Laplacian spectral characterization of setosa graphs

Document Type : Research Paper

Author

Department of Mathematics, College of Sciences, Shiraz University, Shiraz, 71457-44776, Iran.

Abstract

A setosa graph SG(e,f,g,h,d;b1,b2,,bs) is a graph consisting of five cycles and s(1) paths Pb1+1,Pb2+1,,Pbs+1 intersecting in a single vertex that all meet in one vertex, where bi1 (for i=1,,s) and e,f,g,h,d3 denote the length of the cycles Ce, Cf, Cg, Ch and Cd, respectively. Two graphs G and H are L-cospectral if they have the same Laplacian spectrum. A graph G is said to be determined by the spectrum of its Laplacian matrix (DLS, for short) if every graph with the same Laplacian spectrum is isomorphic to G. In this paper we prove that if H is a L-cospectral graph with a setosa graph G, then H is also a setosa graph and the degree sequence of G and H are the same. We conjecture that all setosa graphs are DLS.

Keywords


[1] A. Z. Abdian, Bell graphs are determined by their Laplacian spectra, Kragujevac J. Math., 47 No. 2 (2023) 203-211.
[2] A. Z. Abdian, A. R. Ashrafi and M. Brunetti, Signless Laplacian spectral characterization of roses, Kuwait J. Sci., 47 No. 4 (2021) 12-18.
[3] A.Z. Abdian, L. W. Beineke, K. Thulasiraman, R. Tayebi Khorami and M. R. Oboudi, The spectral determination of the connected multicone graphs KwrrCs, AKCE Int. J. Graphs Comb., 18 (2021) 47-52.
[4] A. Z. Abdian, K. Thulasiraman and K. Zhao, The spectral characterization of the connected multicone graphs, AKCE Int. J. Graphs Comb., 17 No. 1 (2020) 606-613.
[5] A. Z. Abdian, K. Thulasiraman and K. Zhao, The spectral determination of the multicone graphs KwrC with respect to their signless Laplacian spectra, J. Algebr. Syst., 7 No. 2 (2019) 131-141.
[6] W. N. Anderson and T. D. Morley, Eigenvalues of the Laplacian of a graph, Linear Multilinear Algebra, 18 (1985) 141-145.
[7] D. Cvetković, P. Rowlinson and S. Simić, An Introduction to the Theory of Graph Spectra, London Math-ematical Society Student Texts 75, Cambridge University Press, Cambridge, 2010.
[8] C. Godsil and G. Royle, Algebraic Graph Theory, Springer, New York, 2001.
[9] R. Grone and R. Merris, The Laplacian spectrum of a graph II, SIAM J. Discrete Math., 7 No. 2 (1994) 221-229.
[10] J. S. Li and Y. L. Pan, A note on the second largest eigenvalue of the Laplacian matrix of a graph, Linear Multilinear Algebra, 48 (2000) 117-121.
[11] F. J. Liu and Q. X. Huang, Laplacian spectral characterization of 3-rose graphs, Linear Algebra Appl., 439 (2013) 2914-2920.
[12] R. Merris, A note on the Laplacian graph eigenvalues, Linear Algebra Appl., 285 (1998) 33-35.
[13] M. R. Oboudi and A. Z. Abdian, Peacock graphs are determined by their Laplacian spectra, Iran. J. Sci. Technol. Trans. A Sci., 44 (2020) 787-790.
[14] M. R. Oboudi, A. Z. Abdian, A. R. Ashrafi and L. W. Beineke, Laplacian spectral determination of path-friendship graphs, AKCE Int. J. Graphs Comb., 18 (2021) 33-38.
[15] C. S. Oliveira, N. M. M. de Abreu and S. Jurkiewilz, The characteristic polynomial of the Laplacian of graphs in (a,b)-linear cases, Linear Algebra Appl., 356 (2002) 113-121.
[16] G. R. Omidi, On a signless Laplacian spectral characterization of T-shape trees, Linear Algebra Appl., 431 (2009) 1607-1615.
[17] E. R. van Dam, W. H. Haemers, Which graphs are determined by their spectrum?, Linear Algebra Appl., 373 (2003) 241-272.
[18] F. Wen, Q. Huang, X. Huang, F. Liu, The spectral characterization of wind-wheel graphs, Indian J. Pure Appl. Math., 46 (2015) 613-631.