On n notion of conjugacy in semigroups

Document Type : Research Paper

Authors

Department of Mathematics, Central University of Kashmir, Ganderbal, 191201, India.

Abstract

In this paper, we study the n notion of conjugacy in semigroups. After proving some basic results, we characterize this notion in subsemigroups of P(T) (partial transformation semigroup) and T(T) (transformation semigroup) through digraphs and their restrictive partial homomorphisms.

Keywords


[1] J. Araujo, M. Kinyon, J. Konieczny and A. Malheiro, Four notions of conjugacy for abstract semigroups, Proc. Roy. Soc. Edinburgh Sect. A: Mathematics, 147 No. 6 (2017) 1169-1214.
[2] J. Araujo, J. Konieczny and A. Malheiro, Conjugation in semigroups, J. Algebra, 403 (2014) 93-134.
[3] J. Koneiczny, A new definition of conjugacy for semigroups, J. Algebra and Appl., 17 No. 02 (2018) 1850032.
[4] G. Kudryavtseva and V. Mazorchuk, On conjugation in some transformation and Brauer-type semigroups, Publ. Math. Debrecen, 70 (2007) 19-43.
[5] G. Kudryavtseva and V. Mazorchuk, On three approaches to conjugacy in semigroups, Semigr. Forum, 78 (2009) 14-20.
[6] J. M. Howie, Fundamentals of Semigroup Theory, Oxford University Press, New York, 1995.
[7] T. Jech, Set Theory, Third Edition, Springer-Verlag, New York, 2006.
[8] G. Lallement, Semigroups and Combinatorial Applications, John Wiley and Sons, New York, 1979.
[9] F. Otto, Conjugacy in monoids with a special Church-Rosser presentation is decidable, Semigr. Forum, 29 (1984) 223-240.
[10] L. Zhang, Conjugacy in special monoids, J. Algebra, 143 (1991) 487-497.
[11] L. Zhang, On the conjugacy problem for one-relator monoids with elements of finite order, Internat. J. Algebra Comput., 2 (1992) 209-220.