Algebraic AS TA Carrious Structures

Algebraic Structures and Their Applications

Algebraic Structures and Their Applications Vol. 11 No. 2 (2024) pp 99-113.

Research Paper

THE DUALS OF ANNIHILATOR CONDITIONS FOR MODULES

FARANAK FARSHADIFAR*

ABSTRACT. Let R be a commutative ring with identity and let M be an R-module. The purpose of this paper is to introduce and investigate the submodules of an R-module M which satisfy the dual of Property \mathcal{A} , the dual of strong Property \mathcal{A} , and the dual of proper strong Property \mathcal{A} . Moreover, a submodule N of M which satisfy Property $\mathcal{S}_{\mathcal{J}}(\mathcal{N})$ and Property $\mathcal{I}_{\mathcal{J}}^{\mathcal{M}}(\mathcal{N})$ will be introduced and investigated.

1. Introduction

Throughout this paper, R will denote a commutative ring with identity and \mathbb{Z} will denote the ring of integers.

Let M be an R-module. The set of zero divisors of R on M is $Z_R(M) = \{r \in R | rm = 0 \text{ for some nonzero } m \in M\}$ and the set of torsion elements of M with respect to R is $T_R(M) = \{m \in M | rm = 0 \text{ for some } 0 \neq r \in R\}.$

DOI: 10.22034/as.2023.18995.1588

MSC(2010): Primary: 13C13, 13A99.

Keywords: Dual of Property A, Dual of proper strong Property A, Dual of strong Property A, Finitely generated,

Property $\mathcal{I}_{\mathcal{J}}^{\mathcal{M}}(\mathcal{N})$, Property $\mathcal{S}_{\mathcal{J}}(\mathcal{N})$.

Received: 17 September 2022, Accepted: 08 July 2023.

*Corresponding author

© 2024 Yazd University.

An R-module M satisfies $Property \mathcal{A}$ (resp., $Property \mathcal{T}$) if for every finitely generated ideal I of R (resp., finitely generated submodule N of M) with $I \subseteq Z_R(M)$ (resp., $N \subseteq T_R(M)$), there exists a nonzero $m \in M$ (resp., $r \in R$) with Im = 0 (resp., rN = 0), or equivalently $(0:_M I) \neq 0$ (resp., $Ann_R(N) \neq 0$) [2]. An R-module M satisfies $strong \ Property \mathcal{A}$ (resp., $strong \ Property \mathcal{T}$) if for any $r_1, ..., r_n \in Z_R(M)$ (resp., $m_1, ..., m_n \in T_R(M)$), there exists a non-zero $m \in M$ (resp., $r \in R$) with $r_1m = \cdots = r_nm = 0$ (resp., $rm_1 = \cdots = rm_n = 0$) [2]. An R-module M satisfies $proper \ strong \ Property \mathcal{A}$ if for any proper finitely generated ideal $I = \langle a_1, a_2, ..., a_n \rangle$ of R such that $a_i \in Z_R(M)$ we have $(0:_M I) \neq 0$ [1]. The class of modules satisfies proper strong Property \mathcal{A} lying properly between the class of modules satisfies strong Property \mathcal{A} and Property \mathcal{A} [1, Corollary 2.12].

Let M be an R-module. The subset $W_R(M)$ of R (that is the dual notion of $Z_R(M)$) is defined by $\{r \in R | rM \neq M\}$ [19]. A non-zero submodule N of M is said to be secondal if $W_R(N)$ is an ideal of R. In this case, $W_R(N)$ is a prime ideal of R [6].

Recently, the annihilator conditions on modules over commutative rings have attracted the attention of several researchers. A brief history of this can be found in [2, 1]. The purpose of this paper is to introduce and study the dual of Property \mathcal{A} , the dual of strong Property \mathcal{A} , and the dual of proper strong Property \mathcal{A} for modules over a commutative ring. Also, for a submodule N of an R-module M we introduce and investigate the Properties $\mathcal{S}_{\mathcal{J}}(\mathcal{N})$ and $\mathcal{I}_{\mathcal{J}}^{\mathcal{M}}(\mathcal{N})$. Some of the results in this article are dual of the results for Property \mathcal{A} , strong Property \mathcal{A} , and proper strong Property \mathcal{A} considered in [1] and [2].

2. The duals of Property $\mathcal A$ and strong Property $\mathcal A$ for modules

Definition 2.1. We say that an R-module M satisfies the dual of Property A if for each finitely generated ideal I of R with $I \subseteq W_R(M)$ we have $IM \neq M$.

A proper submodule N of an R-module M is said to be *completely irreducible* if $N = \bigcap_{i \in I} N_i$, where $\{N_i\}_{i \in I}$ is a family of submodules of M, implies that $N = N_i$ for some $i \in I$. It is easy to see that every submodule of M is an intersection of completely irreducible submodules of M [13].

Definition 2.2. We say that an R-module M satisfies the dual of strong Property \mathcal{A} if for any $a_1, ..., a_n \in W_R(M)$, there exists a completely irreducible submodule L of M such that $a_iM \subseteq L \neq M$ for i = 1, 2, ..., n.

Clearly, if an R-module M satisfies the dual of strong Property \mathcal{A} , then M satisfies the dual of Property \mathcal{A} . Nevertheless, the following example shows that the converse is not true in general.

Example 2.3. The \mathbb{Z} -module \mathbb{Z} satisfies the dual of Property \mathcal{A} but does not satisfies the dual of strong Property \mathcal{A} .

Remark 2.4. Let N and K be two submodules of an R-module M. To prove $N \subseteq K$, it is enough to show that if L is a completely irreducible submodule of M such that $K \subseteq L$, then $N \subseteq L$ [6].

Theorem 2.5. Let M be an R-module. Consider the conditions:

- (a) M satisfies the dual of strong Property A,
- (b) M is a secondal R-module.

Then $(a) \Rightarrow (b)$. If further R is a PID, then $(b) \Rightarrow (a)$.

Proof. $(a) \Rightarrow (b)$. Let $a, b \in W_R(M)$. Then by part (a), there exists a completely irreducible submodule L of M such that $aM \subseteq L \neq M$ and $bM \subseteq L \neq M$. Thus $(a-b)M \subseteq L \neq M$ and so $a-b \in W_R(M)$. This implies that M is a secondal R-module.

 $(b) \Rightarrow (a)$. Let $a_1, ..., a_n \in W_R(M)$. Then by part (b), $W_R(M)$ is an ideal of R. As R is a PID, there exists an $a \in R$ such that $\langle a_1, ..., a_n \rangle = Ra$. Thus $a \in W_R(M)$. Hence there exists a completely irreducible submodule L of M such that $aM \subseteq L \neq M$ by Remark 2.4. This implies that $a_iM \subseteq L \neq M$ for i = 1, 2, ..., n, as needed. \square

Theorem 2.6. Let $f: R \to \acute{R}$ be a homomorphism of commutative rings and let M be an \acute{R} -module. Consider M as an R-module with rm := f(r)m for $r \in R$ and $m \in M$.

- (a) Suppose for each (finitely generated) ideal I of R, $f(I)\acute{R} = \{f(i)\acute{r}|i \in I, \acute{r} \in \acute{R}\}$ (e.g., f is surjective or $f: R \to R_N$, f(r) = r/1, where N is a multiplicatively closed subset of R). Then M satisfies the dual of Property A as an \acute{R} -module implies M satisfies the dual of Property A as an R-module.
- (b) Suppose that every (finitely generated) ideal J of K has the form J = f(I)K for some (finitely generated) ideal I of R (e.g., f is surjective or f: R → R_N, f(r) = r/1, where N is a multiplicatively closed subset of R). Then M satisfies the dual of Property A as an R-module implies M satisfies the dual of Property A as an K-module.

Proof. (a) Suppose M satisfies the dual of Property \mathcal{A} as an \mathring{R} -module. Let I be an ideal of R with $I \subseteq W_R(M)$. So for $i \in I$, there is a $m \in M \setminus iM = M \setminus f(i)M$. Hence, $f(i) \in W_{\mathring{R}}(M)$ and so $\mathring{r}f(i) \in W_{\mathring{R}}(M)$ for each $\mathring{r} \in \mathring{R}$. Thus $f(I)\mathring{R} = \{f(i)\mathring{r}|i \in I,\mathring{r} \in \mathring{R}\}$ is an ideal of \mathring{R} with $f(I)\mathring{R} \subseteq W_{\mathring{R}}(M)$. Suppose that I is finitely generated. Then $f(I)\mathring{R}$ is finitely generated. Hence there is a $m \in M \setminus f(I)\mathring{R}M$. This implies that $m \in M \setminus IM$. Thus M satisfies the dual of Property \mathcal{A} as an R-module.

(b) Suppose that M satisfies the dual of Property $\mathcal A$ as an R-module. Let J be an ideal of $\mathring R$ with $J\subseteq W_{\mathring R}(M)$. Then there is an ideal I of R with J=f(I)S. For $i\in I$, $f(i)\in W_{\mathring R}(M)$. So, there is a $m\in M\setminus f(i)M=M\setminus iM$. So, $I\subseteq W_R(M)$. If J is finitely generated, we can choose I to be finitely generated. Since M satisfies the dual of Property $\mathcal A$ as an R-module, there is a $m\in M\setminus IM$. It follows that $m\in M\setminus f(I)\mathring RM=M\setminus JM$. So, M satisfies the dual of Property $\mathcal A$ as an $\mathring R$ -module. \square

Corollary 2.7. Let M be an R-module, $J \subseteq Ann_R(M)$ an ideal of R, and put $\bar{R} = R/J$. Then M satisfies the dual of Property A as an R-module if and only if M satisfies the dual of Property A as an \bar{R} -module. In particular, M satisfies the dual of Property A as an R-module if and only if M satisfies the dual of Property A as an $R/Ann_R(M)$ -module.

Proof. This follows from Theorem 2.6. \square

Recall that an R-module M is said to be Hopfian (resp. co-Hopfian) if every surjective (resp. injective) endomorphism f of M is an isomorphism.

An R-module M is said to be a multiplication module if for every submodule N of M there exists an ideal I of R such that N = IM [12].

A submodule N of an R-module M is said to be *idempotent* if $N = (N :_R M)^2 M$. Also, M is said to be *fully idempotent* if every submodule of M is idempotent [7].

An R-module M is said to be a *comultiplication module* if for every submodule N of M there exists an ideal I of R such that $N = (0 :_M I)$ [3]. R is said to be a *comultiplication ring* if, as an R-module, R is a comultiplication R-module [4].

A submodule N of an R-module M is said to be *coidempotent* if $N = (0 :_M Ann_R(N)^2)$. Also, an R-module M is said to be *fully coidempotent* if every submodule of M is coidempotent [7].

Proposition 2.8. Let M be an R-module. Then we have the following.

- (a) If R is a comultiplication ring and M is a faithful R-module, then M satisfies Property A and the dual of Property A.
- (b) If M is a Hopfian comultiplication (in particular, M is a fully coidempotent) R-module and satisfies the dual of Property A, then M satisfies Property A.
- (c) If M is a co-Hopfian multiplication (in particular, M is a fully idempotent) R-module and satisfies Property A, then M satisfies the dual of Property A.
- (d) If R is a principal ideal ring, then M satisfies the dual of strong Property A.

Proof. (a) This follows from [4, Lemma 3.11].

- (b) First note that every fully coidempotent R-module is a Hopfian comultiplication R-module by [7, Theorem 3.9 and Proposition 3.5]. As M is a Hopfian comultiplication R-module, $Z_R(M) = W_R(M)$. Now the result follows from [5, Proposition 3.1].
- (c) First note that every fully idempotent R-module is a co-Hopfian multiplication R-module by [7, Proposition 2.7]. Since M is a co-Hopfian multiplication R-module, $Z_R(M) = W_R(M)$. Now the result follows from [18, Note 1.13].
 - (d) This is clear. \Box

Lemma 2.9. Let S be a multiplicatively closed subset of R, I and ideal of R, and M be an R-module. Then we have the following.

- (a) If $S^{-1}I \subseteq W_{S^{-1}R}(S^{-1}M)$, then $I \subseteq W_R(M)$.
- (b) If $Z_R(M) \cap S = \emptyset$, $W_R(M) \cap S = \emptyset$, and $I \subseteq W_R(M)$, then $S^{-1}I \subseteq W_{S^{-1}R}(S^{-1}M)$.
- (c) If M is an Hopfian module (in particular, M is a multiplication or coidempotent module), $W_R(M) \cap S = \emptyset$, and $I \subseteq W_R(M)$, then $S^{-1}I \subseteq W_{S^{-1}R}(S^{-1}M)$.

Proof. (a) This is clear.

- (b) Suppose that $S^{-1}I \not\subseteq W_{S^{-1}R}(S^{-1}M)$ and seek for a contradiction. Then $S^{-1}(aM) = S^{-1}M$ for some $a \in I$. As $I \subseteq W_R(M)$, there exists $m \in M \setminus IM$. Now we have $stm = sam_1$ for some $s, t \in S$ and $m_1 \in M$. Since $W_R(M) \cap S = \emptyset$, tM = M and so $m_1 = tm_2$ for some $m_2 \in M$. Hence, $st(m am_2) = 0$. Now $Z_R(M) \cap S = \emptyset$ implies that $m = am_2$, which is a contradiction.
 - (c) This follows from the fact that $Z_R(M) \subseteq W_R(M)$ and part (b). \square

Corollary 2.10. Let S be a multiplicatively closed subset of R and M be an R-module. Consider the conditions:

- (a) M_S satisfies the dual of Property A as an R-module,
- (b) M_S satisfies the dual of Property A as an R_S -module,
- (c) M satisfies the dual of Property A as an R-module.

Then $(a) \Leftrightarrow (b)$. If further $S \cap W_R(M) = \emptyset$ and $S \cap Z_R(M) = \emptyset$, (a), (b) and (c) are equivalent.

Proof. The equivalence of (a) and (b) follows from Theorem 2.6. Now assume that $S \cap W_R(M) = \emptyset$ and $S \cap Z_R(M) = \emptyset$. Then $(b) \Leftrightarrow (c)$ from Lemma 2.9 (b). \square

Proposition 2.11. Let X be an indeterminate over R, M be an R-module, and M[X] satisfies the dual of strong Property A over R[X]. Then M satisfies the dual of Property A.

Proof. Let $I = \langle a_1, ..., a_n \rangle$ be a finitely generated ideal of R such that $a_i \in W_R(M)$ for i = 1, ..., n. Then $I[X] = \langle a_1, ..., a_n \rangle R[X]$ is a finitely generated ideal of R[X] such that $a_i \in W_{R[X]}(M[X])$ for i = 1, ..., n. Since M[X] satisfies the dual of strong Property \mathcal{A} over R[X], we get $I[X]M[X] \neq M[X]$. This implies that $IM \neq M$. Thus M satisfies the dual of Property \mathcal{A} . \square

Recall that a ring R is called $B\acute{e}zout$ if every finitely generated ideal I of R is principal.

A submodule N of an R-module M is small if for any submodule X of M, X + N = M implies that X = M.

A prime ideal P of R is said to be a coassociated prime ideal of an R-module M if there exists a cocyclic homomorphic image T of M such that $Ann_R(T) = P$. The set of coassociated prime ideals of M is denoted by Coass(M) [20].

Theorem 2.12. (a) The trivial R-module vacuously satisfies the dual of Property A.

- (b) Every module over a Bézout ring satisfies the dual of Property A.
- (c) Let R be a zero-dimensional commutative ring (e.g., R is Artinian). Then every R-module satisfies the dual of Property A.
- (d) Let M be a finitely generated R-module. Then M satisfies the dual of Property A.
- (e) Let M be an Artinian R-module. Then M satisfies the dual of Property A. In fact, for any ideal I of R with $I \subseteq W_R(M)$, $IM \neq M$.
- (f) Let M and M be R-modules with $W_R(M) \subseteq W_R(M)$. If M satisfies the dual of Property A (respectively, the dual of strong Property A), then $M \oplus M$ satisfies the dual of Property A (respectively, the dual of strong Property A).
- (g) Let N be a small submodule of M. Then M satisfies the dual of Property A (resp. M is a secondal module) if and only if M/N satisfies the dual of Property A (resp. M/N is a secondal module).

Proof. (a) Note that $W_R(0) = \emptyset$.

- (b) This is clear.
- (c) Suppose dim R = 0 and M is an R-module. We can assume $M \neq 0$. Let I be a finitely generated ideal of R with $I \subseteq W_R(M)$. So, $I \subseteq P \subseteq W_R(M)$ for some prime ideal P of R by using [20, Theorem 2.15]. Since htP = 0 and I is finitely generated, $I_P^n = 0$ for some $n \geq 1$. Hence there is an $s \in R \setminus P$ with $I^n s = 0$. Since $s \in R \setminus P$, $s \notin Ann_R(M)$. Thus $sM \neq 0$. We have $I^n sM = 0$. Suppose $I^t sM \neq 0$, but $I^{t+1} sM = 0$. Then $IM \subseteq (0:_M I^t s) \neq M$. Therefore, $IM \neq M$.
- (d) Let M be a finitely generated R-module and I be an ideal of R with $I \subseteq W_R(M)$. Assume contrary that IM = M. Then (1 + a)M = 0 by [14, Theorem 76]. As $a \in I \subseteq W_R(M)$, there exists an $m \in M \setminus aM$. Now, (1 + a)m = 0 implies that $m \in aM$, which is a contradiction.

- (e) As M is an Artinian R-module, $W_R(M) = \bigcup_{i=1}^n P_i$ by using [20, Theorem 2.10 (c), Theorem 2.15, Corollary 3.2], where $P_i \in Coass(M)$. Now let $I \subseteq W_R(M)$ be an ideal. Then $I \subseteq P_i$ for some $P_i \in Coass(M)$. Hence for some completely irreducible submodule L of M with $L \neq M$, we have $I \subseteq P_i = (L :_R M)$. This implies that $IM \neq M$.
- (f) Let \acute{M} satisfies the dual of Property \mathcal{A} . It is easy to see that $W_R(M \oplus \acute{M}) = W_R(M) \cup W_R(\acute{M}) = W_R(\acute{M})$. Let I be a finitely generated ideal of R with $I \subseteq W_R(M) \cup W_R(\acute{M}) = W_R(\acute{M})$. Then $I\acute{M} \neq \acute{M}$. Thus there exists an $x \in I\acute{M} \setminus \acute{M}$. This implies that $(0,x) \not\in I(M \oplus \acute{M})$ and so $I(M \oplus \acute{M}) \neq M \oplus \acute{M}$, as needed.
- (g) We always have $W_R(M/N) \subseteq W_R(M)$. As N is small we get that $W_R(M) \subseteq W_R(M/N)$. Now the result is straightforward. \square

Let M be an R-module. The idealization $R(+)M = \{(a, m) : a \in R, m \in M\}$ of M is a commutative ring whose addition is component-wise and whose multiplication is defined as $(a, m)(b, \acute{m}) = (ab, a\acute{m} + bm)$ for each $a, b \in R$, $m, \acute{m} \in M$ [17].

Proposition 2.13. Let M be an R-module. Then we have

$$W_{R(+)M}(R(+)M) = W_R(R)(+)M.$$

Proof. First note that $W_R(M) \subseteq W_R(R)$. Let $(a,x) \in W_{R(+)M}(R(+)M)$. Then there exists $(b,y) \in R(+)M \setminus (a,x)(R(+)M)$. This implies that for each $(c,z) \in R(+)M$, $(b,y) \neq (a,x)(c,z)$. Hence, $b \neq ac$ or $y \neq az + cx$. If $b \neq ac$, then $a \in W_R(R)$ and we are done. If $y \neq az + cx$. Then by setting c = 0, we have $y \neq az$. Thus $a \in W_R(M) \subseteq W_R(R)$ and so $W_{R(+)M}(R(+)M) \subseteq W_R(R)(+)M$. Now let $(a,x) \in W_R(R)(+)M$. Then $a \in W_R(R)$. Thus there exist $r \in R$ such that $r \in R \setminus aR$. Assume contrary that (a,x)(R(+)M) = R(+)M. Then (r,0) = (a,x)(c,y) for some $(c,y) \in R(+)M$. Thus r = ac, which is a contradiction. Hence $(a,x)(R(+)M) \neq R(+)M$, as needed. \square

Example 2.14. Let $M = \oplus R/I$, where the sum runs over all proper finitely generated ideals of R. Then for a proper finitely generated ideal I of R, $I \subseteq W_R(M)$ and $I(R/I) = \bar{0} \neq R/I$ implies that M satisfies the dual of Property \mathcal{A} . As R is a submodule of M, we have R is a submodule of an R-module satisfying the dual of Property \mathcal{A} . Let M be any R-module. Then $M \oplus M$ again, satisfies the dual of Property \mathcal{A} . Thus, any R-module is a submodule, homomorphic image, or direct factor of a module satisfying the dual of Property \mathcal{A} .

3. The dual of proper strong Property $\mathcal A$ for modules

Lemma 3.1. Let M be an R-module and $S = R \setminus W_R(M)$. Then $S^{-1}R = R$ if and only if $R = U(R) \cup W_R(M)$, where U(R) is the set of all invertible elements of R.

Proof. Assume that $S^{-1}R = R$ and $s \in S$. Then $1/s \in S^{-1}R = R$ implies that s is invertible in R. Hence any element of S is invertible in R. The converse is clear. \square

Definition 3.2. We say that an R-module M satisfies the dual of proper strong Property \mathcal{A} if for any proper finitely generated ideal $I = \langle a_1, a_2, ..., a_n \rangle$ of R such that $a_i \in W_R(M)$ we have $IM \neq M$.

Theorem 3.3. Let M be an R-module. Then the following assertions are equivalent:

- (a) M satisfies the dual of proper strong Property A,
- (b) M satisfies the dual of Property A and $\mathfrak{m} \cap W_R(M)$ is an ideal of R for each maximal ideal \mathfrak{m} of R.

Proof. $(a) \Rightarrow (b)$ Assume that M satisfies the dual of proper strong Property \mathcal{A} . Clearly, M satisfies the dual of Property \mathcal{A} . Let \mathfrak{m} be a maximal ideal of R. Let $a,b \in \mathfrak{m} \cap W_R(M)$ and put $I = \langle a,b \rangle$ the ideal generated by a and b. Then $I \subseteq \mathfrak{m}$ and $a,b \in W_R(M)$. Since M satisfies the dual of proper strong Property \mathcal{A} , we get that $IM \neq M$. It follows that $I \subseteq \mathfrak{m} \cap W_R(M)$ and thus $\mathfrak{m} \cap W_R(M)$ is an ideal of R.

 $(b) \Rightarrow (a)$ Let $I = \langle a_1, a_2, ..., a_n \rangle$ be a proper finitely generated ideal of R such that $a_i \in W_R(M)$ for i = 1, ..., n. Let \mathfrak{m} be a maximal ideal of R with $I \subseteq \mathfrak{m}$. Then $a_1, a_2, ..., a_n \in \mathfrak{m} \cap W_R(M)$. As, by hypotheses, $\mathfrak{m} \cap W_R(M)$ is an ideal of R, it follows that $I \subseteq \mathfrak{m} \cap W_R(M)$. Now, since M satisfies the dual of Property A, we get $IM \neq M$. Hence M satisfies the dual of proper strong Property A. \square

Theorem 3.4. Let M be an R-module. Then

M satisfies the dual of strong Property $A \Rightarrow$

M satisfies the dual of proper strong Property $A \Rightarrow$

M satisfies the dual of Property A.

Proof. The proof is clear from the definitions. \Box

The Examples 3.5 and 3.12 show that the converse of Theorem 3.4 is not true in general.

Example 3.5. The \mathbb{Z} -module \mathbb{Z} satisfies the dual of proper strong Property \mathcal{A} but does not satisfies the dual of strong Property \mathcal{A} .

Let R_i be a commutative ring with identity and M_i be an R_i -module for each i = 1, 2. Assume that $M = M_1 \times M_2$ and $R = R_1 \times R_2$. Then M is clearly an R-module with component-wise addition and scalar multiplication. Also, each submodule N of M is of the form $N = N_1 \times N_2$, where N_i is a submodule of M_i for each i = 1, 2.

Proposition 3.6. Let R_i be a commutative ring with identity and M_i be an R_i -module for each i = 1, 2. Then

$$W_{R_1 \times R_2}(M_1 \times M_2) = (W_{R_1}(M_1) \times R_2) \cup (R_1 \times W_{R_2}(M_2)).$$

Proof. This is straightforward. \Box

Theorem 3.7. Let R_i be a commutative ring with identity and M_i be an R_i -module for each i = 1, 2. Let $M = M_1 \times M_2$, $R = R_1 \times R_2$, and $S_i = R_i \setminus W_{R_i}(M_i)$. Then the following assertions are equivalent:

- (a) M satisfies the dual of proper strong Property A,
- (b) M_i satisfies the dual of proper strong Property A and $S_i^{-1}R_i = R_i$ for each i = 1, 2.

Proof. $(a) \Rightarrow (b)$ Assume that M satisfies the dual of proper strong Property \mathcal{A} and $I_1 = \langle a_1, a_2, ..., a_n \rangle$ is a finitely generated ideal of R_1 such that $I_1 \subseteq W_{R_1}(M_1)$. Set

$$I = \langle (a_1, 0), (a_2, 0), ..., (a_n, 0), (0, 1) \rangle.$$

Then $(0,1), (a_i,0) \in W_{R_1 \times R_2}(M_1 \times M_2)$ for i=1,2,...,n. By part (a), $I(M_1 \times M_2) \neq M_1 \times M_2$. Thus there exists $(x_1,x_2) \in M_1 \times M_2 \setminus I(M_1 \times M_2)$. This implies that $x_1 \notin I_1M_1$. Thus $I_1M_1 \neq M_1$ and M_1 satisfies the dual of proper strong Property \mathcal{A} . Now let $r_1 \in R_1 \setminus U(R_1)$. Clearly $(r_1,0) \in W_{R_1 \times R_2}(M_1 \times M_2)$. Set $J = \langle (r_1,0), (0,1) \rangle$. Thus by part (a), $J(M_1 \times M_2) \neq M_1 \times M_2$. This implies that $r_1M_1 \neq M_1$ and hence $r_1 \in W_{R_1}(M_1)$. Now by Lemma 3.1, $S_1^{-1}R_1 = R_1$. Similarly, one can see that M_2 satisfies the dual of proper strong Property \mathcal{A} and $S_2^{-1}R_2 = R_2$. $(b) \Rightarrow (a)$ Let $I = \langle (a_1,b_1), (a_2,b_2),..., (a_n,b_n) \rangle$ be a proper finitely generated ideal of R such that $(a_i,b_i) \in W_{R_1 \times R_2}(M_1 \times M_2)$ for each i=1,2,...,n. Set $I_1 = \langle a_1,a_2,...,a_n \rangle$ and $I_2 = \langle b_1,b_2,...,b_n \rangle$. Then as I is proper, I_1 or I_2 is proper. Assume that I_1 is proper. Then by Lemma 3.1, $I_1 \subseteq W_{R_1}(M_1)$. Thus by part (b), $I_1M_1 \neq M_1$. Hence there exists $x_1 \in M_1 \setminus I_1M_1$. Now $(x_1,0) \in (M_1 \times M_2) \setminus I(M_1 \times M_2)$ implies that M satisfies the dual of proper strong Property \mathcal{A} . \square

Theorem 3.8. Let M be an R-module and $S = R \setminus W_R(M)$. Then we have the following.

(a) If $S^{-1}R = R$, then M satisfies the dual of proper strong Property A if and only if M satisfies the dual of Property A.

(b) If $S^{-1}R \neq R$, then M satisfies the dual of proper strong Property A if and only if M satisfies the dual of strong Property A.

- *Proof.* (a) Since $S^{-1}R = R$, we have $W_R(M) = \bigcup_{\mathfrak{m} \in max(R)} \mathfrak{m}$ by Lemma 3.1. Thus far each maximal ideal \mathfrak{m} of R, we have $\mathfrak{m} \cap W_R(M) = \mathfrak{m}$ is always an ideal of R. Now the result follows from Theorem 3.3. The reverse implication is clear.
- (b) If M satisfies the dual of strong Property \mathcal{A} , then clearly, M satisfies the dual of proper strong Property \mathcal{A} . Conversely, assume that M satisfies the dual of proper strong Property \mathcal{A} . As $S^{-1}R \neq R$, there exists $x \in R$ such that x is not invertible and $x \notin W_R(M)$ by Lemma 3.1. Let \mathfrak{m} be a maximal ideal of R such that $x \in m$. Let $I = \langle a_1, a_2, ..., a_n \rangle$ be a proper ideal of R such that $a_i \in W_R(M)$ for i = 1, ..., n. Then $xI = \langle xa_1, ..., xa_n \rangle \subseteq \mathfrak{m}$ is a proper ideal of R and $xa_i \in W_R(M)$ for i = 1, ..., n. Since M satisfies the dual of proper strong Property \mathcal{A} , $xIM \neq M$. Thus there exists a completely irreducible submodule L of M such that $xIM \subseteq L \neq M$ by Remark 2.4. Now, as $x \notin W_R(M)$, it follows that $IM \subseteq L \neq M$. This implies that $a_iM \subseteq L \neq M$ for i = 1, ..., n. Hence M satisfies the dual of strong Property \mathcal{A} .

Proposition 3.9. Let R be a zero-dimensional ring. Then any faithful R-module M satisfies the dual of proper strong Property A. In particular, any R-module M satisfies the dual of proper strong Property A over $R/Ann_R(M)$.

Proof. By Theorem 2.12 (c), M satisfies the dual of Property \mathcal{A} . We have $W_R(M) \subseteq Z_R(M) = Z_R(R)$ by using the proof of [1, Corollary 2.20]. Therefore, $W_R(M) = Z_R(R)$ because the inverse inclusion is clear. Thus $S^{-1}R = R$, where $S = R \setminus W_R(M) = R \setminus Z_R(R)$. This implies that M satisfies the dual of proper strong Property \mathcal{A} by Theorem 3.8 (a). \square

Theorem 3.10. Let R_i be a commutative ring with identity and M_i be an R_i -module for each i = 1, 2. Let $M = M_1 \times M_2$, $R = R_1 \times R_2$, and $S_i = R_i \setminus Z_{R_i}(M_i)$. Then the following assertions are equivalent:

- (a) M satisfies the proper strong Property A,
- (b) M_i satisfies the proper strong Property \mathcal{A} and $S_i^{-1}R_i = R_i$ for each i = 1, 2.

Proof. $(a) \Rightarrow (b)$ Assume that M satisfies the proper strong Property \mathcal{A} and $I_1 = \langle a_1, a_2, ..., a_n \rangle$ is a finitely generated ideal of R_1 such that $I_1 \subseteq Z_{R_1}(M_1)$. Set

$$I = \langle (a_1, 0), (a_2, 0), ..., (a_n, 0), (0, 1) \rangle.$$

Then $(0,1), (a_i,0) \in Z_{R_1 \times R_2}(M_1 \times M_2)$ for i = 1, 2, ..., n. By part (a), $(0:_{M_1 \times M_2} I) \neq 0$. Thus there exists $0 \neq (x_1, x_2) \in M_1 \times M_2$ such that $I(x_1, x_2) = 0$. This implies that $0 \neq x_1 \subseteq M_1 \times M_2$

 $(0:_{M_1}I_1)$ and M_1 satisfies the proper strong Property \mathcal{A} . Now let $r_1 \in R_1 \setminus U(R_1)$. Clearly $(r_1,0) \in Z_{R_1 \times R_2}(M_1 \times M_2)$. Set $J = \langle (r_1,0), (0,1) \rangle$. Thus by part (a), $(0:_{M_1 \times M_2}J) \neq 0$. This implies that $r_1 \in Z_{R_1}(M_1)$. Now by [1, Lemma 2.1], $S_1^{-1}R_1 = R_1$. Similarly, one can see that M_2 satisfies the proper strong Property \mathcal{A} and $S_2^{-1}R_2 = R_2$.

 $(b)\Rightarrow (a)$ Let $I=\langle (a_1,b_1),(a_2,b_2),...,(a_n,b_n)\rangle$ be a proper finitely generated ideal of R such that $(a_i,b_i)\in Z_{R_1\times R_2}(M_1\times M_2)$ for each i=1,2,...,n. Set $I_1=\langle a_1,a_2,...,a_n\rangle$ and $I_2=\langle b_1,b_2,...,b_n\rangle$. Then as I is proper, I_1 or I_2 is proper. Assume that I_1 is proper. Then $I_1\subseteq Z_{R_1}(M_1)$. Thus by part (b), $(0:_{M_1}I_1)\neq 0$. Hence there exists $0\neq x_1\in M_1$ such that $I_1x_1=0$. Now $(0,0)\neq (x_1,0)\in (0:_{M_1\times M_2}I)$ implies that M satisfies the proper strong Property \mathcal{A} . \square

The following examples show that the concepts of proper strong Property \mathcal{A} and the dual of proper strong Property \mathcal{A} are different in general.

Example 3.11. Consider the $\mathbb{Z} \times \mathbb{Z}$ -module $\mathbb{Z} \times \mathbb{Z}$. As $W_{\mathbb{Z}}(\mathbb{Z}) = \mathbb{Z} \setminus \{1, -1\}$, we have $S = \mathbb{Z} \setminus W_{\mathbb{Z}}(\mathbb{Z}) = \{1, -1\}$ and so $S^{-1}\mathbb{Z} = \mathbb{Z}$. Now Theorem 3.7 implies that $\mathbb{Z} \times \mathbb{Z}$ satisfies the dual of proper strong Property \mathcal{A} . But by [1, Example 2.13 (1)], $\mathbb{Z} \times \mathbb{Z}$ not satisfies the proper strong Property \mathcal{A} .

Example 3.12. Consider the $\mathbb{Z} \times \mathbb{Z}$ -module $\mathbb{Q}/\mathbb{Z} \times \mathbb{Q}/\mathbb{Z}$. Since $W_{\mathbb{Z}}(\mathbb{Q}/\mathbb{Z}) = \{0\}$, we have $S = \mathbb{Z} \setminus W_{\mathbb{Z}}(\mathbb{Q}/\mathbb{Z}) = \mathbb{Z} \setminus \{0\}$ and so $\mathbb{Q} = S^{-1}\mathbb{Z} \neq \mathbb{Z}$. Now Theorem 3.7 implies that $\mathbb{Q}/\mathbb{Z} \times \mathbb{Q}/\mathbb{Z}$ not satisfies the dual of proper strong Property \mathcal{A} . On the other hand since $Z_{\mathbb{Z}}(\mathbb{Q}/\mathbb{Z}) = \mathbb{Z} \setminus \{1, -1\}$, we have $S = \mathbb{Z} \setminus W_{\mathbb{Z}}(\mathbb{Q}/\mathbb{Z}) = \{1, -1, \}$ and so $S^{-1}\mathbb{Z} = \mathbb{Z}$. Clearly, the \mathbb{Z} -module \mathbb{Q}/\mathbb{Z} satisfies the proper strong Property \mathcal{A} . Now Theorem 3.10, implies that $\mathbb{Q}/\mathbb{Z} \times \mathbb{Q}/\mathbb{Z}$ satisfies the proper strong Property \mathcal{A} .

Theorem 3.13. Let $M = R/\mathfrak{m}_1 \oplus R/\mathfrak{m}_2 \oplus ... \oplus R/\mathfrak{m}_n$ be an R-module, where $\mathfrak{m}_i \in max(R)$ for i = 1, ..., n. Then M satisfies the dual of proper strong Property A if and only if either $max(R) = {\mathfrak{m}_1, \mathfrak{m}_2, ..., \mathfrak{m}_n}$ or $\mathfrak{m}_1 = \mathfrak{m}_2 = ... = \mathfrak{m}_n$.

Proof. First, note that $W_R(M) = \mathfrak{m}_1 \cup \mathfrak{m}_2 \cup ... \cup \mathfrak{m}_n$. So, it is easy to see that any ideal I contained in $W_R(M)$ is contained in some maximal ideal m_j . By Theorem 2.12 (d), M satisfies the dual of Property A. Now, assume that $max(R) = {\mathfrak{m}_1, \mathfrak{m}_2, ..., \mathfrak{m}_n}$. Then, we get $S^{-1}R = R$. Then, using Theorem 3.8 (a), M satisfies the dual of proper strong Property A. On the other hand, suppose that $\mathfrak{m}_1 = \mathfrak{m}_2 = ... = \mathfrak{m}_n$. Then $W_R(M) = \mathfrak{m}$ is an ideal of R and hence M satisfies the dual of strong Property A. It follows that M satisfies the dual of proper strong Property A. Conversely, assume that ${\mathfrak{m}_1, \mathfrak{m}_2, ..., \mathfrak{m}_n} \subset max(R)$ and that $card({\mathfrak{m}_1, \mathfrak{m}_2, ..., \mathfrak{m}_n}) \ge 2$. Then, by Lemma 3.1, $S^{-1}R \ne R$ as there exists a maximal ideal $\mathfrak{m} \not\subseteq \mathfrak{m}_1 \cup \mathfrak{m}_2 \cup ... \cup \mathfrak{m}_n = W_R(M)$ and thus there exists an element $x \in \mathfrak{m}$ which is

neither invertible nor $x \in W_R(M)$. Suppose contrary that $W_R(M)$ is an ideal. Then as $W_R(M) = \mathfrak{m}_1 \cup \mathfrak{m}_2 \cup ... \cup \mathfrak{m}_n$, there exists $j \in \{1,...,n\}$ such that $W_R(M) = m_j$. Hence $\mathfrak{m}_1 = \mathfrak{m}_2 = ... = \mathfrak{m}_n$, which is a contradiction. Therefore, $W_R(M)$ is not an ideal and so M not satisfies the dual of strong Property A by Theorem 2.5. Therefore, by Theorem 3.8 (b), M not satisfies the dual of proper strong Property A, as needed. \square

4. Properties
$$\mathcal{S}_{\mathcal{J}}(\mathcal{N})$$
 and $\mathcal{I}_{\mathcal{J}}^{\mathcal{M}}(\mathcal{N})$

Let J be an ideal of R and let N be a submodule of an R-module M. Set

$$S_{\mathcal{I}}(\mathcal{N}) = \{ m \in M \mid rm \in N \text{ for some } r \in R - J \}.$$

When J is a prime ideal of R, then $\mathcal{S}_{\mathcal{J}}(\mathcal{N})$ is called the saturation of N with respect to J or J-closure of N [11, 15, 16].

Set

$$\mathcal{I}_{\mathcal{J}}^{\mathcal{M}}(\mathcal{N}) = \bigcap \{L \mid L \text{ is a completely irreducible submodule of } M \text{ and } rN \subseteq L \text{ for some } r \in R - J\}.$$

When J is a prime ideal of R, then $\mathcal{I}_{\mathcal{J}}^{\mathcal{M}}(\mathcal{N})$ is called the J-interior of N relative to M [8, 9, 10].

Definition 4.1. Let J be an ideal of R. We say that a submodule N of an R-module M satisfies $Property \mathcal{S}_{\mathcal{J}}(\mathcal{N})$ if for each finitely generated submodule K of M with $K \subseteq \mathcal{S}_{\mathcal{J}}(\mathcal{N})$ there exists a $r \in R \setminus J$ with $rK \subseteq N$.

Definition 4.2. Let J be an ideal of R. We say that a submodule N of an R-module M satisfies $Property \mathcal{I}^{\mathcal{M}}_{\mathcal{J}}(\mathcal{N})$ (that is the dual of Property $\mathcal{S}_{\mathcal{J}}(\mathcal{N})$) if for each submodule K of M with M/K is finitely cogenerated and $\mathcal{I}^{\mathcal{M}}_{\mathcal{J}}(\mathcal{N}) \subseteq K$ there exists a $r \in R \setminus J$ with $rN \subseteq K$.

Definition 4.3. Let J be an ideal of R. We say that a submodule N of an R-module M satisfies the strong Property $\mathcal{S}_{\mathcal{J}}(\mathcal{N})$ if for any $m_1, ..., m_n \in \mathcal{S}_{\mathcal{J}}(\mathcal{N})$ there exists a $r \in R \setminus J$ with $rm_1 \in N$, ... $rm_n \in N$.

Example 4.4. Let J be a prime ideal of R and N be a submodule of an R-module M such that $\mathcal{S}_{\mathcal{J}}(\mathcal{N})$ is a finitely generated submodule of M. Then one can see that there exists a $r \in R \setminus J$ with $rN \subseteq \mathcal{S}_{\mathcal{J}}(\mathcal{N})$. This implies that N satisfies the strong Property $\mathcal{S}_{\mathcal{J}}(\mathcal{N})$.

Example 4.5. Let J be a prime ideal of R and N be a submodule of an R-module M such that $M/\mathcal{I}_{\mathcal{J}}^{\mathcal{M}}(\mathcal{N})$ is a finitely cogenerated R-module. Then N satisfies Property $\mathcal{I}_{\mathcal{J}}^{\mathcal{M}}(\mathcal{N})$ by using [10, Lemma 2.3].

If J = 0 and N = 0 in Definition 4.1 (resp. Definition 4.3), then M under the name Property T (resp. strong Property T) was studied in [2].

Theorem 4.6. Let M be an R-module and J be an ideal of R. Then we have the following.

- (a) A submodule N of M satisfies the strong Property $S_{\mathcal{J}}(\mathcal{N})$ if and only if N satisfies Property $S_{\mathcal{J}}(\mathcal{N})$ and $S_{\mathcal{J}}(\mathcal{N})$ is a submodule of M.
- (b) The zero submodule of M satisfies the strong Property $S_{\mathcal{J}}(0)$.
- (c) If a submodule N of M satisfies Property $S_{\mathcal{J}}(\mathcal{N})$ (respectively, strong Property $S_{\mathcal{J}}(\mathcal{N})$) and $N \subseteq K \subseteq S_{\mathcal{J}}(\mathcal{N})$, then K satisfies Property $S_{\mathcal{J}}(\mathcal{K})$ (respectively, strong Property $S_{\mathcal{J}}(\mathcal{K})$).
- (d) Let $\psi = \{N_{\lambda}\}_{{\lambda} \in \Lambda}$ be a chain of submodules of M with $N \subseteq N_{\lambda} \subseteq \mathcal{S}_{\mathcal{J}}(\mathcal{N})$ for each $\lambda \in \Lambda$. Then $\cup_{{\lambda} \in \Lambda} N_{\lambda}$ satisfies Property $\mathcal{S}_{\mathcal{J}}(\cup_{{\lambda} \in *} \mathcal{N}_{\lambda})$ (respectively, strong Property $\mathcal{S}_{\mathcal{J}}(\cup_{{\lambda} \in *} \mathcal{N}_{\lambda})$) if and only if each N_{λ} satisfies Property $\mathcal{S}_{\mathcal{J}}(\mathcal{N}_{\lambda})$ (respectively, strong Property $\mathcal{S}_{\mathcal{J}}(\mathcal{N}_{\lambda})$).
- (e) If for a submodule N of M we have $Ann_R(M/N) \not\subseteq J$, or more generally, $Ann_R(\mathcal{S}_{\mathcal{J}}(\mathcal{N})/\mathcal{N}) \not\subseteq J$, then N satisfies strong Property $\mathcal{S}_{\mathcal{J}}(\mathcal{N})$.
- (f) If J is an irreducible ideal of R (e.g., R/J is an integral domain), then every submodule N of M satisfies strong Property $\mathcal{S}_{\mathcal{J}}(\mathcal{N})$.
- (g) If a submodule N of M is a Bezout module (respectively, chained module), then N satisfies Property $S_{\mathcal{J}}(\mathcal{N})$ (respectively, strong Property $S_{\mathcal{J}}(\mathcal{N})$).

Proof. (a), (b), (e), and (g) are straightforward.

- (c) Let T be a finitely generated submodule of M with $T \subseteq \mathcal{S}_{\mathcal{J}}(\mathcal{K})$. Then $T \subseteq \mathcal{S}_{\mathcal{J}}(\mathcal{K}) \subseteq \mathcal{S}_{\mathcal{J}}(\mathcal{S}_{\mathcal{J}}(\mathcal{N}))$. Clearly, $\mathcal{S}_{\mathcal{J}}(\mathcal{S}_{\mathcal{J}}(\mathcal{N})) = \mathcal{S}_{\mathcal{J}}(\mathcal{N})$. Hence $T \subseteq \mathcal{S}_{\mathcal{J}}(\mathcal{N})$. Now, by assumption, there exists a $r \in R \setminus J$ with $rT \subseteq N$ and so $rT \subseteq K$.
- (d) First note that, if $\cup_{\lambda \in \Lambda} N_{\lambda}$ satisfies Property $\mathcal{S}_{\mathcal{J}}(\cup_{\lambda \in *} \mathcal{N}_{\lambda})$ (respectively, strong Property $\mathcal{S}_{\mathcal{J}}(\cup_{\lambda \in *} \mathcal{N}_{\lambda})$), then each N_{λ} satisfies Property $\mathcal{S}_{\mathcal{J}}(\mathcal{N}_{\lambda})$ (respectively, strong Property $\mathcal{S}_{\mathcal{J}}(\mathcal{N}_{\lambda})$). Conversely, suppose that each N_{λ} satisfies Property $\mathcal{S}_{\mathcal{J}}(\mathcal{N}_{\lambda})$ (respectively, strong Property $\mathcal{S}_{\mathcal{J}}(\mathcal{N}_{\lambda})$) and K is a finitely generated submodule of $\mathcal{S}_{\mathcal{J}}(\cup_{\lambda \in *} \mathcal{N}_{\lambda})$. Then K is a submodule of $\mathcal{S}_{\mathcal{J}}(\mathcal{N}_{\alpha})$ for some $\alpha \in \Lambda$ and hence $(N_{\alpha} :_{R} K) \not\subseteq I$. So $(\cup_{\lambda \in \Lambda} N_{\lambda} :_{R} K) \not\subseteq I$, as desired.
- (f) Let J be an irreducible ideal of R and $m_1, ..., m_n \in \mathcal{S}_{\mathcal{J}}(\mathcal{N})$, where $r_i m_i \in N$ with $r_i \in R \setminus J$ for i = 1, 2, ..., n. Since J is irreducible, $Rr_1 \cap ... \cap Rr_n \neq J$. Hence there exists $r \in (Rr_1 \cap ... \cap Rr_n) \setminus J$. Thus $rm_i \in N$ for i = 1, 2, ..., n, as needed. \square

Theorem 4.7. Let M be an R-module and J be an ideal of R. Then we have the following.

- (a) Let J be a prime ideal of R. A submodule N of M satisfies Property $\mathcal{I}_{\mathcal{J}}^{\mathcal{M}}(\mathcal{N})$ if and only if for any completely irreducible submodules $L_1, ..., L_n$ of M with $\mathcal{I}_{\mathcal{J}}^{\mathcal{M}}(\mathcal{N}) \subseteq L_1, ..., \mathcal{I}_{\mathcal{J}}^{\mathcal{M}}(\mathcal{N}) \subseteq L_n$ there exists a $r \in R \setminus J$ with $rN \subseteq L_1, ..., rN \subseteq L_n$.
- (b) M satisfies Property $\mathcal{I}_0^{\mathcal{M}}(\mathcal{M})$ if and only if every submodule K of M with M/K is finitely cogenerated M/K satisfies Property $\mathcal{I}_0^{\mathcal{M}/\mathcal{K}}(\mathcal{M}/\mathcal{K})$.

(c) If for a submodule N of M we have $Ann_R(N) \nsubseteq J$, or more generally, $Ann_R(N/\mathcal{I}^{\mathcal{M}}_{\mathcal{T}}(\mathcal{N})) \nsubseteq J$, then N satisfies Property $\mathcal{I}^{\mathcal{M}}_{\mathcal{T}}(\mathcal{N})$.

- (d) If J is an irreducible ideal of R (e.g., R/J is an integral domain), then every submodule N of M satisfies Property $\mathcal{I}^{\mathcal{M}}_{\mathcal{T}}(\mathcal{N})$.
- Proof. (a) The necessity is clear. For the sufficiency assume that for a submodule K of M with M/K is finitely cogenerated we have $\mathcal{I}^{\mathcal{M}}_{\mathcal{J}}(\mathcal{N}) \subseteq K$. As M/K is finitely cogenerated, there exist completely irreducible submodules $L_1, ..., L_n$ of M such that $K = \bigcap_{i=1}^n L_i$. Now by assumption, there exist $r_1, ..., r_n \in R \setminus J$ such that $r_i N \subseteq L_i$ for i = 1, 2, ..., n. Set $r = r_1 r_2 ... r_n$. As J is prime, $r \in R \setminus J$. Now $rN \subseteq K$, as needed.
 - (b) and (c) are straightforward.
- (d) Let J be an irreducible ideal of R and $\mathcal{I}_{\mathcal{J}}^{\mathcal{M}}(\mathcal{N}) \subseteq L_i$, where L_i is a completely irreducible submodule of M, $r_i N \subseteq L_i$, and $r_i \in R \setminus J$ for i = 1, 2, ..., n. As J is irreducible, $Rr_1 \cap ... \cap Rr_n \neq J$. Hence there exists $r \in (Rr_1 \cap ... \cap Rr_n) \setminus J$. Thus $rN \subseteq L_i$ for i = 1, 2, ..., n, as needed. \square

References

- A. Ait Ouahi, S. Bouchiba and M. El-Arabi, On proper strong Property (A) for rings and modules, J. Algebra Appl., 19 No. 12 (2020) 2050239.
- [2] D. D. Anderson and S. Chun, Annihilator conditions on modules over commutative rings, J. Algebra Appl., 16 No. 8 (2017) 1750143.
- [3] H. Ansari-Toroghy and F. Farshadifar, The dual notion of multiplication modules, Taiwanese J. Math., 11 No. 4 (2007) 1189-1201.
- [4] H. Ansari-Toroghy and F. Farshadifar, Comultiplication modules and related results, Honam Math. J., 30 No. 1 (2008) 91-99.
- [5] H. Ansari-Toroghy and F. Farshadifar, On comultiplication modules, Korean Ann. Math., 25 No. 1-2 (2008) 57-66.
- [6] H. Ansari-Toroghy and F. Farshadifar, The dual notions of some generalizations of prime submodules, Comm. Algebra, 39 No. 7 (2011) 2396-2416.
- [7] H. Ansari-Toroghy and F. Farshadifar, Fully idempotent and coidem-potent modules, Bull. Iranian Math. Soc., 38 No. 4 (2012) 987-1005.
- [8] H. Ansari-Toroghy and F. Farshadifar, On the dual notion of prime submodules, Algebra Colloq., 19 Special Issue 1 (2012) 1109-1116.
- [9] H. Ansari-Toroghy and F. Farshadifar, On the dual notion of prime submodules (II), Mediterr. J. Math.,9 No. 2 (2012) 327-336.
- [10] H. Ansari-Toroghy, F. Farshadifar and S. S. Pourmortazavi, On the P-interiors of submodules of Artinian modules, Hacet. J. Math. Stat., 45 No. 3 (2016) 675-682.
- [11] M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, Mass. 1969.

- [12] A. Barnard, Multiplication modules, J. Algebra, **71** No. 1 (1981) 174-178.
- [13] L. Fuchs, W. Heinzer and B. Olberding, Commutative ideal theory without finiteness conditions: Irreducibility in the quotient filed. Abelian groups, rings, modules, and homological algebra, LNPAM, 249 (2006) 121-145.
- [14] I. Kaplansky, Commutative rings, In Conference on Commutative Algebra: Lawrence, Kansas 1972, pp. 153-166, Berlin, Heidelberg, Springer Berlin Heidelberg, 2006.
- [15] C. -P. Lu, Saturations of submodules, Comm. Algebra, 31 No. 6 (2003) 2655-2673.
- [16] R. L. McCasland and P. F. Smith, Generalised associated primes and radicals of submodules, Int. Electron. J. Algebra, 4 (2008) 159-176.
- [17] M. Nagata, Local Rings, Interscience Publishers a division of John Wiley Sons, New York, London, 1962.
- [18] A. A. Tuganbaev, Multiplication modules, J. Math. Sci. (N.Y.), 123 No. 2 (2004) 3839-3905.
- [19] S. Yassemi, Maximal elements of support and cosupport, http://www.ictp.trieste.it/puboff.
- [20] S. Yassemi, Coassociated primes of modules over a commutative ring, Math. Scand, 80 No. 2 (1997) 175-187.

Faranak Farshadifar

Department of Mathematics Education,

Farhangian University,

P. O. Box 14665-889, Tehran, Iran.

f.farshadifar@cfu.ac.ir