Planar, outerplanar and ring graph of the intersection graph

Document Type : Research Paper

Author

Department of Mathematics, Lahijan Branch, Islamic Azad University, Lahijan, Iran

Abstract

Let $R$ be a commutative ring and $M$ be an $R$-module. The $M$-intersection graph of ideals of $R$, denoted by $G_M(R)$ is a graph with the vertex set $I(R)^*$, and two distinct vertices $I$ and $J$ are adjacent if and only if $IM\cap JM\neq 0$. In this paper, we study $G_{R/J}(R/I)$, where $I$ and $J$ are ideals of $R$ and $I\subseteq J$. We characterize all ideals $I$ and $J$ for which $G_{R/J}(R/I)$ is planar, outerplanar or ring graph.

Keywords


[1] S. Akbari and S. Khojasteh, Commutative rings whose cozero-divisor graphs are unicyclic or of bounded degree, Comm. Algebra, 42 (2014) 1594-1605.
[2] S. Akbari, S. Khojasteh and A. Yousefzadehfard, The proof of a conjecture in Jacobson graph of a commutative ring, J. Algebra Appl., 14 No. 10 (2015) 1550107.
[3] S. Akbari, R. Nikandish and M. J. Nikmehr, Some results on the intersection graphs of ideals of rings, J. Algebra Appl., 12 No. 4 (2013) 1250200.
[4] S. Akbari, H. A. Tavallaee and S. Khalashi Ghezelahmad, Intersection graph of submodules of a module, J. Algebra Appl., 11 No. 1 (2012) 1250019.
[5] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999) 434-447.
[6] S. E. Atani, A. Yousefian Darani and E. R. Puczylowski, On the diameter and girth of ideal-based zerodivisor graphs, PUBL. MATH-DEBRECEN, 78 No. 3-4 (2011) 607-612.
[7] J. A. Bondy and U. S. R. Murty, Graph Theory, Graduate Texts in Mathematics 244, Springer, New York, 2008.
[8] I. Chakrabarty, S. Ghosh, T. K. Mukherjee and M. K. Sen, Intersection graphs of ideals of rings, Discrete Math., 309 (2009) 5381-5392
[9] B. Csákány and G. Pollák, The graph of subgroups of a finite group, Czech. Math. J., 19 (1969) 241-247.
[10] M. Fontana, E. Houston and T. Lucas, Factoring Ideals in Integral Domains, Springer, 2013.
[11] I. Gitler, E. Reyes and R. H. Villarreal, Ring graphs and complete intersection toric ideals, Discrete Math., 310 No. 3 (2020) 430-441.
[12] F. Heydari, The M-intersection graph of ideals of a commutative ring, Discrete Math. Algorithms Appl., 10 No. 3 (2018) 1850038.
[13] S. Khojasteh, The intersection graph of ideals of $\mathbb{Z}_m$, Discrete Math. Algorithms Appl., 11 No. 4 (2019) 1950037.
[14] M. J. Nikmehr and F. Heydari, The M-principal graph of a commutative ring, Period. Math. Hungar., 68 No. 2 (2014) 185-192.