THE EFFECT OF SINGULARITY ON A TYPE OF SUPPLEMENTED MODULES

ALI REZA MONIRI HAMZEKOLAEE* AND ALI VALINEJAD

ABSTRACT. Let R be a ring, M a right R-module, and $S = \text{End}_R(M)$ the ring of all R-Endomorphisms of M. We say that M is Endomorphism δ-H-supplemented (briefly, E-δ-H-supplemented) provided that for every $\varphi \in S$, there exists a direct summand D of M such that $M = \text{Im}\varphi + X$ if and only if $M = D + X$ for every submodule X of M with M/X singular. In this paper, we prove that a non-δ-cosingular module M is E-δ-H-supplemented if and only if M is dual Rickart. We also show that every direct summand of a weak duo E-δ-H-supplemented module inherits the property.

1. Introduction

Throughout this paper, all rings are associative ring with identity, and all modules are unitary right R-modules. Let M and N be R-modules. Then by $S = \text{End}_R(M)$, we denote
the ring of all endomorphisms of M, and by $N \subseteq M$, we mean that N is a submodule of M.

A submodule N of M is said to be small in M if $N + K \neq M$ for any proper submodule K of M, and we denote it by $N \ll M$. As a generalization, Zhou [12] introduced the concept of δ-small submodules. A submodule N of M is called δ-small in M (denoted by $N \ll_{\delta} M$) if $M \neq N + K$ for any proper submodule K of M with M/K singular. General properties and some useful characterizations of δ-small submodules of a module were investigated in [12].

The notion of H-supplemented modules was introduced by Mohamed and Muller in [3]. A module M was called H-supplemented if for every submodule N of M there exists a direct summand D of M such that $M = N + X$ if and only if $M = D + X$ for every submodule X of M. Different definition’s style, unusual properties and being a generalization of lifting modules, all led many researchers to study and investigate H-supplemented modules further than what was investigated in [3]. Maybe the first serious effort has been made in [3]. He investigated some general properties of H-supplemented modules, such as homomorphic images and direct summands of these modules. The authors in reference [3], proposed some equivalent conditions for a module to be H-supplemented, which show that this class of modules is closely related to the concept of small submodules. They proved that a module M is H-supplemented if and only if for every submodule N of M there is a direct summand D of M such that $(N + D)/N \ll M/N$ and $(N + D)/D \ll M/D$. In [3], Moniri and etc. investigated, the E-H-supplemented definition of module M, a homological approach of a H-supplemented modules. A module M is called E-H-supplemented, if for every endomorphism φ of M there exists a direct summand D of M such that $Im \varphi + X = M$ if and only if $D + X = M$.

Let M be a module over a ring R. Following [11], M is called (non)cosingular if $(\overline{Z}(M) = M)$ $\overline{Z}(M) = 0$, where $\overline{Z}(M) = \bigcap \{Ker f \mid f : M \to U\}$, in which U is an arbitrary small right R-module. The author in [8] considered the class of right δ-small R-modules in the definition of $\overline{Z}(M)$, and defined $\overline{Z}_\delta(M)$ to be $\bigcap \{Ker g \mid g : M \to V\}$ where V is a δ-small module (i.e. there exists another module U such that $V \ll_{\delta} U$). In [8], M is said to be (non)-δ-cosingular in case $(Z_\delta(M) = M)$ $\overline{Z}_\delta(M) = 0$. Hence for module M, we have $\overline{Z}_\delta(M) \subseteq \overline{Z}(M)$. Therefore, every cosingular right R-module is δ-cosingular, and every non-δ-cosingular module is noncosingular.

As a pioneer research on lifting modules, supplemented modules, \oplus-supplemented modules, and others concept of singularity. Zhou [12] made a different impression on works that made on supplemented modules and related concepts. The first person who worked on δ-version was Koşan, that introduced δ-lifting modules and δ-supplemented modules and tried to investigate their natural properties [4]. According to [4], a module M is said to be δ-H-supplemented, if for every submodule N of M there is a direct summand D of M such that $M = N + X$ if and only if $M = D + X$, for every submodule X of M with M/X singular.
Inspired by [7] and [6], in this manuscript, we are interested in studying δ-H-supplemented modules via homomorphisms. Combining the two concepts E-H-supplemented modules and δ-H-supplemented modules, we call a module M, an E-δ-H-supplemented module if for every endomorphism φ of M there exists a direct summand D of M such that $\text{Im}\varphi + X = M$ if and only if $D + X = M$, for all submodules X of M with M/X singular. We introduce some equivalent conditions for this definition impressing the close relation of δ-H-supplemented modules to the concept of δ-small submodules.

2. SINGULARITY AND ENDOMORPHISM H-SUPPLEMENTED MODULES

In this section, we introduce a new generalization of the class of E-H-supplemented modules and δ-H-supplemented modules, namely Endomorphism δ-H-supplemented modules. We work on factor modules, particularly direct summands of Endomorphism δ-H-supplemented modules.

Definition 2.1. A module M is called *Endomorphism δ-H-supplemented* (E-δ-H-supplemented, for short) if for every $f \in S$, there exists a direct summand D of M such that $\text{Im} f + X = M$ if and only if $D + X = M$ for every submodule X of M with M/X singular.

Every δ-H-supplemented module is E-δ-H-supplemented. We shall present some conditions showing that the concept of E-δ-H-supplemented modules is closely related to the concept δ-small submodules.

Theorem 2.2. The following are equivalent for a module M:

1. M is E-H-supplemented;
2. For every $f \in S$, there exists a direct summand D of M with $\frac{\text{Im} f + D}{\text{Im} f} \ll_\delta \frac{M}{D}$ and $\frac{\text{Im} f + D}{\text{Im} f} \ll_\delta \frac{M}{M_f}$;
3. For every $f \in S$, there exist a direct summand D and a submodule N of M with $\text{Im} f \subseteq N$ and $D \subseteq N$ such that $\frac{N}{D} \ll_\delta \frac{M}{D}$ and $\frac{N}{\text{Im} f} \ll_\delta \frac{M}{\text{Im} f}$.

Proof. (1) ⇒ (2) Let $f \in S$. By (1), there exists a direct summand D of M such that $\text{Im} f + X = M$ if and only if $D + X = M$ for every submodule X of M with M/X singular. Let $(\text{Im} f + D)/\text{Im} f + X/\text{Im} f = M/\text{Im} f$ for a submodule X of M containing $\text{Im} f$ such that M/X is singular. It follows that $D + X = M$. Now, (1) implies $\text{Im} f + X = M$. Therefore, $X = M$, showing that $(\text{Im} f + D)/\text{Im} f \ll_\delta M/\text{Im} f$. For the second one, suppose that $(\text{Im} f + D)/D + Y/D = M/D$ where Y is a submodule of M, which contains D with M/Y singular. Then $\text{Im} f + Y = M$ combining with (1) implies $M = Y$, as required.

(2) ⇒ (3) Set $N = \text{Im} f + D$.

(3) ⇒ (1) Let $f \in S$. Then by assumption there is a submodule N and a direct summand D of M such that $N/D \leq M/D$ and $N/\text{Im} f \leq M/\text{Im} f$. Suppose that $\text{Im} f + X = M$ for a submodule X of M with M/X singular. Then $M = N + X$. Now, $N/D + (X + D)/D = M/D$. As M/X is singular, we conclude that $M/(X + D)$ is singular. Being N/D a δ-small submodule of M/D implies $M = X + D$. For the converse, let $M = Y + D$ for a submodule Y of M with M/Y singular. Then $M = N + Y$ which implies $N/\text{Im} f + (Y + \text{Im} f)/\text{Im} f = M/\text{Im} f$. Note also that $M/(Y + \text{Im} f)$ is singular and M/Y. Therefore, $M = \text{Im} f + Y$ is desired. □

We present some assumptions, which under two concepts E-H-supplemented modules and E-δ-H-supplemented modules are coincide.

Proposition 2.3. Let M be a module. In each of the following cases, M is E-H-supplemented if and only if M is E-δ-H-supplemented.

1. M is a singular module.
2. M has no simple projective submodule.

Proof. (1) This follows from the fact that every homomorphic image of a singular module is singular. In fact, every δ-small submodule of a singular module is a small submodule of that module.

(2) Let M be a E-δ-H-supplemented module with simple projective submodule. Suppose that f is an endomorphism of M. Then there is a direct summand D of M such that $(\text{Im} f + D)/\text{Im} f \leq M/\text{Im} f$ and $(\text{Im} f + D)/D \leq M/D$. Let $(\text{Im} f + D)/\text{Im} f + T/\text{Im} f = M/\text{Im} f$ for a submodule $T/\text{Im} f$ of $M/\text{Im} f$. Then, by [12, Lemma 1.2], $(\text{Im} f + D)/\text{Im} f$ contains a semisimple projective direct summand $Y/\text{Im} f$ of $M/\text{Im} f$ such that $Y/\text{Im} f \oplus T/\text{Im} f = M/\text{Im} f$. So, there is a submodule N' of Y such that $Y = \text{Im} f \oplus N'$, since $Y/\text{Im} f$ is projective. It follows that N' contains a simple projective submodule. Now, $Y = \text{Im} f$, and consequently $T/\text{Im} f = M/\text{Im} f$ implies that $(\text{Im} f + D)/\text{Im} f \leq M/\text{Im} f$. Applying the same argument, we can prove $(\text{Im} f + D)/D \leq M/D$. Therefore, M is H-supplemented. □

Corollary 2.4. Let R be a ring such that every simple right R-module is singular (consider the ring \mathbb{Z}). Then a right R-module M is E-H-supplemented if and only if M is E-δ-H-supplemented. Particularly, an \mathbb{Z}-module M is E-H-supplemented if and only if M is E-δ-H-supplemented.

Proposition 2.5. Let M be an indecomposable module. Then M is E-δ-H-supplemented if and only if the image of each endomorphism of M is δ-small in M or every endomorphism of M is an epimorphism.
Proof. Let \(M \) be an indecomposable \(E\)-\(\delta \)-\(H \)-supplemented module. Consider a nonzero endomorphism \(f \) of \(M \). Then there is a direct summand \(D \) of \(M \) such that \((\text{Im} f + D)/\text{Im} f \ll_\delta M/\text{Im} f \) and \((\text{Im} f + D)/D \ll_\delta M/D \). Suppose \(D = 0 \). Then clearly, \(\text{Im} f \ll_\delta M \). Otherwise, \(D = M \) implies \(M/\text{Im} f \ll_\delta M/\text{Im} f \). Now \[\text{Lemma 1.2} \] yields that \(M/\text{Im} f \) is projective and semisimple (it is sufficient in \[\text{Lemma 1.2} \] that we set \(M = M/\text{Im} f \), \(N = M/\text{Im} f \) and \(X = 0 \)). It follows now that \(\text{Im} f \) must be a direct summand of \(M \). Being \(M \) indecomposable implies \(\text{Im} f = 0 \), a contradiction. The converse is straightforward to check. \(\square \)

We next present some examples of \(E\)-\(\delta \)-\(H \)-supplemented modules.

Example 2.6. (1) Suppose that \(M_1 \) is a \(H \)-supplemented module with a unique composition series \(M_1 \supset U \supset V \supset 0 \) (we may choose the \(\mathbb{Z} \)-module \(M_1 = \mathbb{Z}_8 \)). Now, let \(M = M_1 \oplus M_1/U \oplus U/V \oplus V/0 \). Then \(M \) is a \(H \)-supplemented module by \[\text{Corollary 4.5}(2) \] and a \(\delta \)-\(H \)-supplemented module. Hence \(M \) is \(E\)-\(\delta \)-\(H \)-supplemented.

(2) Every \(H \)-supplemented module is \(E\)-\(\delta \)-\(H \)-supplemented. The converse does not hold in general. Now let \(F = \mathbb{Z}_2 \), which is a field, and \(S = \prod_{i=1}^{\infty} F_i \) where \(F_i = F \) for each \(i \). Let \(R \) be the subring of \(S \) generated by \(\bigoplus_{i=1}^{\infty} F_i \) and \(1_S \). It is well-known that \(R \) is not a semiperfect ring which yields that \(R_R \) is not a \(H \)-supplemented module. By \[\text{Example 4.1} \], \(R \) is a \(\delta \)-semiperfect ring. Now \[\text{Theorem 3.3} \] implies that \(R_R \) is \(\delta \)-lifting and consequently \(R_R \) is \(\delta \)-\(H \)-supplemented. Hence \(R_R \) is \(E\)-\(\delta \)-\(H \)-supplemented.

Note if the image of every endomorphism of \(M \) is a direct summand of \(M \), that module \(M \) is dual Rickart.

Theorem 2.7. Let \(M \) be a module. Then the following statements are equivalent:

(1) \(M \) is dual Rickart;

(2) \(M \) is \(E\)-\(\delta \)-\(H \)-supplemented and \(\delta \)-noncosingular.

In particular, if \(M \) is a non-\(\delta \)-cosingular \(E\)-\(\delta \)-\(H \)-supplemented module, it is dual Rickart.

Proof. (1) \(\Rightarrow \) (2) It is clear by definitions.

(2) \(\Rightarrow \) (1) Let \(M \) be \(\mathcal{T}\)-\(\delta \)-noncosingular and \(E\)-\(\delta \)-\(H \)-supplemented. Suppose that \(f \in S \). Now there is a direct summand \(D \) of \(M \) such that \((\text{Im} f + D)/D \ll_\delta M/D \) and \((\text{Im} f + D)/\text{Im} f \ll_\delta M/\text{Im} f \). Consider the \(R \)-homomorphism \(\lambda : M \to M/D \) defined by \(\lambda(m) = f(m) + D \). Set \(M = D \oplus D' \) for a submodule \(D' \) of \(M \). So that there is an isomorphism \(h : M/D \to D' \) induced by the decomposition \(M = D \oplus D' \). Consider the homomorphism \(\text{joho}\lambda : M \to M \) where \(j : D' \to M \) is the inclusion map. Since \(\text{Im}\lambda = (\text{Im} f + D)/D \ll_\delta M/D \), we can get \(\text{joho}\lambda(M) = h((\text{Im} f + D)/D) \ll_\delta D' \subseteq M \). So \(\text{Im}(\text{joho}\lambda) \ll_\delta M \). Being \(M \), \(\mathcal{T}\)-\(\delta \)-noncosingular implies that \(\text{joho}\lambda = 0 \). It follows that \((\text{Im} f + D)/D \subseteq \text{Ker} h \). Hence \((\text{Im} f + D)/D = D/D \).
Therefore, $\text{Im}f \subseteq D$. Since $D/\text{Im}f \ll_\delta M/\text{Im}f$ and $D/\text{Im}f + (D' + \text{Im}f)/\text{Im}f = M/\text{Im}f$, we conclude that $D' + \text{Im}f = M$. By modularity, $\text{Im}f = D$ is a direct summand of M. \(\square\)

Remark 2.8. By the last result, every dual Rickart module is $E-\delta$-H-supplemented, while the other side may not hold. Let M be a hollow module with at least an endomorphism f which is distinct from zero and id_M (for example the \mathbb{Z}-module \mathbb{Z}_{p^n} where p is prime and $n > 1$). Then clearly, M is $E-\delta$-H-supplemented, which is not dual Rickart.

The following indicates that the class of $E-\delta$-H-supplemented modules properly contains the class of H-supplemented modules.

Example 2.9. Every injective module over a right hereditary ring is $E-\delta$-H-supplemented by [Theorem 2.29]. Consider the \mathbb{Z}-module $M = \mathbb{Q}$. It is well-known that M is not supplemented; hence it is not H-supplemented while is a dual Rickart \mathbb{Z}-module. Therefore, every non-supplemented injective module over a right hereditary ring is $E-\delta$-H-supplemented but not H-supplemented.

We shall deal with homomorphic images of $E-\delta$-H-supplemented modules.

Proposition 2.10. Let M be a $E-\delta$-H-supplemented module and N a direct summand of M. Suppose that for every direct summand K of M, there exists a direct summand T/N of M/N such that $(K + T)/T \ll_\delta M/T$ and $(K + T)/(K + N) \ll_\delta M/(K + N)$. Then M/N is $E-\delta$-H-supplemented.

Proof. Let $M = N \oplus N'$, for some $N' \leq M$, and $f: M/N \to M/N$ be an endomorphism. Consider the natural epimorphism $\pi: M \to M/N$ defined by $\pi(x) = x + N$ and the isomorphism $h: M/N \to N'$ defined by $h(n' + N) = n'$ induced by the decomposition $M = N \oplus N'$. Therefore, $\text{hofo} \pi: M \to M$ is an endomorphism. Set $\text{Im}f = L/N$. It is easy to check that $\text{Im}(\text{hofo} \pi) = L \cap N'$. Since M is $E-\delta$-H-supplemented, there exists a direct summand K of M such that $[(L \cap N') + K]/K \ll_\delta M/K$ and $[(L \cap N') + K]/(L \cap N') \ll_\delta M/(L \cap N')$. By assumption, there is a submodule T of M such that T/N is a direct summand of M/N such that $(K + T)/T \ll_\delta M/T$ and $(K + T)/(K + N) \ll_\delta M/(K + N)$. We shall prove that $\frac{L/N + T/N}{L/N} \ll_\delta \frac{M/N}{L/N}$ and $\frac{L/N + T/N}{T/N} \ll_\delta \frac{M/N}{T/N}$.

To verify the last assertions, we assume $(L + T)/L + X/L = M/L$ for a submodule X of M containing L such that M/X is singular. Then, $T + X = M$. Now, $(K + T)/(K + N) + (K + X)/(K + N) = M/(K + N)$. As M/X is singular, we can say $M/(K + X)$ is singular as a homomorphic image of M/X. Being $(K + T)/(K + N)$ a δ-small submodule of $M/(K + N)$, we conclude that $M = K + X$. Hence, $[(L \cap N') + X]/(L \cap N') + X/(L \cap N') = M/(L \cap N')$. Therefore, $M = X$ due to $[(L \cap N') + K]/(L \cap N') \ll_\delta M/(L \cap N')$. We turn to the second...
assertion. Suppose that \((L + T)/T + Y/T = M/T\) where \(Y\) is a submodule of \(M\) containing \(T\) such that \(M/Y\) is singular. Then \(L + Y = M\). As \(L\) contains \(N\), we have \(N + (L \cap N') + Y = M\), which implies \((L \cap N') + Y = M\). It follows that \(\[(L \cap N') + K]/K + (Y + K)/K = M/K\). Since \(\[(L \cap N') + K]/K\) is a \(\delta\)-small submodule of \(M/K\) and \(M/Y\) is a singular module, we conclude that \(M = Y + K\). Now \((K + T)/T + Y/T = M/T\) causes \(M = Y\), as required (note that \((K + T)/T \ll_\delta M/T\). \(\square\)

Recall that a submodule \(N\) of \(M\) is said to be fully invariant (projection invariant) if for every endomorphism (idempotent endomorphism) \(f\) of \(M\), we have \(f(N) \subseteq N\). Let \(M\) be a module with a submodule \(N\). The module \(M\) is a (weak) duo if every (direct summand) submodule of \(M\) is fully invariant.

Proposition 2.11. Let \(M\) be a module and \(N\) a projection invariant (fully invariant) direct summand of \(M\). If \(M\) is \(E\)-\(\delta\)-\(H\)-supplemented, then \(M/N\) is \(E\)-\(\delta\)-\(H\)-supplemented.

Proof. Let \(D\) and \(D'\) be submodules of \(M\) such that \(M = D \oplus D'\). By assumption, we have \(N = (D \cap N) \oplus (D' \cap N)\). Then \((D + N) \cap (D' + N) = [D \oplus (D' \cap N)] \cap [(D \cap N) \oplus D'] = (D \cap N) \oplus (D' \cap N) = N\). So \(M/N = [(D + N)/N] \oplus [(D' + N)/N]\). So that for an arbitrary direct summand \(D\) of \(M\), there exists \((D + N)/N\) that is a direct summand of \(M/N\) and \((D + D + N)/(D + N) \ll_\delta M/N\). The result follows from Proposition 2.10. \(\square\)

Corollary 2.12. Let \(M\) be a \(E\)-\(\delta\)-\(H\)-supplemented weak duo module. Then every direct summand of \(M\) is \(E\)-\(\delta\)-\(H\)-supplemented.

As a direct consequence of the last proposition, we can say every direct summand of a duo (distributive) \(E\)-\(\delta\)-\(H\)-supplemented module inherits the property.

Example 2.13. ([10], Example 3.9) Let \(I\) and \(J\) be two ideals of a commutative local ring \(R\) with maximal ideal \(m\) such that \(I \subset J \subset m\) (e.g., \(R\) is a discrete valuation ring with maximal ideal \(m\), \(I = m^3\) and \(J = m^2\)). Every direct summand of \(M\) is \(H\)-supplemented by [10, Proposition 2.1]. Hence every direct summand of \(M\) is \(E\)-\(\delta\)-\(H\)-supplemented.

Theorem 2.14. Let \(M = M_1 \oplus M_2\) be a distributive module. Then \(M\) is \(E\)-\(\delta\)-\(H\)-supplemented module if and only if \(M_1\) and \(M_2\) are \(E\)-\(\delta\)-\(H\)-supplemented.

Proof. Let \(M_1\) and \(M_2\) be \(E\)-\(\delta\)-\(H\)-supplemented and \(f \in End_R(M)\). Let \(f(M_i)\) be a submodule of \(M_i\) for \(i = 1, 2\). Then, there is a direct summand \(D_i\) of \(M_i\) for \(i = 1, 2\), such that \((Im f_i + D_i)/Im f_i \ll_\delta M_i/Im f_i\) and \((Im f_i + D_i)/D_i \ll_\delta M_i/D_i\). We shall prove that \((Im f + D)/Im f \ll_\delta M/Im f\) and \((Im f + D)/D \ll_\delta M/D\) where \(D = D_1 \oplus D_2\) which is a direct
summand of M. Suppose that $(Imf + D)/Imf + X/Imf = M/Imf$ for a submodule X of M containing Imf with M/X singular. Then $D + X = M$. It follows that $D_1 + (X \cap M_1) = M_1$. Now $(Imf_1 + D_1)/Imf_1 + (X \cap M_1)/Imf_1 = M_1/Imf_1$ and $M_1/(X \cap M_1) \cong X + M_1/X \leq M/X$ is a singular module. Therefore, $X \cap M_1 = M_1$, which implies that M_1 is in X. Now consider the equality $D + X = M$. Then $D_2 + (X \cap M_2) = M_2$. As $(Imf_2 + D_2)/(X \cap M_2)/Imf_2 = M_2/Imf_2$ and $(Imf_2 + D_2)/Imf_2 \ll_\delta M_2/Imf_2$ and also $M_2/X \cap M_2 \cong (X + M_2)/X \leq M/X$ is singular, we conclude that $X \cap M_2 = M_2$. So M_2 is in X, which implies that $X = M$. For the other δ-small case, let $(Imf + D)/D + T/D = M/D$ where $T/D \leq M/D$ and M/T is singular. Now $Imf + T = M$ and hence $Imf_1 + (T \cap M_1) = M_1$. Being $(Imf_1 + D_1)/D_1$ a δ-small submodule of M_1/D_1 combining with the fact that $M_1/(T \cap M_1)$ is singular and the last equality implies that $T \cap M_1 = M_1$ and therefore $M_1 \subseteq T$. By a same process, T will contain M_2. Hence $T = M$ as required. It follows now that M is $E-\delta$-H-supplemented. The converse follows from Corollary 2.12.

3. Acknowledgments

The authors wish to sincerely thank the referees for several useful comments.

References

Ali Reza Moniri Hamzekolae
Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran
a.monirih@umz.ac.ir

Ali Valinejad
Department of Computer Sciences, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran
valinejad@umz.ac.ir