Right-left induced hyperlattices and the genetic code hyperlattices

Document Type : Research Paper


Department of Mathematics, Vali-e-Asr university of Rafsanjan, Rafsanjan, Iran.


‎‎‎In this paper first we introduce right(resp‎. ‎left) induced hyperlattices and investigate some of their properties‎. ‎Especially‎ ‎a characterization of the smallest strongly regular relation for the class of distributive right/left induced hyperlattice is investigated‎. ‎Next we propose and study the generated hyperlattices from hyperlattices‎. ‎Finally‎, ‎the right induced hyperlattices of two Boolean lattices of four DNA bases and physico-chemical properties of amino acids of four DNA bases are investigated‎.


[1] A. R. Ashrafi, About some join spaces and hyperlattices, Ital. J. Pure Appl. Math., 10 (2001) 199-205.
[2] M. O. Bertman and J. R. Jungck, Group graph of the genetic code, J. Hered., 70 (1979) 379-384.
[3] G. Birkhoff, (1940). Lattice Theory, Vol. 25, American Mathematical Soc.
[4] P. Corsini, Prolegomena of Hypergroups Theory, Aviani Editore, 1993.
[5] P. Corsini, V. Leoreanu, Applications of Hyperstructure Theory, Kluwer Academic Publishers, Dordrecht, 2003.
[6] F. H. C. Crick, The origin of the genetic code, J. Mol. Biol., 38 (1968) 367-379.
[7] B. Davvaz, V. Leoreanu-Fotea, Hyperring Theory and Applications, International Academic Press, USA, 2007.
[8] C. J. Epstein, Role of the amino-acid code and of selection for conformation in the evolution of proteins, Nature, 210 (1966) 25-28.
[9] M. A. Jimenez-montano, C. R. de la Mora-Basanet and T. Poschel. The hypercube structure of the genetic code explains conservstive and non-conservative amino acid substitutions in vivo and in virto, Biosystems, 39 No. 2 (1996) 117-125
[10] V. A. Karasev and V. E. Stefanov, Topological nature of the genetic code, J. Theor. Biol., 209 No. 3 (2001) 303-317
[11] R. D. Knight, S. J. Freeland and L. F. Landweber, Selection, history and chemistry: the three faces of the genetic code, Trends Biochem. Sci., 24 No. 6 (1999) 241-247
[12] M. Konstantinidou and J. Mittas, An introduction to the theory of hyperlattices, Math. Balkanica, 7 (1977) 187-193.
[13] M. Konstantinidou and K. Serafimidis, Hyperstructures derivees dun trellis particulier, Rend. Mat. Appl., 7 (1993) 257-265.
[14] M. Konstantinidou and K. Serafimidis, Sur les P-supertreillis, In T. Vougiouklis, (Ed.), New Frontiers in Hyperstructures and Rel. Algebras, Hadronic Press, pp. 139-148, USA, 1996.
[15] J. Lehmann, physico-chemical constraints connected with the coding properties of the genetic system, J. Theor. Biol., 202 (2000) 129-144
[16] V. Leoreanu-Fotea and R. Gheorghe, Direct limit and inverse limit of join spaces associated with lattices, Ital. J. Pure Appl. Math., 11 (2002) 121-130.
[17] S. V. Petoukhov, The genetic code, 8-dimentional hypercomplex numbers and dyadic shifts, (2011) arXiv preprint arXiv:1102.3596.
[18] F. Marty, Sur une Generalization de la Notion de Groupe, 8th Congress Math. Scandenaves, Stockholm, Sweden, (1934) 45-49.
[19] J. Mittas and M. Konstantinidou, Sur une nouvelle generation de la notion de treillis. Les supertreillis et certaines de leurs proprietes generales, Ann. Sci. Univ. Blaise Pascal, Ser. Math., 25 (1989) 61-83.
[20] T. Nakano, Ring and partly ordered systems, Math. Zeitschrift, 99 (1967) 355-376.
[21] A. Rahnamai-Barghi, The prime ideal theorem and semiprime ideals in meethyperlattices, Ital. J. Pure Appl. Math., 5 (1999) 53-60.
[22] A. Rahnamai-Barghi, The prime ideal theorem for distributive hyperlattices, Ital. J. Pure Appl. Math., 10 (2001) 75-78.
[23] S. Rasouli and B. Davvaz, Lattices derived from hyperlattices, Comm. Algebra, 38 No. 8 (2010) 2720- 2737.
[24] S. Roman, Lattices and Ordered Sets, Springer-verlag, New York, 2008.
[25] I. G. Rosenberg, Hypergroups and join spaces determined by relations, Ital. J. Pure Appl. Math., 4 (1998) 93-101.
[26] R. Sanchez, E. Morgado and R. Grau, A genetic code Boolean structure. I. The meaning of Boolean deductions, Bull. of Math. Biol., 67 (2005) 1-14
[27] A. Soltani Lashkenari and B. Davvaz, Complete join hyperlattices, Indian National Sci. Acad., 46 No. 5 (2015) 633-645.
[28] T. Vougiouklis, Hyperstructures and Their Representations, Hadronic Press, 1994.