Quaternary codes and a class of 2-designs invariant under the group A8

Document Type : Research Paper

Author

Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, Kashan, Iran

Abstract

In this paper, we use the Key-Moori Method 1 and construct a quaternary code C8 from a primitive representation of the group PSL2(9) of degree 15. We see that C8 is a self-orthogonal even code with the automorphism group isomorphic to the alternating group A8. It is shown that by taking the support of any codeword ω of weight l in C8 or C8, and orbiting it under A8, a 2-(15,l,λ) design invariant under the group A8 is obtained, where λ=(l2)|ωA8|/(152). A number of these designs have not been known before up to our best knowledge. The structure of the stabilizers (A8)ω is determined and moreover, primitivity of A8 on each design is examined.

Keywords


[1] G. Amery, S. Gomani and B. G. Rodrigues, Designs and Binary Codes from Maximal Subgroups and Conjugacy Classes of M11, Math. Commun., 26 No. 2 (2021) 159-175.
[2] E. F. Assmus Jr. and J. D. Key, Designs and their Codes, Cambridge University Press, Cambridge, 1992.
[3] T. Beth, D. Jungnickel and H. Lenz, Design Theory, Vol. I, Second edition, Cambridge University Press, Cambridge, 1999.
[4] J. Cannon, W. Bosma, C. Fieker and A. Steel, Handbook of Magma Functions, Version 2.19, Sydney, 2013, available online at http://www.magma.maths.usyd.edu.au/magma/.
[5] C. J. Colbourn and J. H. Dinitz, Handbook of Combinatorial Designs, Second edition, Chapman & Hall/CRC, Boca Raton, 2007.
[6] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of Finite Groups, Oxford University Press, Oxford, 1985.
[7] M. R. Darafsheh, Designs from the Group PSL2(q), q Even, Des. Codes Cryptogr., 39 (2006) 311-316.
[8] M. R. Darafsheh, A. R. Ashrafi and M. Khademi, Some Designs Related to Group Actions, Ars. Combin., 86 (2008) 65-75.
[9] M. R. Darafsheh, A. R. Ashrafi and M. Khademi, On Designs Constructed by Group Actions, J. Combin. Math. Combin. Comput., 70 (2009) 235-245.
[10] M. R. Darafsheh, A. Iranmanesh and R. Kahkeshani, Some Designs Invariant Under the Groups S8 and A9, Des. Codes Cryptogr., 51 (2009) 211-223.
[11] M. R. Darafsheh, A. Iranmanesh and R. Kahkeshani, Designs from the Groups PSL2(q) for Certain q, Quaest. Math., 32 No. 3 (2009) 297-306.
[12] C. Dean, V. M. Crnkovic and B. G. Rodrigues, On Self-Orthogonal Designs and Codes Related to Held's Simple Group, Adv. Math. Commun., 12 (2018) 607-628.
[13] R. Kahkeshani, 1-Designs from the Group PSL2(59) and their Automorphism Groups, Math. Interdisc. Res., 3 (2018) 147-158.
[14] R. Kahkeshani, On Some Designs Constructed from the Groups PSL2(q), q = 53; 61; 64, Alg. Struc. Appl., 7 No. 1 (2020) 59-67.
[15] R. Kahkeshani, M. R. Darafsheh and A. Iranmanesh, Self-Dual Designs and their Binary Codes Obtained from the Group PSL2(13), Creat. Math. Inform., 18 No. 2 (2009) 172-181.
[16] J. D. Key and J. Moori, Designs, Codes and Graphs from the Janko Groups J1 and J2, J. Combin. Math. Combin. Comput., 40 (2002) 143-159.
[17] J. D. Key and J. Moori, Correction to: Designs, Codes and Graphs from the Janko Groups J1 and J2, J. Combin. Math. Combin. Comput., 40 (2002) 143-159", J. Combin. Math. Combin. Comput., 64 (2008) 153.
[18] J. D. Key, J. Moori and B. G. Rodrigues, On Some Designs and Codes from Primitive Representations of Some Finite Simple Groups, J. Combin. Math. Combin. Comput., 45 (2003) 3-19.
[19] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, North-Holland Publishing Company, Amsterdam, 1993.
[20] J. Moori and B. G. Rodrigues, A Self-Orthogonal Doubly Even Code Invariant Under McL:2, J. Combin. Theory Ser. A, 110 (2005) 53-69.
[21] J. Moori and B. G. Rodrigues, Some Designs and Codes Invariant Under the Simple Group Co2, J. Algebra, 316 (2007) 649-661.
[22] J. Moori, B. G. Rodrigues, A. Saeidi and S. Zandi, Some Symmetric Designs Invariant Under the Small Ree Groups, Comm. Algebra, 47 No. 5 (2019) 2131-2148.
[23] J. Moori, B. G. Rodrigues, A. Saeidi and S. Zandi, Designs from Maximal Subgroups and Conjugacy Classes of Ree Groups, Adv. Math. Commun., 14 No. 4 (2020) 603-611.
[24] J. Moori and A. Saeidi, Some Designs and Codes Invariant Under the Tits Group, Adv. Math. Commun., 11 No. 1 (2017) 77-82.
[25] J. Moori and A. Saeidi, Constructing Some Designs Invariant Under PSL2(q), q Even, Comm. Algebra, 46 No. 1 (2018) 160-166.
[26] J. Moori and A. Saeidi, Some Designs Invariant Under the Suzuki Groups, Util. Math., 109 (2018) 105-114.
[27] V. S. Pless and W. C. Huffman, Handbook of Coding Theory, Vol. I, Elsevier, Amsterdam, 1998.
[28] B. G. Rodrigues, Self-Orthogonal Designs and Codes from the Symplectic Groups S4(3) and S4(4), Discrete Math., 308 (2008) 1941-1950.
[29] M. Suzuki, Group Theory I, Springer-Verlag, Berlin, 1982.