On $\sim_{n}$ notion of conjugacy in semigroups

Document Type : Research Paper

Authors

Department of Mathematics, Central University of Kashmir, Ganderbal, 191201, India.

Abstract

In this paper, we study the $\sim_{n}$ notion of conjugacy in semigroups. After proving some basic results, we characterize this notion in subsemigroups of $\mathcal{P}(T)$ (partial transformation semigroup) and $\mathcal{T}(T)$ (transformation semigroup) through digraphs and their restrictive partial homomorphisms.

Keywords


[1] J. Araujo, M. Kinyon, J. Konieczny and A. Malheiro, Four notions of conjugacy for abstract semigroups, Proc. Roy. Soc. Edinburgh Sect. A: Mathematics, 147 No. 6 (2017) 1169-1214.
[2] J. Araujo, J. Konieczny and A. Malheiro, Conjugation in semigroups, J. Algebra, 403 (2014) 93-134.
[3] J. Koneiczny, A new definition of conjugacy for semigroups, J. Algebra and Appl., 17 No. 02 (2018) 1850032.
[4] G. Kudryavtseva and V. Mazorchuk, On conjugation in some transformation and Brauer-type semigroups, Publ. Math. Debrecen, 70 (2007) 19-43.
[5] G. Kudryavtseva and V. Mazorchuk, On three approaches to conjugacy in semigroups, Semigr. Forum, 78 (2009) 14-20.
[6] J. M. Howie, Fundamentals of Semigroup Theory, Oxford University Press, New York, 1995.
[7] T. Jech, Set Theory, Third Edition, Springer-Verlag, New York, 2006.
[8] G. Lallement, Semigroups and Combinatorial Applications, John Wiley and Sons, New York, 1979.
[9] F. Otto, Conjugacy in monoids with a special Church-Rosser presentation is decidable, Semigr. Forum, 29 (1984) 223-240.
[10] L. Zhang, Conjugacy in special monoids, J. Algebra, 143 (1991) 487-497.
[11] L. Zhang, On the conjugacy problem for one-relator monoids with elements of finite order, Internat. J. Algebra Comput., 2 (1992) 209-220.