Characterizations of ordered semihypergroups via (M, N)-int-soft bi-hyperideals

Document Type : Research Paper

Authors

1 Government Higher Secondary School, Mohib Banda, Mardan, 23200, Khyber Pakhtunkhwa, Pakistan.

2 Department of mathematics, Abdul Wali Khan University, Mardan, 23200, Khyber Pakhtunkhwa, Pakistan.

3 Department of mathematics, Government Degree College Garhi Kapura, Mardan, 23200, Khyber Pakhtunkhwa, Pakistan.

Abstract

The aim of this article is to study ordered semihypergroups in the framework of $( {M, N})$-int-soft bi-hyperideals. In this paper, we introduce the notion of $(M, N) $-int-soft bi-hyperideals\ of ordered semihypergroups. Some properties of $({M, N})$-int-soft bi-hyperideals in ordered semihypergroups are provided. We show that every int-soft bi-hyperideal is an $({M, N})$-int-soft bi-hyperideals of $S$ over $U$ but the converse is not true which is shown with help of an example. We characterize left $({M, N})$ simple and completely regular ordered semihypergroups by means of $({M, N})$-int-soft bi-hyperideals.The aim of this article is to study ordered semihypergroups in the framework of $\left( {M, N}\right)$-int-soft bi-hyperideals. In this paper, we introduce the notion of $\left( {M, N}\right)$-int-soft bi-hyperideals of ordered semihypergroups. Some properties of $\left( {M, N}\right)$-int-soft bi-hyperideals in ordered semihypergroups are provided. We show that every int-soft bi-hyperideal is an $\left( {M, N}\right)$-int-soft bi-hyperideals of $S$ over $U$ but the converse is not true which is shown with help of an example. We characterize left $\left( \text{resp. right}\right)$ simple and completely regular ordered semihypergroups by means of $\left( {M, N}\right)$-int-soft bi-hyperideals.

Keywords


[1] U. Acar, F. Koyuncu and B. Tanay, Soft sets and soft rings, Comput. Math. Appl., 59 (2010) 3458-3463.
[2] H. Aktas and N. Cagman, Soft sets and soft groups, Inf. Sci., 177 No. 13 (2007) 2726-2735.
[3] M. I. Ali, F. Feng, X. Liu, W. K. Min and M. Shabir, On some new operations in soft set theory, Comput. Math. Appl., 57 (2009) 1547-1553.
[4] N. Cagman, F. Citak, H. Aktas, Soft int-group and its applications to group theory, Neural Comput. & Applic., 21 (2012) 151-158.
[5] N. Cagman and S. Enginoglu, Soft set theory and uni-int decision making, Eur. J. Oper. Res., 207 No. 2 (2010) 848-855.
[6] P. Corsini and V. Leoreanu-Fotea, Application of hyperstructure theory, Advanced in Mathematics, Kluwer Academic Publisher, 2003.
[7] B. Davvaz and I. Cristea, Fuzzy Algebraic Hyperstructures, Springer International Publishing AG, Switzerland, 2015.
[8] B. Davvaz and V. Leoreanu-Fotea, Hyperring Theory and Applications, International Academic Press, USA, 2007.
[9] M. Farooq, A. Khan and B. Davvaz, Characterizations of ordered semihypergroups by the properties of their intersectional-soft generalized bi-hyperideals, Soft Comput., 22 No. 9 (2018) 3001-3010.
[10] F. Feng, Y. B. Jun and X. Zhao, Soft semirings, Comput. Math. Appl., 56 No. 10 (2008) 2621-2628.
[11] F. Feng and Y. M. Li, Soft subsets and soft product operations, Inf. Sci., 232 (2013) 44-57.
[12] F. Feng, Y. Li and N. Cagman, Generalized uni-int decision making schemes based on choice value soft sets, Eur. J. Oper. Res., 220 No. 1 (2012) 162-170.
[13] Y. B. Jun, Soft BCK/BCI-algebras, Comput. Math. Appl., 56 (2008) 1408-1413.
[14] Y. B. Jun, K. J. Lee and A. Khan, Soft ordered semigroups, Math. Logic. Q., 56 (2010) 42-50.
[15] A. Khan, M. Farooq and B. Davvaz, Int-soft interior-hyperideals of ordered semihypergroups, Int. J. Anal. Appl., 14 No. 2 (2017) 193-202.
[16] A. Khan, M. Farooq and B. Davvaz, On (M, N)-intersectional soft interior hyperideals of ordered semi-hypergroups, J. Intell. Fuzzy Syst., 33 No. 6 (2017) 3895-3904.
[17] X. Ma and J. Zhan, Applications of a new soft set to h-hemiregular hemirings via (M, N)-SI-h-ideals, J. Intell. Fuzzy Syst., 26 (2014) 2515-2525.
[18] P. K. Maji, R. Biswas and A. R. Roy, Soft set theory, Comput. Math. Appl., 45 No. 5 (2003) 555-562.
[19] J. Mao, D. Yao and C. Wang, Group decision making methods based on intuitionistic fuzzy soft matrices, Appl. Math. Modell., 37 No. 9 (2013) 6425-6436.
[20] F. Marty, Sur Une generalization de la notion de group, 8iemcongress, Mathematics Scandinaves Stockholm, (1934) 45-49.
[21] D. Molodtsov, Soft set theory-first results, Comput. Math. Appl., 37 No. 4-5 (1999) 19-31.
[22] S. Naz and M. Shabir, On prime soft bi-hyperideals of semihypergroups, J. Intell. Fuzzy Syst., 26 (2014) 1539-1546.
[23] B. Pibaljommee and B. Davvaz, Characterizations of (fuzzy) bi-hyperideals in ordered semihypergroups, J. Intell. Fuzzy Syst., 28 (2015) 2141-2148.
[24] A. Sezgin and A. O. Atagun, On operations of soft sets, Comput. Math. Appl., 61 (2011) 1457-1467.
[25] J. Tang, B. Davvaz and Y. F. Luo, A study on fuzzy interior hyperideals in ordered semihypergroups, Ital. J. Pure Appl. Math.-N., 36 (2016) 125-146.
[26] J. Tang, A. Khan and Y. F. Luo, Characterization of semisimple ordered semihypergroups in terms of fuzzy hyperideals, J. Intell. Fuzzy Syst., 30 (2016) 1735-1753.
[27] T. Vougiouklis, Hyperstructures and Their Representations115, Hadronic Press Inc, Palm Harber, USA, 1994.
[28] J. Zhan, N. Cagman and A. S. Sezer, Applications of soft union sets to hemirings via SU-h-ideals, J. Intell. Fuzzy Syst., 26 (2014) 1363-1370.