[1] B. R. Amougou Mbarga, Triangular Scheme Revisited in the Light of n-permutable Categories, Earthline Journal of Mathematical Sciences ISSN(Online), 6 No. 1 (2021) 105-116.
[2] B. R. Amougou Mbarga, Anticommutativity and n-schemes, Earthline Journal of Mathematical Sciences ISSN (Online), 6 No. 1 (2021).
[3] D. D. Anderson and V. Camillo, Subgroups of direct products of groups, ideals and subrings of direct products of rings, and Goursat's lemma, Rings, modules and representations, 480 (2009) 1-12.
[4] R. Baer, Der Kern eine charakteristiche Untergruppe, Compos. Math., 1 (1934) 254-283.
[5] A. Carboni, J. Lambek and M. C. Pedicchio, Diagram chasing in Mal'cev categories, Appl. Algebra, 69 (1990) 271-284.
[6] J. Evan, Permutability of subgroups of G ×H that are direct products of subgroups of the direct factors, Archiv. Math. (Basel), 77 No. 6 (2001) 449-455.
[7] J. Evan, Permutable Diagonal-type Subgroups of G ×H, Glasg. Math. J., 45 No. 1 (2003) 73-77.
[8] J. F. Farriel and S. -Lack, For which categories does one have a Goursat lemma?, 2010.
[9] E. Goursat, Sur les substitutions orthogonales et les divisions réguliéres de l'espace, Ann. Sci. l'École Norm. Sup., 6 (1889) 9-102.
[10] J. Lambek, Goursat's theorem and the Zassenhaus lemma, Canad. J. Math., 10 (1958) 45-56.
[11] J. Lambek, On the ubiquity of Mal'cev operarations, Contemp. Math., 131 (1993) 135-135.
[12] S. Lang and T. E. Algebra, Addition-Wesley, MR0197234 (33: 5416), 1993.
[13] D. C. Lewis, Containment of Subgroups in a Direct Product of Groups, Doctoral dissertation, State University of New York at Binghamton, Department of Mathematical Sciences 2011.
[14] O. Oluwafunmilayo and M. EniOluwafe, On counting subgroups for a class of finite nonabelian p-groups and related problems, IMHOTEP: Afr. J. Pure Appl. Math., 4 No. 1 (2017) 34-43.
[15] D. Sen, K. Bauer and P. Zvengrowski, A generalized Goursat lemma, Tatra Mt. Math. publ., 64 (2015) 1-19.
[16] J. J. OĆonnor and E. F. Roberston, Edourd Jean Baptiste Goursat, MacTutor, History of Mathematics, http:// www-history.mcs.st-andrews.ac.uk/Biographiies/Goursat.htm, August 2006.
[17] J. J. Rotman, An introduction to the theory of groups, (forth edition), in: Grad. Texts in Math., 148, Springer-Verlag, New York, 1995.
[18] R. Schmidt, Subgroup lattices of groups, (de Gruyter, Berlin, 1994).
[19] L. TÒTH, Subgroups of finite abelian groups having rank two via goursat's lemma, Tatra Mt. Math. Publ., 59 (2014) 93-103.
[20] M. Tǎrnǎuceanu, Counting subgroups for a class of fnite nonabelian p-groups, Analele Universitaǎatii de Vest; Timisoara Seria Mathematicǎ-InformaticǎXLVI, 1 (2008) 147-152.
[21] V. M. Usenko, Subgroups of semidirect products, Ukrain. Mat. Zh., 43 No. 7 (1991) 982-988.