduce and investigate the Properties $\mathcal{S}_{\mathcal{J}}(\mathcal{N})$ and $\mathcal{I}_{\mathcal{J}}^{\mathcal{M}}(\mathcal{N})$. Some of the results in this article are dual of the results for Property \mathcal{A}, strong Property \mathcal{A}, and proper strong Property \mathcal{A} considered in [1] and [2].

2. The duals of Property \mathcal{A} and strong Property \mathcal{A} for modules

Definition 2.1. We say that an R-module M satisfies the dual of Property \mathcal{A} if for each finitely generated ideal I of R with $I \subseteq W_{R}(M)$ we have $I M \neq M$.

A proper submodule N of an R-module M is said to be completely irreducible if $N=\bigcap_{i \in I} N_{i}$, where $\left\{N_{i}\right\}_{i \in I}$ is a family of submodules of M, implies that $N=N_{i}$ for some $i \in I$. It is easy to see that every submodule of M is an intersection of completely irreducible submodules of M [13].

Definition 2.2. We say that an R-module M satisfies the dual of strong Property \mathcal{A} if for any $a_{1}, \ldots, a_{n} \in W_{R}(M)$, there exists a completely irreducible submodule L of M such that $a_{i} M \subseteq L \neq M$ for $i=1,2, . ., n$.

Clearly, if an R-module M satisfies the dual of strong Property \mathcal{A}, then M satisfies the dual of Property \mathcal{A}. Nevertheless, the following example shows that the converse is not true in general.

Example 2.3. The \mathbb{Z}-module \mathbb{Z} satisfies the dual of Property \mathcal{A} but does not satisfies the dual of strong Property \mathcal{A}.

Remark 2.4. Let N and K be two submodules of an R-module M. To prove $N \subseteq K$, it is enough to show that if L is a completely irreducible submodule of M such that $K \subseteq L$, then $N \subseteq L[6]$.

Theorem 2.5. Let M be an R-module. Consider the conditions:
(a) M satisfies the dual of strong Property \mathcal{A},
(b) M is a secondal R-module.

Then $(a) \Rightarrow(b)$. If further R is a PID, then $(b) \Rightarrow(a)$.
Proof. $(a) \Rightarrow(b)$. Let $a, b \in W_{R}(M)$. Then by part (a), there exists a completely irreducible submodule L of M such that $a M \subseteq L \neq M$ and $b M \subseteq L \neq M$. Thus $(a-b) M \subseteq L \neq M$ and so $a-b \in W_{R}(M)$. This implies that M is a secondal R-module.
$(b) \Rightarrow(a)$. Let $a_{1}, \ldots, a_{n} \in W_{R}(M)$. Then by part (b), $W_{R}(M)$ is an ideal of R. As R is a $P I D$, there exists an $a \in R$ such that $\left\langle a_{1}, \ldots, a_{n}\right\rangle=R a$. Thus $a \in W_{R}(M)$. Hence there exists a completely irreducible submodule L of M such that $a M \subseteq L \neq M$ by Remark 2.4. This implies that $a_{i} M \subseteq L \neq M$ for $i=1,2, . ., n$, as needed.

Theorem 2.6. Let $f: R \rightarrow \dot{R}$ be a homomorphism of commutative rings and let M be an \dot{R}-module. Consider M as an R-module with $r m:=f(r) m$ for $r \in R$ and $m \in M$.
(a) Suppose for each (finitely generated) ideal I of $R, f(I) \dot{R}=\{f(i) \dot{r} \mid i \in I, \dot{r} \in \dot{R}\}$ (e.g., f is surjective or $f: R \rightarrow R_{N}, f(r)=r / 1$, where N is a multiplicatively closed subset of R). Then M satisfies the dual of Property \mathcal{A} as an \dot{R}-module implies M satisfies the dual of Property \mathcal{A} as an R-module.
(b) Suppose that every (finitely generated) ideal J of \dot{R} has the form $J=f(I) \hat{R}$ for some (finitely generated) ideal I of R (e.g., f is surjective or $f: R \rightarrow R_{N}, f(r)=r / 1$, where N is a multiplicatively closed subset of R). Then M satisfies the dual of Property \mathcal{A} as an R-module implies M satisfies the dual of Property \mathcal{A} as an \dot{R}-module.

Proof. (a) Suppose M satisfies the dual of Property \mathcal{A} as an \dot{R}-module. Let I be an ideal of R with $I \subseteq W_{R}(M)$. So for $i \in I$, there is a $m \in M \backslash i M=M \backslash f(i) M$. Hence, $f(i) \in W_{\dot{R}}(M)$ and so $\dot{r} f(i) \in W_{\dot{R}}(M)$ for each $\dot{r} \in \dot{R}$. Thus $f(I) \dot{R}=\{f(i) \dot{r} \mid i \in I, \dot{r} \in \dot{R}\}$ is an ideal of \dot{R} with $f(I) \dot{R} \subseteq W_{\dot{R}}(M)$. Suppose that I is finitely generated. Then $f(I) \dot{R}$ is finitely generated. Hence there is a $m \in M \backslash f(I) \dot{R} M$. This implies that $m \in M \backslash I M$. Thus M satisfies the dual of Property \mathcal{A} as an R-module.
(b) Suppose that M satisfies the dual of Property \mathcal{A} as an R -module. Let J be an ideal of \dot{R} with $J \subseteq W_{\dot{R}}(M)$. Then there is an ideal I of R with $J=f(I) S$. For $i \in I, f(i) \in W_{\dot{R}}(M)$. So, there is a $m \in M \backslash f(i) M=M \backslash i M$. So, $I \subseteq W_{R}(M)$. If J is finitely generated, we can choose I to be finitely generated. Since M satisfies the dual of Property \mathcal{A} as an R-module, there is a $m \in M \backslash I M$. It follows that $m \in M \backslash f(I) \dot{R} M=M \backslash J M$. So, M satisfies the dual of Property \mathcal{A} as an \dot{R}-module.

Corollary 2.7. Let M be an R-module, $J \subseteq A n n_{R}(M)$ an ideal of R, and put $\bar{R}=R / J$. Then M satisfies the dual of Property \mathcal{A} as an R-module if and only if M satisfies the dual of Property \mathcal{A} as an \bar{R}-module. In particular, M satisfies the dual of Property \mathcal{A} as an R-module if and only if M satisfies the dual of Property \mathcal{A} as an $R / A n n_{R}(M)$-module.

Proof. This follows from Theorem 2.6.

Recall that an R-module M is said to be Hopfian (resp. co-Hopfian) if every surjective (resp. injective) endomorphism f of M is an isomorphism.

An R-module M is said to be a multiplication module if for every submodule N of M there exists an ideal I of R such that $N=I M$ 12].

A submodule N of an R-module M is said to be idempotent if $N=\left(N:_{R} M\right)^{2} M$. Also, M is said to be fully idempotent if every submodule of M is idempotent [7].

An R-module M is said to be a comultiplication module if for every submodule N of M there exists an ideal I of R such that $N=\left(0:_{M} I\right)[3]$. R is said to be a comultiplication ring if, as an R-module, R is a comultiplication R-module [4].

A submodule N of an R-module M is said to be coidempotent if $N=\left(0:_{M} A n n_{R}(N)^{2}\right)$. Also, an R-module M is said to be fully coidempotent if every submodule of M is coidempotent [7].

Proposition 2.8. Let M be an R-module. Then we have the following.
(a) If R is a comultiplication ring and M is a faithful R-module, then M satisfies Property \mathcal{A} and the dual of Property \mathcal{A}.
(b) If M is a Hopfian comultiplication (in particular, M is a fully coidempotent) R-module and satisfies the dual of Property \mathcal{A}, then M satisfies Property \mathcal{A}.
(c) If M is a co-Hopfian multiplication (in particular, M is a fully idempotent) R-module and satisfies Property \mathcal{A}, then M satisfies the dual of Property \mathcal{A}.
(d) If R is a principal ideal ring, then M satisfies the dual of strong Property \mathcal{A}.

Proof. (a) This follows from [4, Lemma 3.11].
(b) First note that every fully coidempotent R-module is a Hopfian comultiplication R module by [7], Theorem 3.9 and Proposition 3.5]. As M is a Hopfian comultiplication R-module, $Z_{R}(M)=W_{R}(M)$. Now the result follows from [5, Proposition 3.1].
(c) First note that every fully idempotent R-module is a co-Hopfian multiplication R-module by [7], Proposition 2.7]. Since M is a co-Hopfian multiplication R-module, $Z_{R}(M)=W_{R}(M)$. Now the result follows from [18, Note 1.13].
(d) This is clear.

Lemma 2.9. Let S be a multiplicatively closed subset of R, I and ideal of R, and M be an R-module. Then we have the following.
(a) If $S^{-1} I \subseteq W_{S^{-1} R}\left(S^{-1} M\right)$, then $I \subseteq W_{R}(M)$.
(b) If $Z_{R}(M) \cap S=\emptyset, W_{R}(M) \cap S=\emptyset$, and $I \subseteq W_{R}(M)$, then $S^{-1} I \subseteq W_{S^{-1} R}\left(S^{-1} M\right)$.
(c) If M is an Hopfian module (in particular, M is a multiplication or coidempotent module), $W_{R}(M) \cap S=\emptyset$, and $I \subseteq W_{R}(M)$, then $S^{-1} I \subseteq W_{S^{-1} R}\left(S^{-1} M\right)$.

Proof. (a) This is clear.
(b) Suppose that $S^{-1} I \nsubseteq W_{S^{-1} R}\left(S^{-1} M\right)$ and seek for a contradiction. Then $S^{-1}(a M)=$ $S^{-1} M$ for some $a \in I$. As $I \subseteq W_{R}(M)$, there exists $m \in M \backslash I M$. Now we have $s t m=s a m_{1}$ for some $s, t \in S$ and $m_{1} \in M$. Since $W_{R}(M) \cap S=\emptyset, t M=M$ and so $m_{1}=t m_{2}$ for some $m_{2} \in M$. Hence, $\operatorname{st}\left(m-a m_{2}\right)=0$. Now $Z_{R}(M) \cap S=\emptyset$ implies that $m=a m_{2}$, which is a contradiction.
(c) This follows from the fact that $Z_{R}(M) \subseteq W_{R}(M)$ and part (b).

Corollary 2.10. Let S be a multiplicatively closed subset of R and M be an R-module. Consider the conditions:
(a) M_{S} satisfies the dual of Property \mathcal{A} as an R-module,
(b) M_{S} satisfies the dual of Property \mathcal{A} as an R_{S}-module,
(c) M satisfies the dual of Property \mathcal{A} as an R-module.

Then $(a) \Leftrightarrow(b)$. If further $S \cap W_{R}(M)=\emptyset$ and $S \cap Z_{R}(M)=\emptyset$, (a), (b) and (c) are equivalent.
Proof. The equivalence of (a) and (b) follows from Theorem 2.6. Now assume that $S \cap$ $W_{R}(M)=\emptyset$ and $S \cap Z_{R}(M)=\emptyset$. Then $(b) \Leftrightarrow(c)$ from Lemma 2.9 (b).

Proposition 2.11. Let X be an indeterminate over R, M be an R-module, and $M[X]$ satisfies the dual of strong Property \mathcal{A} over $R[X]$. Then M satisfies the dual of Property \mathcal{A}.

Proof. Let $I=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ be a finitely generated ideal of R such that $a_{i} \in W_{R}(M)$ for $i=1, \ldots, n$. Then $I[X]=\left\langle a_{1}, \ldots, a_{n}\right\rangle R[X]$ is a finitely generated ideal of $R[X]$ such that $a_{i} \in W_{R[X]}(M[X])$ for $i=1, \ldots, n$. Since $M[X]$ satisfies the dual of strong Property \mathcal{A} over $R[X]$, we get $I[X] M[X] \neq M[X]$. This implies that $I M \neq M$. Thus M satisfies the dual of Property \mathcal{A}.

Recall that a ring R is called Bézout if every finitely generated ideal I of R is principal.
A submodule N of an R-module M is small if for any submodule X of $M, X+N=M$ implies that $X=M$.

A prime ideal P of R is said to be a coassociated prime ideal of an R-module M if there exists a cocyclic homomorphic image T of M such that $A n n_{R}(T)=P$. The set of coassociated prime ideals of M is denoted by $\operatorname{Coass}(M)$ [20].

Theorem 2.12. (a) The trivial R-module vacuously satisfies the dual of Property \mathcal{A}.
(b) Every module over a Bézout ring satisfies the dual of Property \mathcal{A}.
(c) Let R be a zero-dimensional commutative ring (e.g., R is Artinian). Then every R-module satisfies the dual of Property \mathcal{A}.
(d) Let M be a finitely generated R-module. Then M satisfies the dual of Property \mathcal{A}.
(e) Let M be an Artinian R-module. Then M satisfies the dual of Property \mathcal{A}. In fact, for any ideal I of R with $I \subseteq W_{R}(M), I M \neq M$.
(f) Let M and \dot{M} be R-modules with $W_{R}(M) \subseteq W_{R}(\dot{M})$. If M satisfies the dual of Property \mathcal{A} (respectively, the dual of strong Property A), then $M \oplus \dot{M}$ satisfies the dual of Property \mathcal{A} (respectively, the dual of strong Property \mathcal{A}).
(g) Let N be a small submodule of M. Then M satisfies the dual of Property \mathcal{A} (resp. M is a secondal module) if and only if M / N satisfies the dual of Property \mathcal{A} (resp. M / N is a secondal module).

Proof. (a) Note that $W_{R}(0)=\emptyset$.
(b) This is clear.
(c) Suppose $\operatorname{dim} R=0$ and M is an R-module. We can assume $M \neq 0$. Let I be a finitely generated ideal of R with $I \subseteq W_{R}(M)$. So, $I \subseteq P \subseteq W_{R}(M)$ for some prime ideal P of R by using [20, Theorem 2.15]. Since $h t P=0$ and I is finitely generated, $I_{P}^{n}=0$ for some $n \geq 1$. Hence there is an $s \in R \backslash P$ with $I^{n} s=0$. Since $s \in R \backslash P, s \notin A n n_{R}(M)$. Thus $s M \neq 0$. We have $I^{n} s M=0$. Suppose $I^{t} s M \neq 0$, but $I^{t+1} s M=0$. Then $I M \subseteq\left(0:_{M} I^{t} s\right) \neq M$. Therefore, $I M \neq M$.
(d) Let M be a finitely generated R-module and I be an ideal of R with $I \subseteq W_{R}(M)$. Assume contrary that $I M=M$. Then $(1+a) M=0$ by [14, Theorem 76]. As $a \in I \subseteq W_{R}(M)$, there exists an $m \in M \backslash a M$. Now, $(1+a) m=0$ implies that $m \in a M$, which is a contradiction.
(e) As M is an Artinian R-module, $W_{R}(M)=\cup_{i=1}^{n} P_{i}$ by using [20, Theorem 2.10 (c), Theorem 2.15, Corollary 3.2], where $P_{i} \in \operatorname{Coass}(M)$. Now let $I \subseteq W_{R}(M)$ be an ideal. Then $I \subseteq P_{i}$ for some $P_{i} \in \operatorname{Coass}(M)$. Hence for some completely irreducible submodule L of M with $L \neq M$, we have $I \subseteq P_{i}=\left(L:_{R} M\right)$. This implies that $I M \neq M$.
(f) Let \dot{M}^{\prime} satisfies the dual of Property \mathcal{A}. It is easy to see that $W_{R}\left(M \oplus \mathcal{M}^{\prime}\right)=W_{R}(M) \cup$ $W_{R}\left(M^{\prime}\right)=W_{R}(\dot{M})$. Let I be a finitely generated ideal of R with $I \subseteq W_{R}(M) \cup W_{R}(\dot{M})=$ $W_{R}(\dot{M})$. Then $I M^{\prime} \neq \dot{M}^{\prime}$. Thus there exists an $x \in I^{\prime} \backslash M^{\prime}$. This implies that $(0, x) \notin$ $I\left(M \oplus M^{\prime}\right)$ and so $I\left(M \oplus M^{\prime}\right) \neq M \oplus M^{\prime}$, as needed.
(g) We always have $W_{R}(M / N) \subseteq W_{R}(M)$. As N is small we get that $W_{R}(M) \subseteq W_{R}(M / N)$. Now the result is straightforward.

Let M be an R-module. The idealization $R(+) M=\{(a, m): a \in R, m \in M\}$ of M is a commutative ring whose addition is component-wise and whose multiplication is defined as $(a, m)(b, \dot{m})=(a b, a \dot{m}+b m)$ for each $a, b \in R, m, \dot{m} \in M$ 17].

Proposition 2.13. Let M be an R-module. Then we have

$$
W_{R(+) M}(R(+) M)=W_{R}(R)(+) M
$$

Proof. First note that $W_{R}(M) \subseteq W_{R}(R)$. Let $(a, x) \in W_{R(+) M}(R(+) M)$. Then there exists $(b, y) \in R(+) M \backslash(a, x)(R(+) M)$. This implies that for each $(c, z) \in R(+) M$, $(b, y) \neq(a, x)(c, z)$. Hence, $b \neq a c$ or $y \neq a z+c x$. If $b \neq a c$, then $a \in W_{R}(R)$ and we are done. If $y \neq a z+c x$. Then by setting $c=0$, we have $y \neq a z$. Thus $a \in W_{R}(M) \subseteq W_{R}(R)$ and so $W_{R(+) M}(R(+) M) \subseteq W_{R}(R)(+) M$. Now let $(a, x) \in W_{R}(R)(+) M$. Then $a \in W_{R}(R)$. Thus there exist $r \in R$ such that $r \in R \backslash a R$. Assume contrary that $(a, x)(R(+) M)=R(+) M$. Then $(r, 0)=(a, x)(c, y)$ for some $(c, y) \in R(+) M$. Thus $r=a c$, which is a contradiction. Hence $(a, x)(R(+) M) \neq R(+) M$, as needed.

Example 2.14. Let $M=\oplus R / I$, where the sum runs over all proper finitely generated ideals of R. Then for a proper finitely generated ideal I of $R, I \subseteq W_{R}(M)$ and $I(R / I)=\overline{0} \neq R / I$ implies that M satisfies the dual of Property \mathcal{A}. As R is a submodule of M, we have R is a submodule of an R-module satisfying the dual of Property \mathcal{A}. Let M^{\prime} be any R-module. Then $M \oplus M^{\prime}$ again, satisfies the dual of Property \mathcal{A}. Thus, any R-module is a submodule, homomorphic image, or direct factor of a module satisfying the dual of Property \mathcal{A}.

3. The dual of proper strong Property \mathcal{A} for modules

Lemma 3.1. Let M be an R-module and $S=R \backslash W_{R}(M)$. Then $S^{-1} R=R$ if and only if $R=U(R) \cup W_{R}(M)$, where $U(R)$ is the set of all invertible elements of R.

Proof. Assume that $S^{-1} R=R$ and $s \in S$. Then $1 / s \in S^{-1} R=R$ implies that s is invertible in R. Hence any element of S is invertible in R. The converse is clear.

Definition 3.2. We say that an R-module M satisfies the dual of proper strong Property \mathcal{A} if for any proper finitely generated ideal $I=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ of R such that $a_{i} \in W_{R}(M)$ we have $I M \neq M$.

Theorem 3.3. Let M be an R-module. Then the following assertions are equivalent:
(a) M satisfies the dual of proper strong Property \mathcal{A},
(b) M satisfies the dual of Property \mathcal{A} and $\mathfrak{m} \cap W_{R}(M)$ is an ideal of R for each maximal ideal \mathfrak{m} of R.

Proof. $(a) \Rightarrow(b)$ Assume that M satisfies the dual of proper strong Property \mathcal{A}. Clearly, M satisfies the dual of Property \mathcal{A}. Let \mathfrak{m} be a maximal ideal of R. Let $a, b \in \mathfrak{m} \cap W_{R}(M)$ and put $I=\langle a, b\rangle$ the ideal generated by a and b. Then $I \subseteq \mathfrak{m}$ and $a, b \in W_{R}(M)$. Since M satisfies the dual of proper strong Property \mathcal{A}, we get that $I M \neq M$. It follows that $I \subseteq \mathfrak{m} \cap W_{R}(M)$ and thus $\mathfrak{m} \cap W_{R}(M)$ is an ideal of R.
$(b) \Rightarrow(a)$ Let $I=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ be a proper finitely generated ideal of R such that $a_{i} \in$ $W_{R}(M)$ for $i=1, \ldots, n$. Let \mathfrak{m} be a maximal ideal of R with $I \subseteq \mathfrak{m}$. Then $a_{1}, a_{2}, \ldots, a_{n} \in$ $\mathfrak{m} \cap W_{R}(M)$. As, by hypotheses, $\mathfrak{m} \cap W_{R}(M)$ is an ideal of R, it follows that $I \subseteq \mathfrak{m} \cap W_{R}(M)$. Now, since M satisfies the dual of Property \mathcal{A}, we get $I M \neq M$. Hence M satisfies the dual of proper strong Property \mathcal{A}.

Theorem 3.4. Let M be an R-module. Then

$$
\begin{gathered}
M \text { satisfies the dual of strong Property } \mathcal{A} \Rightarrow \\
M \text { satisfies the dual of proper strong Property } \mathcal{A} \Rightarrow \\
M \text { satisfies the dual of Property } \mathcal{A} .
\end{gathered}
$$

Proof. The proof is clear from the definitions.

The Examples 3.5 and 3.12 show that the converse of Theorem 3.4 is not true in general.

Example 3.5. The \mathbb{Z}-module \mathbb{Z} satisfies the dual of proper strong Property \mathcal{A} but does not satisfies the dual of strong Property \mathcal{A}.

Let R_{i} be a commutative ring with identity and M_{i} be an R_{i}-module for each $i=1,2$. Assume that $M=M_{1} \times M_{2}$ and $R=R_{1} \times R_{2}$. Then M is clearly an R-module with component-wise addition and scalar multiplication. Also, each submodule N of M is of the form $N=N_{1} \times N_{2}$, where N_{i} is a submodule of M_{i} for each $i=1,2$.

Proposition 3.6. Let R_{i} be a commutative ring with identity and M_{i} be an R_{i}-module for each $i=1,2$. Then

$$
W_{R_{1} \times R_{2}}\left(M_{1} \times M_{2}\right)=\left(W_{R_{1}}\left(M_{1}\right) \times R_{2}\right) \cup\left(R_{1} \times W_{R_{2}}\left(M_{2}\right)\right)
$$

Proof. This is straightforward.

Theorem 3.7. Let R_{i} be a commutative ring with identity and M_{i} be an R_{i}-module for each $i=1,2$. Let $M=M_{1} \times M_{2}, R=R_{1} \times R_{2}$, and $S_{i}=R_{i} \backslash W_{R_{i}}\left(M_{i}\right)$. Then the following assertions are equivalent:
(a) M satisfies the dual of proper strong Property \mathcal{A},
(b) M_{i} satisfies the dual of proper strong Property \mathcal{A} and $S_{i}^{-1} R_{i}=R_{i}$ for each $i=1,2$.

Proof. $(a) \Rightarrow(b)$ Assume that M satisfies the dual of proper strong Property \mathcal{A} and $I_{1}=$ $\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ is a finitely generated ideal of R_{1} such that $I_{1} \subseteq W_{R_{1}}\left(M_{1}\right)$. Set

$$
I=\left\langle\left(a_{1}, 0\right),\left(a_{2}, 0\right), \ldots,\left(a_{n}, 0\right),(0,1)\right\rangle
$$

Then $(0,1),\left(a_{i}, 0\right) \in W_{R_{1} \times R_{2}}\left(M_{1} \times M_{2}\right)$ for $i=1,2, \ldots, n$. By part (a), $I\left(M_{1} \times M_{2}\right) \neq M_{1} \times M_{2}$. Thus there exists $\left(x_{1}, x_{2}\right) \in M_{1} \times M_{2} \backslash I\left(M_{1} \times M_{2}\right)$. This implies that $x_{1} \notin I_{1} M_{1}$. Thus $I_{1} M_{1} \neq$ M_{1} and M_{1} satisfies the dual of proper strong Property \mathcal{A}. Now let $r_{1} \in R_{1} \backslash U\left(R_{1}\right)$. Clearly $\left(r_{1}, 0\right) \in W_{R_{1} \times R_{2}}\left(M_{1} \times M_{2}\right)$. Set $J=\left\langle\left(r_{1}, 0\right),(0,1)\right\rangle$. Thus by part (a), $J\left(M_{1} \times M_{2}\right) \neq M_{1} \times M_{2}$. This implies that $r_{1} M_{1} \neq M_{1}$ and hence $r_{1} \in W_{R_{1}}\left(M_{1}\right)$. Now by Lemma 3.1, $S_{1}^{-1} R_{1}=R_{1}$. Similarly, one can see that M_{2} satisfies the dual of proper strong Property \mathcal{A} and $S_{2}^{-1} R_{2}=R_{2}$.
$(b) \Rightarrow(a)$ Let $I=\left\langle\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right), \ldots,\left(a_{n}, b_{n}\right)\right\rangle$ be a proper finitely generated ideal of R such that $\left(a_{i}, b_{i}\right) \in W_{R_{1} \times R_{2}}\left(M_{1} \times M_{2}\right)$ for each $i=1,2, \ldots, n$. Set $I_{1}=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ and $I_{2}=\left\langle b_{1}, b_{2}, \ldots, b_{n}\right\rangle$. Then as I is proper, I_{1} or I_{2} is proper. Assume that I_{1} is proper. Then by Lemma 3.1, $I_{1} \subseteq W_{R_{1}}\left(M_{1}\right)$. Thus by part (b), $I_{1} M_{1} \neq M_{1}$. Hence there exists $x_{1} \in M_{1} \backslash I_{1} M_{1}$. Now $\left(x_{1}, 0\right) \in\left(M_{1} \times M_{2}\right) \backslash I\left(M_{1} \times M_{2}\right)$ implies that M satisfies the dual of proper strong Property \mathcal{A}.

Theorem 3.8. Let M be an R-module and $S=R \backslash W_{R}(M)$. Then we have the following.
(a) If $S^{-1} R=R$, then M satisfies the dual of proper strong Property \mathcal{A} if and only if M satisfies the dual of Property \mathcal{A}.
(b) If $S^{-1} R \neq R$, then M satisfies the dual of proper strong Property \mathcal{A} if and only if M satisfies the dual of strong Property \mathcal{A}.

Proof. (a) Since $S^{-1} R=R$, we have $W_{R}(M)=\cup_{\mathfrak{m} \in \max (R)} \mathfrak{m}$ by Lemma 3.1. Thus far each maximal ideal \mathfrak{m} of R, we have $\mathfrak{m} \cap W_{R}(M)=\mathfrak{m}$ is always an ideal of R. Now the result follows from Theorem 3.3. The reverse implication is clear.
(b) If M satisfies the dual of strong Property \mathcal{A}, then clearly, M satisfies the dual of proper strong Property \mathcal{A}. Conversely, assume that M satisfies the dual of proper strong Property \mathcal{A}. As $S^{-1} R \neq R$, there exists $x \in R$ such that x is not invertible and $x \notin W_{R}(M)$ by Lemma 3.1. Let \mathfrak{m} be a maximal ideal of R such that $x \in m$. Let $I=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ be a proper ideal of R such that $a_{i} \in W_{R}(M)$ for $i=1, \ldots, n$. Then $x I=\left\langle x a_{1}, \ldots, x a_{n}\right\rangle \subseteq \mathfrak{m}$ is a proper ideal of R and $x a_{i} \in W_{R}(M)$ for $i=1, \ldots, n$. Since M satisfies the dual of proper strong Property $\mathcal{A}, x I M \neq M$. Thus there exists a completely irreducible submodule L of M such that $x I M \subseteq L \neq M$ by Remark 2.4. Now, as $x \notin W_{R}(M)$, it follows that $I M \subseteq L \neq M$. This implies that $a_{i} M \subseteq L \neq M$ for $i=1, \ldots, n$. Hence M satisfies the dual of strong Property \mathcal{A}.

Proposition 3.9. Let R be a zero-dimensional ring. Then any faithful R-module M satisfies the dual of proper strong Property \mathcal{A}. In particular, any R-module M satisfies the dual of proper strong Property \mathcal{A} over $R / A n n_{R}(M)$.

Proof. By Theorem 2.12 (c), M satisfies the dual of Property \mathcal{A}. We have $W_{R}(M) \subseteq Z_{R}(M)=$ $Z_{R}(R)$ by using the proof of [1, Corollary 2.20]. Therefore, $W_{R}(M)=Z_{R}(R)$ because the inverse inclusion is clear. Thus $S^{-1} R=R$, where $S=R \backslash W_{R}(M)=R \backslash Z_{R}(R)$. This implies that M satisfies the dual of proper strong Property \mathcal{A} by Theorem 3.8 (a).

Theorem 3.10. Let R_{i} be a commutative ring with identity and M_{i} be an R_{i}-module for each $i=1,2$. Let $M=M_{1} \times M_{2}, R=R_{1} \times R_{2}$, and $S_{i}=R_{i} \backslash Z_{R_{i}}\left(M_{i}\right)$. Then the following assertions are equivalent:
(a) M satisfies the proper strong Property \mathcal{A},
(b) M_{i} satisfies the proper strong Property \mathcal{A} and $S_{i}^{-1} R_{i}=R_{i}$ for each $i=1,2$.

Proof. $(a) \Rightarrow(b)$ Assume that M satisfies the proper strong Property \mathcal{A} and $I_{1}=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ is a finitely generated ideal of R_{1} such that $I_{1} \subseteq Z_{R_{1}}\left(M_{1}\right)$. Set

$$
I=\left\langle\left(a_{1}, 0\right),\left(a_{2}, 0\right), \ldots,\left(a_{n}, 0\right),(0,1)\right\rangle .
$$

Then $(0,1),\left(a_{i}, 0\right) \in Z_{R_{1} \times R_{2}}\left(M_{1} \times M_{2}\right)$ for $i=1,2, \ldots, n$. By part (a), $\left(0:_{M_{1} \times M_{2}} I\right) \neq 0$. Thus there exists $0 \neq\left(x_{1}, x_{2}\right) \in M_{1} \times M_{2}$ such that $I\left(x_{1}, x_{2}\right)=0$. This implies that $0 \neq x_{1} \subseteq$
($0:_{M_{1}} I_{1}$) and M_{1} satisfies the proper strong Property \mathcal{A}. Now let $r_{1} \in R_{1} \backslash U\left(R_{1}\right)$. Clearly $\left(r_{1}, 0\right) \in Z_{R_{1} \times R_{2}}\left(M_{1} \times M_{2}\right)$. Set $J=\left\langle\left(r_{1}, 0\right),(0,1)\right\rangle$. Thus by part (a), $\left(0:_{M_{1} \times M_{2}} J\right) \neq 0$. This implies that $r_{1} \in Z_{R_{1}}\left(M_{1}\right)$. Now by [1, Lemma 2.1], $S_{1}^{-1} R_{1}=R_{1}$. Similarly, one can see that M_{2} satisfies the proper strong Property \mathcal{A} and $S_{2}^{-1} R_{2}=R_{2}$.
$(b) \Rightarrow(a)$ Let $I=\left\langle\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right), \ldots,\left(a_{n}, b_{n}\right)\right\rangle$ be a proper finitely generated ideal of R such that $\left(a_{i}, b_{i}\right) \in Z_{R_{1} \times R_{2}}\left(M_{1} \times M_{2}\right)$ for each $i=1,2, \ldots, n$. Set $I_{1}=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ and $I_{2}=\left\langle b_{1}, b_{2}, \ldots, b_{n}\right\rangle$. Then as I is proper, I_{1} or I_{2} is proper. Assume that I_{1} is proper. Then $I_{1} \subseteq Z_{R_{1}}\left(M_{1}\right)$. Thus by part (b), $\left(0:_{M_{1}} I_{1}\right) \neq 0$. Hence there exists $0 \neq x_{1} \in M_{1}$ such that $I_{1} x_{1}=0$. Now $(0,0) \neq\left(x_{1}, 0\right) \in\left(0:_{M_{1} \times M_{2}} I\right)$ implies that M satisfies the proper strong Property \mathcal{A}.

The following examples show that the concepts of proper strong Property \mathcal{A} and the dual of proper strong Property \mathcal{A} are different in general.

Example 3.11. Consider the $\mathbb{Z} \times \mathbb{Z}$-module $\mathbb{Z} \times \mathbb{Z}$. As $W_{\mathbb{Z}}(\mathbb{Z})=\mathbb{Z} \backslash\{1,-1\}$, we have $S=\mathbb{Z} \backslash W_{\mathbb{Z}}(\mathbb{Z})=\{1,-1\}$ and so $S^{-1} \mathbb{Z}=\mathbb{Z}$. Now Theorem 3.7 implies that $\mathbb{Z} \times \mathbb{Z}$ satisfies the dual of proper strong Property \mathcal{A}. But by [1] Example 2.13 (1)], $\mathbb{Z} \times \mathbb{Z}$ not satisfies the proper strong Property \mathcal{A}.

Example 3.12. Consider the $\mathbb{Z} \times \mathbb{Z}$-module $\mathbb{Q} / \mathbb{Z} \times \mathbb{Q} / \mathbb{Z}$. Since $W_{\mathbb{Z}}(\mathbb{Q} / \mathbb{Z})=\{0\}$, we have $S=$ $\mathbb{Z} \backslash W_{\mathbb{Z}}(\mathbb{Q} / \mathbb{Z})=\mathbb{Z} \backslash\{0\}$ and so $\mathbb{Q}=S^{-1} \mathbb{Z} \neq \mathbb{Z}$. Now Theorem 3.7 implies that $\mathbb{Q} / \mathbb{Z} \times \mathbb{Q} / \mathbb{Z}$ not satisfies the dual of proper strong Property \mathcal{A}. On the other hand since $Z_{\mathbb{Z}}(\mathbb{Q} / \mathbb{Z})=\mathbb{Z} \backslash\{1,-1\}$, we have $S=\mathbb{Z} \backslash W_{\mathbb{Z}}(\mathbb{Q} / \mathbb{Z})=\{1,-1$,$\} and so S^{-1} \mathbb{Z}=\mathbb{Z}$. Clearly, the \mathbb{Z}-module \mathbb{Q} / \mathbb{Z} satisfies the proper strong Property \mathcal{A}. Now Theorem 3.10, implies that $\mathbb{Q} / \mathbb{Z} \times \mathbb{Q} / \mathbb{Z}$ satisfies the proper strong Property \mathcal{A}.

Theorem 3.13. Let $M=R / \mathfrak{m}_{1} \oplus R / \mathfrak{m}_{2} \oplus \ldots \oplus R / \mathfrak{m}_{n}$ be an R-module, where $\mathfrak{m}_{i} \in \max (R)$ for $i=1, \ldots, n$. Then M satisfies the dual of proper strong Property \mathcal{A} if and only if either $\max (R)=\left\{\mathfrak{m}_{1}, \mathfrak{m}_{2}, \ldots, \mathfrak{m}_{n}\right\}$ or $\mathfrak{m}_{1}=\mathfrak{m}_{2}=\ldots=\mathfrak{m}_{n}$.

Proof. First, note that $W_{R}(M)=\mathfrak{m}_{1} \cup \mathfrak{m}_{2} \cup \ldots \cup \mathfrak{m}_{n}$. So, it is easy to see that any ideal I contained in $W_{R}(M)$ is contained in some maximal ideal m_{j}. By Theorem 2.12 (d), M satisfies the dual of Property \mathcal{A}. Now, assume that $\max (R)=\left\{\mathfrak{m}_{1}, \mathfrak{m}_{2}, \ldots, \mathfrak{m}_{n}\right\}$. Then, we get $S^{-1} R=R$. Then, using Theorem 3.8 (a), M satisfies the dual of proper strong Property \mathcal{A}. On the other hand, suppose that $\mathfrak{m}_{1}=\mathfrak{m}_{2}=\ldots=\mathfrak{m}_{n}$. Then $W_{R}(M)=\mathfrak{m}$ is an ideal of R and hence M satisfies the dual of strong Property \mathcal{A}. It follows that M satisfies the dual of proper strong Property \mathcal{A}. Conversely, assume that $\left\{\mathfrak{m}_{1}, \mathfrak{m}_{2}, \ldots, \mathfrak{m}_{n}\right\} \subset \max (R)$ and that $\operatorname{card}\left(\left\{\mathfrak{m}_{1}, \mathfrak{m}_{2}, \ldots, \mathfrak{m}_{n}\right\}\right) \geq 2$. Then, by Lemma 3.1, $S^{-1} R \neq R$ as there exists a maximal ideal $\mathfrak{m} \nsubseteq \mathfrak{m}_{1} \cup \mathfrak{m}_{2} \cup \ldots \cup \mathfrak{m}_{n}=W_{R}(M)$ and thus there exists an element $x \in \mathfrak{m}$ which is
neither invertible nor $x \in W_{R}(M)$. Suppose contrary that $W_{R}(M)$ is an ideal. Then as $W_{R}(M)=\mathfrak{m}_{1} \cup \mathfrak{m}_{2} \cup \ldots \cup \mathfrak{m}_{n}$, there exists $j \in\{1, \ldots, n\}$ such that $W_{R}(M)=m_{j}$. Hence $\mathfrak{m}_{1}=\mathfrak{m}_{2}=\ldots=\mathfrak{m}_{n}$, which is a contradiction. Therefore, $W_{R}(M)$ is not an ideal and so M not satisfies the dual of strong Property \mathcal{A} by Theorem 2.5. Therefore, by Theorem 3.8 (b), M not satisfies the dual of proper strong Property \mathcal{A}, as needed.

4. Properties $\mathcal{S}_{\mathcal{J}}(\mathcal{N})$ and $\mathcal{I}_{\mathcal{J}}^{\mathcal{M}}(\mathcal{N})$

Let J be an ideal of R and let N be a submodule of an R-module M. Set

$$
\mathcal{S}_{\mathcal{J}}(\mathcal{N})=\{m \in M \mid r m \in N \text { for some } r \in R-J\} .
$$

When J is a prime ideal of R, then $\mathcal{S}_{\mathcal{J}}(\mathcal{N})$ is called the saturation of N with respect to J or J-closure of N [11, 15, 16].

Set

$$
\begin{gathered}
\mathcal{I}_{\mathcal{J}}^{\mathcal{M}}(\mathcal{N})=\cap\{L \mid L \text { is a completely irreducible submodule of } M \text { and } \\
\qquad r N \subseteq L \text { for some } r \in R-J\} .
\end{gathered}
$$

When J is a prime ideal of R, then $\mathcal{I}_{\mathcal{J}}^{\mathcal{M}}(\mathcal{N})$ is called the J-interior of N relative to M [8, 9, 10].
Definition 4.1. Let J be an ideal of R. We say that a submodule N of an R-module M satisfies Property $\mathcal{S}_{\mathcal{J}}(\mathcal{N})$ if for each finitely generated submodule K of M with $K \subseteq \mathcal{S}_{\mathcal{J}}(\mathcal{N})$ there exists a $r \in R \backslash J$ with $r K \subseteq N$.

Definition 4.2. Let J be an ideal of R. We say that a submodule N of an R-module M satisfies Property $\mathcal{I}_{\mathcal{J}}^{\mathcal{M}}(\mathcal{N})$ (that is the dual of Property $\mathcal{S}_{\mathcal{J}}(\mathcal{N})$) if for each submodule K of M with M / K is finitely cogenerated and $\mathcal{I}_{\mathcal{J}}^{\mathcal{M}}(\mathcal{N}) \subseteq K$ there exists a $r \in R \backslash J$ with $r N \subseteq K$.

Definition 4.3. Let J be an ideal of R. We say that a submodule N of an R-module M satisfies the strong Property $\mathcal{S}_{\mathcal{J}}(\mathcal{N})$ if for any $m_{1}, \ldots, m_{n} \in \mathcal{S}_{\mathcal{J}}(\mathcal{N})$ there exists a $r \in R \backslash J$ with $r m_{1} \in N, \ldots r m_{n} \in N$.

Example 4.4. Let J be a prime ideal of R and N be a submodule of an R-module M such that $\mathcal{S}_{\mathcal{J}}(\mathcal{N})$ is a finitely generated submodule of M. Then one can see that there exists a $r \in R \backslash J$ with $r N \subseteq \mathcal{S}_{\mathcal{J}}(\mathcal{N})$. This implies that N satisfies the strong Property $\mathcal{S}_{\mathcal{J}}(\mathcal{N})$.

Example 4.5. Let J be a prime ideal of R and N be a submodule of an R-module M such that $M / \mathcal{I}_{\mathcal{J}}^{\mathcal{M}}(\mathcal{N})$ is a finitely cogenerated R-module. Then N satisfies Property $\mathcal{I}_{\mathcal{J}}^{\mathcal{M}}(\mathcal{N})$ by using [10, Lemma 2.3].

If $J=0$ and $N=0$ in Definition 4.1 (resp. Definition 4.3), then M under the name Property T (resp. strong Property T) was studied in [2].

Theorem 4.6. Let M be an R-module and J be an ideal of R. Then we have the following.
(a) A submodule N of M satisfies the strong Property $\mathcal{S}_{\mathcal{J}}(\mathcal{N})$ if and only if N satisfies Property $\mathcal{S}_{\mathcal{J}}(\mathcal{N})$ and $\mathcal{S}_{\mathcal{J}}(\mathcal{N})$ is a submodule of M.
(b) The zero submodule of M satisfies the strong Property $\mathcal{S}_{\mathcal{J}}(0)$.
(c) If a submodule N of M satisfies Property $\mathcal{S}_{\mathcal{J}}(\mathcal{N})$ (respectively, strong Property $\mathcal{S}_{\mathcal{J}}(\mathcal{N})$) and $N \subseteq K \subseteq \mathcal{S}_{\mathcal{J}}(\mathcal{N})$, then K satisfies Property $\mathcal{S}_{\mathcal{J}}(\mathcal{K})$ (respectively, strong Property $\mathcal{S}_{\mathcal{J}}(\mathcal{K})$).
(d) Let $\psi=\left\{N_{\lambda}\right\}_{\lambda \in \Lambda}$ be a chain of submodules of M with $N \subseteq N_{\lambda} \subseteq \mathcal{S}_{\mathcal{J}}(\mathcal{N})$ for each $\lambda \in \Lambda$. Then $\cup_{\lambda \in \Lambda} N_{\lambda}$ satisfies Property $\mathcal{S}_{\mathcal{J}}\left(\cup_{\lambda \in *} \mathcal{N}_{\lambda}\right)$ (respectively, strong Property $\mathcal{S}_{\mathcal{J}}\left(\cup_{\lambda \in *} \mathcal{N}_{\lambda}\right)$) if and only if each N_{λ} satisfies Property $\mathcal{S}_{\mathcal{J}}\left(\mathcal{N}_{\lambda}\right)$ (respectively, strong Property $\left.\mathcal{S}_{\mathcal{J}}\left(\mathcal{N}_{\lambda}\right)\right)$.
(e) If for a submodule N of M we have $A n n_{R}(M / N) \nsubseteq J$, or more generally, $\operatorname{Ann}_{R}\left(\mathcal{S}_{\mathcal{J}}(\mathcal{N}) / \mathcal{N}\right) \nsubseteq J$, then N satisfies strong Property $\mathcal{S}_{\mathcal{J}}(\mathcal{N})$.
(f) If J is an irreducible ideal of R (e.g., R / J is an integral domain), then every submodule N of M satisfies strong Property $\mathcal{S}_{\mathcal{J}}(\mathcal{N})$.
(g) If a submodule N of M is a Bezout module (respectively, chained module), then N satisfies Property $\mathcal{S}_{\mathcal{J}}(\mathcal{N})$ (respectively, strong Property $\mathcal{S}_{\mathcal{J}}(\mathcal{N})$).

Proof. (a), (b), (e), and (g) are straightforward.
(c) Let T be a finitely generated submodule of M with $T \subseteq \mathcal{S}_{\mathcal{J}}(\mathcal{K})$. Then $T \subseteq \mathcal{S}_{\mathcal{J}}(\mathcal{K}) \subseteq$ $\mathcal{S}_{\mathcal{J}}\left(\mathcal{S}_{\mathcal{J}}(\mathcal{N})\right)$. Clearly, $\mathcal{S}_{\mathcal{J}}\left(\mathcal{S}_{\mathcal{J}}(\mathcal{N})\right)=\mathcal{S}_{\mathcal{J}}(\mathcal{N})$. Hence $T \subseteq \mathcal{S}_{\mathcal{J}}(\mathcal{N})$. Now, by assumption, there exists a $r \in R \backslash J$ with $r T \subseteq N$ and so $r T \subseteq K$.
(d) First note that, if $\cup_{\lambda \in \Lambda} N_{\lambda}$ satisfies Property $\mathcal{S}_{\mathcal{J}}\left(\cup_{\lambda \in *} \mathcal{N}_{\lambda}\right)$ (respectively, strong Property $\mathcal{S}_{\mathcal{J}}\left(\cup_{\lambda \in *} \mathcal{N}_{\lambda}\right)$), then each N_{λ} satisfies Property $\mathcal{S}_{\mathcal{J}}\left(\mathcal{N}_{\lambda}\right)$ (respectively, strong Property $\mathcal{S}_{\mathcal{J}}\left(\mathcal{N}_{\lambda}\right)$). Conversely, suppose that each N_{λ} satisfies Property $\mathcal{S}_{\mathcal{J}}\left(\mathcal{N}_{\lambda}\right)$ (respectively, strong Property $\left.\mathcal{S}_{\mathcal{J}}\left(\mathcal{N}_{\lambda}\right)\right)$ and K is a finitely generated submodule of $\mathcal{S}_{\mathcal{J}}\left(\cup_{\lambda \in *} \mathcal{N}_{\lambda}\right)$. Then K is a submodule of $\mathcal{S}_{\mathcal{J}}\left(\mathcal{N}_{\alpha}\right)$ for some $\alpha \in \Lambda$ and hence $\left(N_{\alpha}:_{R} K\right) \nsubseteq I$. So $\left(\cup_{\lambda \in \Lambda} N_{\lambda}:_{R} K\right) \nsubseteq I$, as desired.
(f) Let J be an irreducible ideal of R and $m_{1}, \ldots, m_{n} \in \mathcal{S}_{\mathcal{J}}(\mathcal{N})$, where $r_{i} m_{i} \in N$ with $r_{i} \in R \backslash J$ for $i=1,2, \ldots, n$. Since J is irreducible, $R r_{1} \cap \ldots \cap R r_{n} \neq J$. Hence there exists $r \in\left(R r_{1} \cap \ldots \cap R r_{n}\right) \backslash J$. Thus $r m_{i} \in N$ for $i=1,2, . ., n$, as needed.

Theorem 4.7. Let M be an R-module and J be an ideal of R. Then we have the following.
(a) Let J be a prime ideal of R. A submodule N of M satisfies Property $\mathcal{I}_{\mathcal{J}}^{\mathcal{M}}(\mathcal{N})$ if and only if for any completely irreducible submodules L_{1}, \ldots, L_{n} of M with $\mathcal{I}_{\mathcal{J}}^{\mathcal{M}}(\mathcal{N}) \subseteq L_{1}$, $\ldots, \mathcal{I}_{\mathcal{J}}^{\mathcal{M}}(\mathcal{N}) \subseteq L_{n}$ there exists a $r \in R \backslash J$ with $r N \subseteq L_{1}, \ldots, r N \subseteq L_{n}$.
(b) M satisfies Property $\mathcal{I}_{0}^{\mathcal{M}}(\mathcal{M})$ if and only if every submodule K of M with M / K is finitely cogenerated M / K satisfies Property $\mathcal{I}_{0}^{\mathcal{M} / \mathcal{K}}(\mathcal{M} / \mathcal{K})$.
(c) If for a submodule N of M we have $A n n_{R}(N) \nsubseteq J$, or more generally, $\operatorname{Ann}_{R}\left(N / \mathcal{I}_{\mathcal{J}}^{\mathcal{M}}(\mathcal{N})\right) \nsubseteq J$, then N satisfies Property $\mathcal{I}_{\mathcal{J}}^{\mathcal{M}}(\mathcal{N})$.
(d) If J is an irreducible ideal of R (e.g., R / J is an integral domain), then every submodule N of M satisfies Property $\mathcal{I}_{\mathcal{J}}^{\mathcal{M}}(\mathcal{N})$.

Proof. (a) The necessity is clear. For the sufficiency assume that for a submodule K of M with M / K is finitely cogenerated we have $\mathcal{I}_{\mathcal{J}}^{\mathcal{M}}(\mathcal{N}) \subseteq K$. As M / K is finitely cogenerated, there exist completely irreducible submodules L_{1}, \ldots, L_{n} of M such that $K=\cap_{i=1}^{n} L_{i}$. Now by assumption, there exist $r_{1}, \ldots, r_{n} \in R \backslash J$ such that $r_{i} N \subseteq L_{i}$ for $i=1,2, \ldots, n$. Set $r=r_{1} r_{2} \ldots r_{n}$. As J is prime, $r \in R \backslash J$. Now $r N \subseteq K$, as needed.
(b) and (c) are straightforward.
(d) Let J be an irreducible ideal of R and $\mathcal{I}_{\mathcal{J}}^{\mathcal{M}}(\mathcal{N}) \subseteq L_{i}$, where L_{i} is a completely irreducible submodule of $M, r_{i} N \subseteq L_{i}$, and $r_{i} \in R \backslash J$ for $i=1,2, \ldots, n$. As J is irreducible, $R r_{1} \cap \ldots \cap R r_{n} \neq$ J. Hence there exists $r \in\left(R r_{1} \cap \ldots \cap R r_{n}\right) \backslash J$. Thus $r N \subseteq L_{i}$ for $i=1,2, . ., n$, as needed.

References

[1] A. Ait Ouahi, S. Bouchiba and M. El-Arabi, On proper strong Property (A) for rings and modules, J. Algebra Appl., 19 No. 12 (2020) 2050239.
[2] D. D. Anderson and S. Chun, Annihilator conditions on modules over commutative rings, J. Algebra Appl., 16 No. 8 (2017) 1750143.
[3] H. Ansari-Toroghy and F. Farshadifar, The dual notion of multiplication modules, Taiwanese J. Math., 11 No. 4 (2007) 1189-1201.
[4] H. Ansari-Toroghy and F. Farshadifar, Comultiplication modules and related results, Honam Math. J., 30 No. 1 (2008) 91-99.
[5] H. Ansari-Toroghy and F. Farshadifar, On comultiplication modules, Korean Ann. Math., 25 No. 1-2 (2008) 57-66.
[6] H. Ansari-Toroghy and F. Farshadifar, The dual notions of some generalizations of prime submodules, Comm. Algebra, 39 No. 7 (2011) 2396-2416.
[7] H. Ansari-Toroghy and F. Farshadifar, Fully idempotent and coidem-potent modules, Bull. Iranian Math. Soc., 38 No. 4 (2012) 987-1005.
[8] H. Ansari-Toroghy and F. Farshadifar, On the dual notion of prime submodules, Algebra Colloq., 19 Special Issue 1 (2012) 1109-1116.
[9] H. Ansari-Toroghy and F. Farshadifar, On the dual notion of prime submodules (II), Mediterr. J. Math., 9 No. 2 (2012) 327-336.
[10] H. Ansari-Toroghy, F. Farshadifar and S. S. Pourmortazavi, On the P-interiors of submodules of Artinian modules, Hacet. J. Math. Stat., 45 No. 3 (2016) 675-682.
[11] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, Mass. 1969.

Alg. Struc. Appl. Vol. 11 No. 2 (2024) 99-113.
[12] A. Barnard, Multiplication modules, J. Algebra, 71 No. 1 (1981) 174-178.
[13] L. Fuchs, W. Heinzer and B. Olberding, Commutative ideal theory without finiteness conditions: Irreducibility in the quotient filed. Abelian groups, rings, modules, and homological algebra, LNPAM, 249 (2006) 121-145.
[14] I. Kaplansky, Commutative rings, In Conference on Commutative Algebra: Lawrence, Kansas 1972, pp. 153-166, Berlin, Heidelberg, Springer Berlin Heidelberg, 2006.
[15] C. -P. Lu, Saturations of submodules, Comm. Algebra, 31 No. 6 (2003) 2655-2673.
[16] R. L. McCasland and P. F. Smith, Generalised associated primes and radicals of submodules, Int. Electron. J. Algebra, 4 (2008) 159-176.
[17] M. Nagata, Local Rings, Interscience Publishers a division of John Wiley Sons, New York, London, 1962.
[18] A. A. Tuganbaev, Multiplication modules, J. Math. Sci. (N.Y.), 123 No. 2 (2004) 3839-3905.
[19] S. Yassemi, Maximal elements of support and cosupport, http://www.ictp.trieste.it//puboff.
[20] S. Yassemi, Coassociated primes of modules over a commutative ring, Math. Scand, 80 No. 2 (1997) 175-187.

Faranak Farshadifar

Department of Mathematics Education,
Farhangian University,
P. O. Box 14665-889, Tehran, Iran.
f.farshadifar@cfu.ac.ir

