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ABSTRACT. Let R be a commutative Noetherian ring with identity, I be an ideal of R and
M be an R-module such that Ext%(R/I , M) is finitely generated for all j. We prove that
if dim H}(M) < 1 for all 4, then for any i > 0 and for any submodule N of H}(M) that is
either I-cofinite or minimax, the R-module H}(M)/N is I-cofinite. This generalizes the main
result of Bahmanpour and Naghipour [E, Theorem 2.6]. As a consequence, the Bass numbers
and Betti numbers of Hj(M) are finite for all i > 0. Also, among other things, we show
that if either dim R/I < 2 or dim M < 2, then for each finitely generated R-module N, the
R-module Ext,(N, Hj(M)) is I-weakly cofinite, for all i > 0 and j > 0. This generalizes @>
Corollary 2.8].
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1. INTRODUCTION

Let R be a commutative Noetherian ring with identity and I be an ideal of R. For an
R-module M, the ith local cohomology module of M with respect to I is defined as
Hp(M) = lim Exti(R/I", M).
neN
We refer the reader to [11] for more details about the local cohomology.

In [20] Grothendieck conjectured that for any ideal I of R and any finitely generated R-
module M, Hompg(R/I, H{(M)) is a finitely generated R-module for all 4, but soon Hartshorne
[21] was able to provide a counterexample to Grothendieck’s conjecture. He defined an R-
module M to be I-cofinite if Suppr(M) C V(I) and Extgq(R/I, M) is finitely generated for
all 57 and he asked:

For which rings R and ideals I are the modules H:(M) I-cofinite for all i and all finitely
generated R-modules M7

Concerning this question, Hartshorne [21] and later Chiriacescu [13] showed that if R is
a complete regular local ring and I is a prime ideal such that dim R/I = 1, then H}(M ) is
I-cofinite for any finitely generated R-module M. Huneke and Koh [22, Theorem 4.1] proved
that if R is a complete Gorenstein local domain and [ is an ideal of R such that dim R/I =1,
then for all non-negative integers ¢ and 7, Extg%(N , Hi(M)) is finitely generated for any finitely
generated R-modules M and N such that Suppp(N) C V(I). Furthermore, Delfino [14] proved
that if R is a complete local domain under some mild conditions, then similar results hold.
Also, Delfino and Marley [15, Theorem 1] and Yoshida [31, Theorem 1.1] have eliminated
the complete hypothesis entirely. Finally, Bahmanpour and Naghipour [8, Theorem 2.6] have
removed the local assumption on R.

As we mentioned, these assertions are true when M is finitely generated. As a corollary of
the first main theorem of this paper (Corollary @), we improve these results by omitting the
finiteness hypothesis on M and replacing it by a more general condition on M. More precisely,
we show that the R-module Hi(M) is I-cofinite for all i, whenever Extg%(R/ I, M) is finitely
generated for all j and dim H4(M) <1 (e.g., dim R/I < 1 or dim M < 1), for all i. Our tools

for proving this result is the following theorem.

Theorem 1.1. Let M be an R-module and t > 1 be a positive integer such that Extg%(R/I, M)
is finitely generated for all j <t and the R-module H:(M) belongs to (I-cof, D<1) for alli < t.
Then the following statements hold:
(i) The R-module Hi (M) is I-cofinite for all i < t.
(ii) For every submodule N of HY(M) that belongs to (I-cof, D<g), the R-module
Ext(R/I,HY(M)/N) is finitely generated for all i = 0,1. In particular, the set
Asspr(HY(M)/N) is finite.
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Several corollaries of this result are presented. Among these, we extend and improve the
main results of Delfino and Marley [15, Theorem 1], Yoshida [31, Theorem 1.1], Bahmanpour
and Naghipour [8, Theorem 2.6] and [7, Theorem 2.5], Huneke and Sharp [23, Theorem 2.1],
Kawasaki [24, Main Theorem|, Brodmann and Lashgari [10, Theorem 2.2], Khashyarmanesh
and Salarian [25, Theorem B|, Aghapournahr and Bahmanpour [3, Theorem 3.4] and Quy [30,
Theorem 3.2].

As the second main result of this paper we characterize the 7 D<; local cohomology modules.

More precisely, we prove the following theorem:

Theorem 1.2. Let M be an R-module and t > 1 be an integer such that Eth%(R/I, M) is
finitely generated for all j <t. Then the following statements are equivalent:
(1) HY(M) is an FD<1 R-module for all i < t;
(2) (Hi(M))y is a finitely generated Ry-module for all i <t and for all p € Suppgr(M) N
V(I) with dim R/p > 1.

As the final main result of the present paper, we prove that if M is a non-zero module over a
local ring (R, m) such that Extgg(R/ I, M) is finitely generated for all j and either dim R/I < 2
or dim M < 2, then for each finitely generated R-module N, the R-module Extg%(N L Hi(M))
is [-weakly cofinite for all 7 and j. This result is an extension of [, Corollary 2.9].

Throughout the paper, we assume that R is a commutative Noetherian ring, I is an ideal
of R and V(I) is the set of all prime ideals of R containing I. Also, we use Ny (respectively,

N) to denote the set of non-negative (respectively, positive) integers.

2. Preliminaries

First, we recall some definitions which are needed in this paper. Let M be an R-module.

(1) M is called minimaz if there is a finitely generated submodule N of M such that M/N
is Artinian (see [33]).

(2) M is called weakly Laskerian if Asspr(M/N) is a finite set for each submodule N of
M. Also, M is said to be I-weakly cofinite if Suppr (M) C V(I) and Ext’%(R/I, M) is
weakly Laskerian, for all ¢ > 0 (see [18] and [19]).

(3) M is said to be F'SF if there exists a finitely generated submodule N of M such that
the support of M/N is a finite set. In the light of [, Theorem 3.3], over a Noetherian
ring R an R-module M is weakly Laskerian if and only if is F.SF.

(4) A class of R-modules is a Serre subcategory of the category of R-modules when it is
closed under taking submodules, quotients and extensions. For example, the classes of
Noetherian modules, Artinian modules, minimax modules or weakly Laskerian mod-
ules are Serre subcategories. As in standard notation, we let S stands for a Serre

subcategory of the category of R-modules.
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The following lemmas are needed in the next section.

Lemma 2.1. Suppose that M is a finitely generated R-module and N € S. Then
Extih(M,N) € S and Tor®(M,N) € S for all i > 0.

Proof. The assertion immediately follows from the definition of Ext and Tor functors.

Lemma 2.2. Let M be a finitely generated R-module and let N be an arbitrary R-module.
Suppose that for some integers t > 0, Extl,(M,N) € S for all i < t. Then for any finitely
generated R-module L with Suppg(L) C Suppr(M), Extlé(L, N)eS foralli<t.

Proof. See [2, Lemma 2.2].

Let D<,, denote the class of all R-modules M with dim M < n. As a special and interesting
example of the class of extension modules introduced by Yoshizawa [32], recently, Aghapour-
nahr and Bahmanpour [3] introduced the class of extension modules of finitely generated
modules by the class of all modules 7" with dim 7" < n and denoted it by FD<«,, where n > —1
is an integer. An R-module M is said to be FD<,, if there is a finitely generated submodule N
of M such that dim M /N < n. Thus, by definition, the class of minimax modules is contained
in the class of FD<q and in the light of [6, Theorem 3.3], the class of weakly Laskerian modules

is contained in the class of 7 D<y. This definition motivates the following.

Definition 2.3. If I-cof denotes the class of all I-cofinite modules, then we will define by
(I-cof, D<y,) the class of all R-modules M for which there exists an I-cofinite submodule N of
M such that dim M/N < n.

It is clear that all /-cofinite R-modules, D<,, R-modules and I-torsion /D, R-modules
are included in the class of (I-cof, D<,). We claim that the class of (I-cof, D<) is strictly

larger than the class of I-cof and D<,. To see this, consider the following examples.

Examples 2.4.

(i) Suppose that R is a commutative Noetherian ring with dim R > 2 and p is a two
dimensional prime ideal of R. Then there exist q € Spec(R) \ Max(R) and m €
Max(R) such that p & q & m. Let M = Hompg(R/p,R) ® E(R/q). It is easy to
see that M belongs to (p-cof, D<1) that is neither p-cofinite nor D<;. Note that
Hompg(R/q, E(R/q)) is not finitely generated.

(ii)) Let R = k[z,y][[u,v]], ¢ = (u,v) and N = R/(zxu + yv), where k is a field.
By Hartshorn’s conterexample about cofiniteness of local cohomology modules [21],

HomR(R/q,HqQ(N)) is not finitely generated. Let p € Spec(R) such that p & q and
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dim R/p = 3. Hence, M = Hompg(R/p, R) EBHqQ(N) belongs to (p-cof, D<2) that is nei-
ther p-cofinite nor D<y. Note that SuppR(Hg(N)) C V(p) and so that dim HPQ(N) <2.

The following lemma will be quite useful in the proof of one of the main theorems of the

paper.

Lemma 2.5. Let M be a non-zero R-module and t € Ny. Suppose that the R-module H:(M) is
I-cofinite for all i < t and the R-module Ext]é(R/I, M) is finitely generated for all j =t,t+1.
Then the R-module Extg%(R/I,Hf(M)) is finitely generated for all j =0,1.

Proof. See [16, Theorem 2.1] and [17, Theorem A].

3. Main Results
First, we prove some results which play important roles in what follows.
Proposition 3.1. If M € (I-cof, D<), then the following statements are equivalent:

(1) Exth(R/I, M) is finitely generated for all i > 0;
(ii) The R-module Hompg(R/I, M) is finitely generated.

Proof. (i) = (i7) is clear. For (ii) = (i), considering the exact sequence 0 - S — M — T — 0

where S is I-cofinite and dim 7" < 0, we have the long exact sequence
0 — Homp(R/I,S) — Homp(R/I, M) — Homp(R/I,T) — Exth(R/I,S) — - --

which follows that Hompg(R/I,T) is finitely generated. Therefore, Extly(R/I,T) is finitely
generated for all i > 0 by [4, Lemma 2.5]. This implies that Ext’(R/I, M) is finitely generated
for all « > 0.

Proposition 3.2. If M € (I-cof, D<), then the following statements are equivalent:
(1) Exth(R/I, M) is finitely generated for all i > 0;
(ii) The R-module Exth(R/I, M) is finitely generated for all i = 0, 1.

Proof. (i) = (i7) is clear.

(73) = (7): By definition, there exists an exact sequence 0 =+ S — M — T — 0 where S is
I-cofinite and dim 7" < 1. This induces the long exact sequence

0 — Homp(R/I,S) — Homp(R/I, M) — Homg(R/I,T) — ExthL(R/I,S)

— BExth(R/I, M) — Exth(R/I,T) — Exth(R/I,S) — - -
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which implies that Hompg(R/I,T) and ExtL(R/I,T) are finitely generated. Since dim7 < 1,
Ext’(R/I,T) is finitely generated for all i > 0 by [4, Lemma 2.6]. So, Ext%(R/I, M) is finitely
generated for all ¢ > 0.

We are now ready to state and prove the first main theorem of the paper.

Theorem 3.3. Let M be an R-module andt > 1 be a positive integer such that Extg%(R/I, M)
is finitely generated for all j <t and the R-module H:(M) belongs to (I-cof, D<) for alli < t.
Then the following statements hold:
(i) The R-module Hi (M) is I-cofinite for all i < t.
(ii) For every submodule N of HY(M) that belongs to (I-cof, D<g), the R-module
Ext%(R/I, HY(M)/N) is finitely generated for all i = 0,1. In particular, the set
Assp(HL(M)/N) is finite.

Proof. (i) We proceed by induction on t. Let t = 1. By assumption, I';(M) belongs to
(I-cof, D<1) and Hompg(R/I,T';(M)) = Hompg(R/I, M) is finitely generated. So, in view of
Proposition @, it is enough to show that Extk(R/I,T;(M)) is finitely generated. Considering

the exact sequence

0—=T7(M)— M- M/T{(M)—0
and the fact that Homp(R/I, M/T'[(M)) = 0, we have the exact sequence
0 — Exth(R/I,T;(M)) — Exth(R/I, M) — - .

Therefore, Exth(R/I,T;(M)) is finitely generated by assumption. Now, assume that ¢ > 1
and the result has been proved for all i < ¢. By the inductive hypothesis, t — 1 € Ny and
Hi(M) is I-cofinite for all i < t — 1. Hence, Ext%(R/I, Hi ' (M)) is finitely generated for all
i = 0,1, by Lemma @ and assumption. Since H:'(M) € (I-cof, D<1), Hy ' (M) is I-cofinite
by Proposition @ This completes the inductive step.

(ii)) In view of (i) and Lemma @, the R-modules Hompg(R/I,HY(M)) and
Exth(R/I, HY(M)) are finitely generated. Hence, considering the exact sequence

0— N — H{M)— H{(M)/N =0,

implies that N is I-cofinite by Proposition @ and assumption. Also, we obtain the following

exact sequence:

-+ — Homp(R/I, H{(M)) — Hompg(R/I, H}(M)/N) — Exth(R/I, N)

— Exth(R/I, HY(M)) — Exti(R/I, H{(M)/N) — Ext%(R/I,N) — --- .
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Therefore, Homg(R/I, H{(M)/N) and Exth(R/I, H.(M)/N) are finitely generated, as re-
quired.

The next result provides a slight generalization of [3, Theorem 3.4], [§, Theorem 4.1], [10,
Theorem 2.2], [25, Theorem B| and [0, Theorem 3.2].

Corollary 3.4. Let M be an R-module andt > 1 be a positive integer such that EX‘G%(R/I, M)
is finitely generated for all j < t and the R-module H}(M) is FD<1 (or weakly Laskerian)
R-module for all i <t. Then the following conditions hold:
(i) The R-module Hi(M) is I-cofinite for all i < t.
(i) For every FD<o (or minimaz) submodule N of HYM), the R-module
Ext%(R/I, HY(M)/N) is finitely generated for all i =0, 1.

Proof. The assertion follows from Theorem @ and the fact that any I-torsion #D<,, R-module
is included in the class of (I-cof, D<y). O

The following result is a generalization of [8, Proposition 2.2].

Corollary 3.5. Let M be a non-zero R-module and t > 1 be a positive integer such that
Extg%(R/I, M) is finitely generated for all j <t and Suppr(H}(M)) C Max(R) for all i < t.
Then the R-module Hi(M) is Artinian for all i < t.

Proof. By Corollary @, the R-module Homp(R/I, Hi(M)) is finitely generated for all i < ¢.
Since Suppy(Hompg(R/I, H{(M))) C Max(R) for all i < ¢, it follows that Hompg(R/I, H:(M))
is Artinian for all 4 < t. As Hi(M) is an I-torsion R-module, it yields from [28, Theorem 1.3]
that Hi(M) is Artinian for all i < t.

Corollary 3.6. Let M be an R-module such that EX‘G%(R/I, M) is finitely generated for all j
and the R-module Hi(M) belongs to (I-cof, D<1) for alli. Then
(i) The R-module H(M) is I-cofinite for all .
(ii) For any i > 0 and for any submodule N of H:(M) that belongs to (I-cof, D<p), the
R-module H}(M)/N is I-cofinite for alli.

Proof. The assertion follows from Proposition @ and Theorem @ 0
As an immediate consequence of Corollary @, we derive the following extension of [15,

Theorem 1] and [31, Theorem 1.1], [7, Theorem 2.5], [§, Theorem 2.6], 23, Theorem 2.1] and
[24, Main Theorem)].
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Corollary 3.7. Let M be an R-module such that EX‘C‘}%(R/I, M) is finitely generated for all j
and dim H:(M) < 1 for alli. Then the R-module H}(M) is I-cofinite for alli. In particular,
the Bass numbers and Betti numbers of local cohomology module H}(M) are finite for alli > 0.

Proof. Tt follows from Corollary @, [22, Lemma 4.2] and [29, Theorem 2.1].

The following result provides an extension of [l, Corollary 2.8].

Corollary 3.8. Let M be an R-module such that Extz%(R/I, M) is finitely generated for all
J and either dim R/I < 1 or dim M < 1. Then for each finitely generated R-module N, the
R-module EX’C%(N, HY(M)) is I-cofinite for all i >0 and all j > 0.

Proof. Tt follows from Corollary @, and [[l, Theorem 2.7] and the fact that

Suppg(H7(M)) C Suppg(M) NV (I).

The following lemma is needed in the proof of the second main result of this paper.

Lemma 3.9. Let M be an R-module and i and n be some integers such that
Hompg(R/I, H{(M)) is a finitely generated R-module and (Hi(M)), is a finitely generated
Ry-module for all p € Suppr(M) NV (I) with dim R/p > n. Then H{(M) is FD<y,.

Proof. Let Ag = (0 : Hi(M) I?). Then Ag is a finitely generated R-module by assumption
and Lemma @ Also, Suppp(Ast+2/Ast1) € Suppp(Ast1/As) for all s = 1,2,--- by [9,
Lemma 2.1]. Therefore, as Spec(R) is a Noetherian space, it follows that there exists a positive

integer k such that for all s > k 4+ 1 we have

Suppr(Ast1/As) = Suppg(Axt1/Ar).

Now, we show that Suppp(Ag+1/Ak) C {p € Spec(R) | dim R/p < n}. To this end, suppose
the contrary that there exists p € Suppp(Ag+1/Ax) such that dim R/p > n. Hence, by
assumption and the fact that Suppg(Ax4+1/Ak) € Suppr(M)NV(I), we conclude that the Rp-
module (H4(M)), is finitely generated. Thus, there exists a finitely generated R-submodule
N of Hi(M) such that (H:(M)), = N,. Since N is I-torsion, there is an integer s > k + 1
such that N C (0 {H (M) I?) = A;. Thus,

Ny C (As)p € (Ass1)p C (HH(M))y = Np.

This implies that (As), = (Ast+1)p and so p ¢ Suppr(Akt+1/Ak), a contradiction. Since
Hi(M) =22, A, it is easy to see that

Suppg(Hj(M)/Ay) = Suppg(Ar+1/Ak) C {p € Spec(R) | dim R/p < n}.



Alg. Struc. Appl. Vol. 9 No. 1 (2022) 81-92. 89

Therefore, dim H:(M)/Ay, <n and so Hi(M) is an FD<,, R-module, as required. g

Now we are prepared to prove the second main result of the paper.

Theorem 3.10. Let M be an R-module and t be a positive integer such that Ext‘}é(R/I, M)
is finitely generated for all j <t. Then the following statements are equivalent:
(i) HY(M) is an FD<1 R-module for all i < t;
(ii) (HY(M))y is a finitely generated Ry-module for all i < t and for all p € Suppr(M) N
V(I) with dim R/p > 1.

Proof. (i) = (#i). Suppose that H}(M) is an FD<; R-module for all i < t. Then, there
exists a finitely generated submodule N; of Hi(M) such that dim H:(M)/N; < 1, for all i < ¢.
Now, let p € Suppg(M) N V(I) such that dim R/p > 1. Then p ¢ Suppr(H:(M)/N;) and so
(H4(M)/N;)p = 0 for all i < t. Hence, (Hi(M)), = (N;)p for all i < t. Therefore, (Hi(M)),
is a finitely generated Ry-module for all 7 < ¢, as required.

(i4) = (i). The proof is by induction on ¢. If ¢t = 1, then Homg(R/I,HY(M)) =
Hompg(R/I, M) is finitely generated by assumption. Hence, H? (M) is FD<; by Lemma @
Now, suppose that ¢ > 1 and the assertion holds for ¢ — 1, we will prove it for t. By the
inductive hypothesis, the R-module H%(M) is FD< for all i < ¢t — 1. Thus, in the light of
Corollary @ we conclude that Hi(M) is I-cofinite for all i < ¢ —1 and Homp(R/I, Hi"'(M))
is finitely generated. Therefore, H}fl(M ) is an FD<; R-module by Lemma @, as required.

O

As an immediate consequence of Theorem we have the following result.

Corollary 3.11. Let M be an R-module such that Extz%(R/I, M) is finitely generated for
all j < t where t is the least integer such that (Hi(M)), is not finitely generated for some
p € Suppr(M) NV (I) with dim R/p > 2. Then the following statements hold:
(i) The R-module H(M) is FD<1 and I-cofinite for all i < t;
(ii) The R-module H}(M) is not FD<1, whenever t is finite;
(iii) For every FD<oy (or minimaz) submodule N of Hi(M), the R-module
Ext%(R/I, HY(M)/N) is finitely generated for all i = 0,1, whenever t is finite.

Proof. (i) follows from Theorem and Corollary @ (ii) follows from the hypothesis and
Proposition . (iii) follows from (i) and Corollary @ 0
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Remark 3.12. In Corollary , if M is a finitely generated R-module, then t = fZ(M)
introduced in [9]. Therefore, Corollary gives extra information rather than [9, Theorem
3.2] about local cohomology modules Hi(M) for i < f#(M).

As the final main result of this paper, we prove the following theorem which is a general-

ization of [, Corollary 2.8].

Theorem 3.13. Let (R,m) be a local ring and M be a non-zero R-module such that
Eth%(R/I, M) is finitely generated for all j. If either dim R/I < 2 or dim M < 2, then
for each finitely generated R-module N, the R-module Ext],(N, HY(M)) is I-weakly cofinite,
foralli >0 and j > 0.

Proof. Let Q = {Ext%(R/I, Ex‘cg%(N7 HY(M)))|i > 0,5 >0,k > 0}. Suppose that K € Q and
K' is a submodule of K. By definition, it suffices to show that Assp(K/K') is finite. For this
end, in view of the Flat Base Change Theorem [11, Theorem 4.3.2], 27, Ex. 7.7], [26, Lemma
2.1], without loss of generality, we can assume that R is complete.

Now, suppose that the contrary is true. So, there is a countably infinite subset {p,}22,
of non-maximal elements of Assgp(K/K’). Therefore, m ¢ |Jo2,p, by [12, Lemma 3].
Let S be the multiplicatively closed subset R \ |J72;p,. Then it is easy to see that
dim S~'R/S™I < 1 or dimS~'M < 1. Hence, it follows from [11, Theorem 4.3.2] and
Corollary @ that Exté_lR(S_lN, Hi \,(S7'M)) is S~'I-cofinite. Therefore, S™1K/S™ 1K’
is a finitely generated S~!R-module and so Assg-1p(S7!K/S7!K') is a finite set. But,
S~lp, € Assg-1x(STIK/STIK') for all r = 1,2, - -, a contradiction. f
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