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Abstract. Let R be a commutative Noetherian ring with identity, I be an ideal of R and

M be an R-module such that ExtjR(R/I,M) is finitely generated for all j. We prove that

if dimHi
I(M) ≤ 1 for all i, then for any i ≥ 0 and for any submodule N of Hi

I(M) that is

either I-cofinite or minimax, the R-module Hi
I(M)/N is I-cofinite. This generalizes the main

result of Bahmanpour and Naghipour [8, Theorem 2.6]. As a consequence, the Bass numbers

and Betti numbers of Hi
I(M) are finite for all i ≥ 0. Also, among other things, we show

that if either dimR/I ≤ 2 or dimM ≤ 2, then for each finitely generated R-module N , the

R-module ExtjR(N,Hi
I(M)) is I-weakly cofinite, for all i ≥ 0 and j ≥ 0. This generalizes [1,

Corollary 2.8].
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1. Introduction

Let R be a commutative Noetherian ring with identity and I be an ideal of R. For an
R-module M , the ith local cohomology module of M with respect to I is defined as

H i
I(M) ∼= lim

−→
n∈N

ExtiR(R/In,M).

We refer the reader to [11] for more details about the local cohomology.
In [20] Grothendieck conjectured that for any ideal I of R and any finitely generated R-

module M , HomR(R/I,H i
I(M)) is a finitely generated R-module for all i, but soon Hartshorne

[21] was able to provide a counterexample to Grothendieck’s conjecture. He defined an R-
module M to be I-cofinite if SuppR(M) ⊆ V (I) and ExtjR(R/I,M) is finitely generated for
all j and he asked:

For which rings R and ideals I are the modules H i
I(M) I-cofinite for all i and all finitely

generated R-modules M?
Concerning this question, Hartshorne [21] and later Chiriacescu [13] showed that if R is

a complete regular local ring and I is a prime ideal such that dimR/I = 1, then H i
I(M) is

I-cofinite for any finitely generated R-module M . Huneke and Koh [22, Theorem 4.1] proved
that if R is a complete Gorenstein local domain and I is an ideal of R such that dimR/I = 1,
then for all non-negative integers i and j, ExtjR(N,H i

I(M)) is finitely generated for any finitely
generated R-modules M and N such that SuppR(N) ⊆ V (I). Furthermore, Delfino [14] proved
that if R is a complete local domain under some mild conditions, then similar results hold.
Also, Delfino and Marley [15, Theorem 1] and Yoshida [31, Theorem 1.1] have eliminated
the complete hypothesis entirely. Finally, Bahmanpour and Naghipour [8, Theorem 2.6] have
removed the local assumption on R.

As we mentioned, these assertions are true when M is finitely generated. As a corollary of
the first main theorem of this paper (Corollary 3.7), we improve these results by omitting the
finiteness hypothesis on M and replacing it by a more general condition on M . More precisely,
we show that the R-module H i

I(M) is I-cofinite for all i, whenever ExtjR(R/I,M) is finitely
generated for all j and dimH i

I(M) ≤ 1 (e.g., dimR/I ≤ 1 or dimM ≤ 1), for all i. Our tools
for proving this result is the following theorem.

Theorem 1.1. Let M be an R-module and t ≥ 1 be a positive integer such that ExtjR(R/I,M)

is finitely generated for all j ≤ t and the R-module H i
I(M) belongs to (I-cof, D≤1) for all i < t.

Then the following statements hold:

(i) The R-module H i
I(M) is I-cofinite for all i < t.

(ii) For every submodule N of Ht
I(M) that belongs to (I-cof, D≤0), the R-module

ExtiR(R/I,H t
I(M)/N) is finitely generated for all i = 0, 1. In particular, the set

AssR(H
t
I(M)/N) is finite.



Alg. Struc. Appl. Vol. 9 No. 1 (2022) 81-92. 83

Several corollaries of this result are presented. Among these, we extend and improve the
main results of Delfino and Marley [15, Theorem 1], Yoshida [31, Theorem 1.1], Bahmanpour
and Naghipour [8, Theorem 2.6] and [7, Theorem 2.5], Huneke and Sharp [23, Theorem 2.1],
Kawasaki [24, Main Theorem], Brodmann and Lashgari [10, Theorem 2.2], Khashyarmanesh
and Salarian [25, Theorem B], Aghapournahr and Bahmanpour [3, Theorem 3.4] and Quy [30,
Theorem 3.2].

As the second main result of this paper we characterize the FD≤1 local cohomology modules.
More precisely, we prove the following theorem:

Theorem 1.2. Let M be an R-module and t ≥ 1 be an integer such that ExtjR(R/I,M) is
finitely generated for all j ≤ t. Then the following statements are equivalent:

(1) H i
I(M) is an FD≤1 R-module for all i < t;

(2) (H i
I(M))p is a finitely generated Rp-module for all i < t and for all p ∈ SuppR(M) ∩

V (I) with dimR/p > 1.

As the final main result of the present paper, we prove that if M is a non-zero module over a
local ring (R,m) such that ExtjR(R/I,M) is finitely generated for all j and either dimR/I ≤ 2

or dimM ≤ 2, then for each finitely generated R-module N , the R-module ExtjR(N,H i
I(M))

is I-weakly cofinite for all i and j. This result is an extension of [1, Corollary 2.9].
Throughout the paper, we assume that R is a commutative Noetherian ring, I is an ideal

of R and V (I) is the set of all prime ideals of R containing I. Also, we use N0 (respectively,
N) to denote the set of non-negative (respectively, positive) integers.

2. Preliminaries

First, we recall some definitions which are needed in this paper. Let M be an R-module.

(1) M is called minimax if there is a finitely generated submodule N of M such that M/N

is Artinian (see [33]).
(2) M is called weakly Laskerian if AssR(M/N) is a finite set for each submodule N of

M . Also, M is said to be I-weakly cofinite if SuppR(M) ⊆ V (I) and ExtiR(R/I,M) is
weakly Laskerian, for all i ≥ 0 (see [18] and [19]).

(3) M is said to be FSF if there exists a finitely generated submodule N of M such that
the support of M/N is a finite set. In the light of [6, Theorem 3.3], over a Noetherian
ring R an R-module M is weakly Laskerian if and only if is FSF .

(4) A class of R-modules is a Serre subcategory of the category of R-modules when it is
closed under taking submodules, quotients and extensions. For example, the classes of
Noetherian modules, Artinian modules, minimax modules or weakly Laskerian mod-
ules are Serre subcategories. As in standard notation, we let S stands for a Serre
subcategory of the category of R-modules.
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The following lemmas are needed in the next section.

Lemma 2.1. Suppose that M is a finitely generated R-module and N ∈ S. Then
ExtiR(M,N) ∈ S and TorRi (M,N) ∈ S for all i ≥ 0.

Proof. The assertion immediately follows from the definition of Ext and Tor functors.

Lemma 2.2. Let M be a finitely generated R-module and let N be an arbitrary R-module.
Suppose that for some integers t ≥ 0, ExtiR(M,N) ∈ S for all i ≤ t. Then for any finitely
generated R-module L with SuppR(L) ⊆ SuppR(M), ExtiR(L,N) ∈ S for all i ≤ t.

Proof. See [2, Lemma 2.2].

Let D≤n denote the class of all R-modules M with dimM ≤ n. As a special and interesting
example of the class of extension modules introduced by Yoshizawa [32], recently, Aghapour-
nahr and Bahmanpour [3] introduced the class of extension modules of finitely generated
modules by the class of all modules T with dimT ≤ n and denoted it by FD≤n where n ≥ −1

is an integer. An R-module M is said to be FD≤n if there is a finitely generated submodule N

of M such that dimM/N ≤ n. Thus, by definition, the class of minimax modules is contained
in the class of FD≤0 and in the light of [6, Theorem 3.3], the class of weakly Laskerian modules
is contained in the class of FD≤1. This definition motivates the following.

Definition 2.3. If I-cof denotes the class of all I-cofinite modules, then we will define by
(I-cof, D≤n) the class of all R-modules M for which there exists an I-cofinite submodule N of
M such that dimM/N ≤ n.

It is clear that all I-cofinite R-modules, D≤n R-modules and I-torsion FD≤n R-modules
are included in the class of (I-cof, D≤n). We claim that the class of (I-cof, D≤n) is strictly
larger than the class of I-cof and D≤n. To see this, consider the following examples.

Examples 2.4.

(i) Suppose that R is a commutative Noetherian ring with dimR ≥ 2 and p is a two
dimensional prime ideal of R. Then there exist q ∈ Spec(R) \ Max(R) and m ∈
Max(R) such that p ⊊ q ⊊ m. Let M = HomR(R/p, R) ⊕ E(R/q). It is easy to
see that M belongs to (p-cof, D≤1) that is neither p-cofinite nor D≤1. Note that
HomR(R/q, E(R/q)) is not finitely generated.

(ii) Let R = k[x, y][[u, v]], q = (u, v) and N = R/(xu + yv), where k is a field.
By Hartshorn’s conterexample about cofiniteness of local cohomology modules [21],
HomR(R/q,H2

q (N)) is not finitely generated. Let p ∈ Spec(R) such that p ⊊ q and
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dimR/p = 3. Hence, M = HomR(R/p, R)⊕H2
q (N) belongs to (p-cof, D≤2) that is nei-

ther p-cofinite nor D≤2. Note that SuppR(H2
p (N)) ⊆ V (p) and so that dimH2

p (N) ≤ 2.

The following lemma will be quite useful in the proof of one of the main theorems of the
paper.

Lemma 2.5. Let M be a non-zero R-module and t ∈ N0. Suppose that the R-module H i
I(M) is

I-cofinite for all i < t and the R-module ExtjR(R/I,M) is finitely generated for all j = t, t+1.
Then the R-module ExtjR(R/I,H t

I(M)) is finitely generated for all j = 0, 1.

Proof. See [16, Theorem 2.1] and [17, Theorem A].

3. Main Results

First, we prove some results which play important roles in what follows.

Proposition 3.1. If M ∈ (I-cof, D≤0), then the following statements are equivalent:

(i) ExtiR(R/I,M) is finitely generated for all i ≥ 0;
(ii) The R-module HomR(R/I,M) is finitely generated.

Proof. (i) ⇒ (ii) is clear. For (ii) ⇒ (i), considering the exact sequence 0 → S → M → T → 0

where S is I-cofinite and dimT ≤ 0, we have the long exact sequence

0 → HomR(R/I, S) → HomR(R/I,M) → HomR(R/I, T ) → Ext1R(R/I, S) → · · ·

which follows that HomR(R/I, T ) is finitely generated. Therefore, ExtiR(R/I, T ) is finitely
generated for all i ≥ 0 by [4, Lemma 2.5]. This implies that ExtiR(R/I,M) is finitely generated
for all i ≥ 0.

Proposition 3.2. If M ∈ (I-cof, D≤1), then the following statements are equivalent:

(i) ExtiR(R/I,M) is finitely generated for all i ≥ 0;
(ii) The R-module ExtiR(R/I,M) is finitely generated for all i = 0, 1.

Proof. (i) ⇒ (ii) is clear.
(ii) ⇒ (i): By definition, there exists an exact sequence 0 → S → M → T → 0 where S is

I-cofinite and dimT ≤ 1. This induces the long exact sequence

0 → HomR(R/I, S) → HomR(R/I,M) → HomR(R/I, T ) → Ext1R(R/I, S)

→ Ext1R(R/I,M) → Ext1R(R/I, T ) → Ext2R(R/I, S) → · · ·
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which implies that HomR(R/I, T ) and Ext1R(R/I, T ) are finitely generated. Since dimT ≤ 1,
ExtiR(R/I, T ) is finitely generated for all i ≥ 0 by [4, Lemma 2.6]. So, ExtiR(R/I,M) is finitely
generated for all i ≥ 0.

We are now ready to state and prove the first main theorem of the paper.

Theorem 3.3. Let M be an R-module and t ≥ 1 be a positive integer such that ExtjR(R/I,M)

is finitely generated for all j ≤ t and the R-module H i
I(M) belongs to (I-cof, D≤1) for all i < t.

Then the following statements hold:

(i) The R-module H i
I(M) is I-cofinite for all i < t.

(ii) For every submodule N of Ht
I(M) that belongs to (I-cof, D≤0), the R-module

ExtiR(R/I,H t
I(M)/N) is finitely generated for all i = 0, 1. In particular, the set

AssR(H
t
I(M)/N) is finite.

Proof. (i) We proceed by induction on t. Let t = 1. By assumption, ΓI(M) belongs to
(I-cof, D≤1) and HomR(R/I,ΓI(M)) = HomR(R/I,M) is finitely generated. So, in view of
Proposition 3.2, it is enough to show that Ext1R(R/I,ΓI(M)) is finitely generated. Considering
the exact sequence

0 → ΓI(M) → M → M/ΓI(M) → 0

and the fact that HomR(R/I,M/ΓI(M)) = 0, we have the exact sequence

0 → Ext1R(R/I,ΓI(M)) → Ext1R(R/I,M) → · · · .

Therefore, Ext1R(R/I,ΓI(M)) is finitely generated by assumption. Now, assume that t > 1

and the result has been proved for all i < t. By the inductive hypothesis, t − 1 ∈ N0 and
H i

I(M) is I-cofinite for all i < t− 1. Hence, ExtiR(R/I,H t−1
I (M)) is finitely generated for all

i = 0, 1, by Lemma 2.5 and assumption. Since Ht−1
I (M) ∈ (I-cof, D≤1), Ht−1

I (M) is I-cofinite
by Proposition 3.2. This completes the inductive step.

(ii) In view of (i) and Lemma 2.5, the R-modules HomR(R/I,H t
I(M)) and

Ext1R(R/I,H t
I(M)) are finitely generated. Hence, considering the exact sequence

0 → N → Ht
I(M) → Ht

I(M)/N → 0,

implies that N is I-cofinite by Proposition 3.1 and assumption. Also, we obtain the following
exact sequence:

· · · → HomR(R/I,H t
I(M)) → HomR(R/I,H t

I(M)/N) → Ext1R(R/I,N)

→ Ext1R(R/I,H t
I(M)) → Ext1R(R/I,H t

I(M)/N) → Ext2R(R/I,N) → · · · .
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Therefore, HomR(R/I,H t
I(M)/N) and Ext1R(R/I,H t

I(M)/N) are finitely generated, as re-
quired.

The next result provides a slight generalization of [3, Theorem 3.4], [5, Theorem 4.1], [10,
Theorem 2.2], [25, Theorem B] and [30, Theorem 3.2].

Corollary 3.4. Let M be an R-module and t ≥ 1 be a positive integer such that ExtjR(R/I,M)

is finitely generated for all j ≤ t and the R-module H i
I(M) is FD≤1 (or weakly Laskerian)

R-module for all i < t. Then the following conditions hold:

(i) The R-module H i
I(M) is I-cofinite for all i < t.

(ii) For every FD≤0 (or minimax) submodule N of Ht
I(M), the R-module

ExtiR(R/I,H t
I(M)/N) is finitely generated for all i = 0, 1.

Proof. The assertion follows from Theorem 3.3 and the fact that any I-torsion FD≤n R-module
is included in the class of (I-cof, D≤n).

The following result is a generalization of [8, Proposition 2.2].

Corollary 3.5. Let M be a non-zero R-module and t ≥ 1 be a positive integer such that
ExtjR(R/I,M) is finitely generated for all j ≤ t and SuppR(H

i
I(M)) ⊆ Max(R) for all i ≤ t.

Then the R-module H i
I(M) is Artinian for all i ≤ t.

Proof. By Corollary 3.4, the R-module HomR(R/I,H i
I(M)) is finitely generated for all i ≤ t.

Since SuppR(HomR(R/I,H i
I(M))) ⊆ Max(R) for all i ≤ t, it follows that HomR(R/I,H i

I(M))

is Artinian for all i ≤ t. As H i
I(M) is an I-torsion R-module, it yields from [28, Theorem 1.3]

that H i
I(M) is Artinian for all i ≤ t.

Corollary 3.6. Let M be an R-module such that ExtjR(R/I,M) is finitely generated for all j
and the R-module H i

I(M) belongs to (I-cof, D≤1) for all i. Then

(i) The R-module H i
I(M) is I-cofinite for all i.

(ii) For any i ≥ 0 and for any submodule N of H i
I(M) that belongs to (I-cof, D≤0), the

R-module H i
I(M)/N is I-cofinite for all i.

Proof. The assertion follows from Proposition 3.2 and Theorem 3.3.

As an immediate consequence of Corollary 3.6, we derive the following extension of [15,
Theorem 1] and [31, Theorem 1.1], [7, Theorem 2.5], [8, Theorem 2.6], [23, Theorem 2.1] and
[24, Main Theorem].
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Corollary 3.7. Let M be an R-module such that ExtjR(R/I,M) is finitely generated for all j
and dimH i

I(M) ≤ 1 for all i. Then the R-module H i
I(M) is I-cofinite for all i. In particular,

the Bass numbers and Betti numbers of local cohomology module H i
I(M) are finite for all i ≥ 0.

Proof. It follows from Corollary 3.6, [22, Lemma 4.2] and [29, Theorem 2.1].

The following result provides an extension of [1, Corollary 2.8].

Corollary 3.8. Let M be an R-module such that ExtjR(R/I,M) is finitely generated for all
j and either dimR/I ≤ 1 or dimM ≤ 1. Then for each finitely generated R-module N , the
R-module ExtjR(N,H i

I(M)) is I-cofinite for all i ≥ 0 and all j ≥ 0.

Proof. It follows from Corollary 3.7, and [1, Theorem 2.7] and the fact that

SuppR(H
i
I(M)) ⊆ SuppR(M) ∩ V (I).

The following lemma is needed in the proof of the second main result of this paper.

Lemma 3.9. Let M be an R-module and i and n be some integers such that
HomR(R/I,H i

I(M)) is a finitely generated R-module and (H i
I(M))p is a finitely generated

Rp-module for all p ∈ SuppR(M) ∩ V (I) with dimR/p > n. Then H i
I(M) is FD≤n.

Proof. Let As = (0 :Hi
I(M) Is). Then As is a finitely generated R-module by assumption

and Lemma 2.2. Also, SuppR(As+2/As+1) ⊆ SuppR(As+1/As) for all s = 1, 2, · · · by [9,
Lemma 2.1]. Therefore, as Spec(R) is a Noetherian space, it follows that there exists a positive
integer k such that for all s ≥ k + 1 we have

SuppR(As+1/As) = SuppR(Ak+1/Ak).

Now, we show that SuppR(Ak+1/Ak) ⊆ {p ∈ Spec(R) | dimR/p ≤ n}. To this end, suppose
the contrary that there exists p ∈ SuppR(Ak+1/Ak) such that dimR/p > n. Hence, by
assumption and the fact that SuppR(Ak+1/Ak) ⊆ SuppR(M)∩V (I), we conclude that the Rp-
module (H i

I(M))p is finitely generated. Thus, there exists a finitely generated R-submodule
N of H i

I(M) such that (H i
I(M))p = Np. Since N is I-torsion, there is an integer s ≥ k + 1

such that N ⊆ (0 :Hi
I(M) I

s) = As. Thus,

Np ⊆ (As)p ⊆ (As+1)p ⊆ (H i
I(M))p = Np.

This implies that (As)p = (As+1)p and so p /∈ SuppR(Ak+1/Ak), a contradiction. Since
H i

I(M) =
∪∞

s=1As, it is easy to see that

SuppR(H
i
I(M)/Ak) = SuppR(Ak+1/Ak) ⊆ {p ∈ Spec(R) | dimR/p ≤ n}.
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Therefore, dimH i
I(M)/Ak ≤ n and so H i

I(M) is an FD≤n R-module, as required.

Now we are prepared to prove the second main result of the paper.

Theorem 3.10. Let M be an R-module and t be a positive integer such that ExtjR(R/I,M)

is finitely generated for all j ≤ t. Then the following statements are equivalent:

(i) H i
I(M) is an FD≤1 R-module for all i < t;

(ii) (H i
I(M))p is a finitely generated Rp-module for all i < t and for all p ∈ SuppR(M) ∩

V (I) with dimR/p > 1.

Proof. (i) ⇒ (ii). Suppose that H i
I(M) is an FD≤1 R-module for all i < t. Then, there

exists a finitely generated submodule Ni of H i
I(M) such that dimH i

I(M)/Ni ≤ 1, for all i < t.
Now, let p ∈ SuppR(M) ∩ V (I) such that dimR/p > 1. Then p /∈ SuppR(H

i
I(M)/Ni) and so

(H i
I(M)/Ni)p = 0 for all i < t. Hence, (H i

I(M))p = (Ni)p for all i < t. Therefore, (H i
I(M))p

is a finitely generated Rp-module for all i < t, as required.
(ii) ⇒ (i). The proof is by induction on t. If t = 1, then HomR(R/I,H0

I (M)) =

HomR(R/I,M) is finitely generated by assumption. Hence, H0
I (M) is FD≤1 by Lemma 3.9.

Now, suppose that t > 1 and the assertion holds for t − 1, we will prove it for t. By the
inductive hypothesis, the R-module H i

I(M) is FD≤1 for all i < t − 1. Thus, in the light of
Corollary 3.4 we conclude that H i

I(M) is I-cofinite for all i < t− 1 and HomR(R/I,H t−1
I (M))

is finitely generated. Therefore, Ht−1
I (M) is an FD≤1 R-module by Lemma 3.9, as required.

As an immediate consequence of Theorem 3.10 we have the following result.

Corollary 3.11. Let M be an R-module such that ExtjR(R/I,M) is finitely generated for
all j ≤ t where t is the least integer such that (H i

I(M))p is not finitely generated for some
p ∈ SuppR(M) ∩ V (I) with dimR/p ≥ 2. Then the following statements hold:

(i) The R-module H i
I(M) is FD≤1 and I-cofinite for all i < t;

(ii) The R-module Ht
I(M) is not FD≤1, whenever t is finite;

(iii) For every FD≤0 (or minimax) submodule N of Ht
I(M), the R-module

ExtiR(R/I,H t
I(M)/N) is finitely generated for all i = 0, 1, whenever t is finite.

Proof. (i) follows from Theorem 3.10 and Corollary 3.4. (ii) follows from the hypothesis and
Proposition 3.10. (iii) follows from (i) and Corollary 3.4.
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Remark 3.12. In Corollary 3.11, if M is a finitely generated R-module, then t = f2
I (M)

introduced in [9]. Therefore, Corollary 3.11 gives extra information rather than [9, Theorem
3.2] about local cohomology modules H i

I(M) for i < f2
I (M).

As the final main result of this paper, we prove the following theorem which is a general-
ization of [1, Corollary 2.8].

Theorem 3.13. Let (R,m) be a local ring and M be a non-zero R-module such that
ExtjR(R/I,M) is finitely generated for all j. If either dimR/I ≤ 2 or dimM ≤ 2, then
for each finitely generated R-module N , the R-module ExtjR(N,H i

I(M)) is I-weakly cofinite,
for all i ≥ 0 and j ≥ 0.

Proof. Let Ω = {ExtkR(R/I,ExtjR(N,H i
I(M)))|i ≥ 0, j ≥ 0, k ≥ 0}. Suppose that K ∈ Ω and

K ′ is a submodule of K. By definition, it suffices to show that AssR(K/K ′) is finite. For this
end, in view of the Flat Base Change Theorem [11, Theorem 4.3.2], [27, Ex. 7.7], [26, Lemma
2.1], without loss of generality, we can assume that R is complete.
Now, suppose that the contrary is true. So, there is a countably infinite subset {pr}∞r=1

of non-maximal elements of AssR(K/K ′). Therefore, m ⊈
∪∞

r=1 pr by [12, Lemma 3].
Let S be the multiplicatively closed subset R \

∪∞
r=1 pr. Then it is easy to see that

dimS−1R/S−1I ≤ 1 or dimS−1M ≤ 1. Hence, it follows from [11, Theorem 4.3.2] and
Corollary 3.8 that Extj

S−1R
(S−1N,H i

S−1I(S
−1M)) is S−1I-cofinite. Therefore, S−1K/S−1K ′

is a finitely generated S−1R-module and so AssS−1R(S
−1K/S−1K ′) is a finite set. But,

S−1pr ∈ AssS−1R(S
−1K/S−1K ′) for all r = 1, 2, · · · , a contradiction.
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