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ANNIHILATORS AND ATTACHED PRIMES OF LOCAL COHOMOLOGY
MODULES WITH RESPECT TO A SYSTEM OF IDEALS

BUI THI HONG CAM

ABSTRACT. Let ® be a system of ideals of a commutative Noetherian ring, we study the
annihilators and attached primes of local cohomology modules with respect to a system of
ideals. We prove that if M is a non-zero finitely generated R-module of finite dimension d

and @ is a system of ideals, then
Attr(HE(M)) = {p € Assp M | cd(®, R/p) = d}.
Moreover, if the cohomology dimension of M with respect to ® is dim M — 1, then

Attr(H™ M1 (M)) = {p € Suppp M | cd(®, R/p) = dim M — 1}.

1. INTRODUCTION

Throughout this paper, R is a commutative Noetherian ring and M is an R-module. An

extension of local cohomology theory of Grothendieck which is called local cohomology with
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respect to a system of ideals was introduced by Bijan-Zadeh in [§]. A non-empty set of ideals
® of R is called to be ® a system of ideals of R if whenever a,b € ®, then there is an ideal
¢ € ® such that ¢ C ab. Let N be an R-module, one can define

I'e(N)={x € N|ax =0 for some a € P}.

Then I'p is an additive, covariant, R-linear and left exact functor from the category of R-
modules to itself. The functor I'g is called the general local cohomology functor with respect
to ®. For each integer ¢ > 0, the ith right derived functor of I's is denoted by Hj. Some
basic properties of the module H%(M) were shown in [2, B, B, G, 00, I4]. In particular, if
® = {a" | n € Np}, where a is an ideal of R, then the functor H coincides with the ordinary
local cohomology functor H:. The determining the annihilators of the ith local cohomology
module H{(M) is one of important problems in studying the local cohomology module. Many
authors have shown a lot of results on it, for example [, B, B, [, 7, IR, [9, 23, 24]. Base on
published results, in this paper, we will investigate the annihilators of the ith local cohomology

module HE (M). The first main result is Theorem BZ3.

Theorem 1.1 (See Theorem B3). Let M be a non-zero finitely generated R-module with

cohomological dimension cd(®, M) = c. Then
AnnpHG(M) = Anng(M/Tr(®, M)),
where Tr(®, M) is the largest submodule of M such that cd(®, Tr(®, M)) < c.

On the other hand, some properties of the annihilators of the local cohomology modules
can be used in studying the attached primes of these modules. We first recall some facts on
the attached prime ideals of a module. In [20], Macdonald said that a non-zero R-module N
is secondary if for each = € R the multiplication map induced by x on N is either surjective
or nilpotent. If N is secondary, then the ideal p := \/AnngN is a prime ideal and N is called
p-secondary. A secondary representation of an R-module M is an expression of M as a sum of
finitely many secondary submodules of M. An R-module M is said to be representable if it has a
secondary representation. A secondary representation of an R-module M = M+ Ms+-- -+ M,
is called minimal if the prime ideals p; = \/AnngM;,i = 1,2,...,n are all distinct and none of
M; is redundant. The set {p1,p2, ..., pn} is independent of the choice of the minimal secondary
representation of M. This set is called the set of attached prime ideals of M and denoted by
Attg(M).

In [26], Zoschinger gave another definition of attached prime ideals. Let M be an R-module
(not necessarily admitting a secondary representation), a prime ideal p of R is said to be an
attached prime ideal of M if p = Anng(M/T) for some submodule T" of M. This definition

agrees with the preceding one of attached prime if M admits a secondary representation.
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The attached primes of top local cohomology modules with respect to an ideal have been
studied by Macdonald and Sharp [21], Dibaei and Yassemi [[3], Hellus [(6], Atazadeh et. al.
[@, 5]

In this paper, we also show some properties of the attached primes of top local cohomology
modules with respect to a system of ideals of R. We will extend some results on the attached

primes of Dibaei, Yassemi [I3] and Atazadeh et. al. [4, 5.

Theorem 1.2 (See Theorem B3). Let M be a non-zero finitely generated R-module of finite

dimension d. Then
Attr(HE(M)) = {p € Assp M | cd(®, B/p) = d}.

Theorem 1.3 (See Theorem B1M). Let M be a non-zero finitely generated R-module of finite
cohomological dimension cd(®, M) =dim M — 1. Then

Attr(HE™M=1(M)) = {p € SupprM | cd(®, R/p) = dim M — 1}.

The last Section relates to the attached primes of top local cohomology modules with respect

to a pair of ideals which were introduced by Takahashi et. al. [25].

2. COHOMOLOGICAL DIMENSION

First we investigate the cohomological dimension with respect to a system of ideals of R.

The results of this section will be used in the following section.

Definition 2.1. Let & be a system of ideals of R and M an R-module. The cohomological
dimension cd(®, M) of M with respect to ® is defined as

cd(®, M) := sup{i | H(M) # 0},
if this supremum exists, otherwise, we define it —oo.
By [8, Proposition 2.3], there is an isomorphism
Hi (M) == lim (M)
acd

for all i > 0. Hence, it is clear that cd(®, M) < sup{cd(a, M) | a € &} and cd(P®, M) < dim M.

The following properties are extensions of the ones in [[2] and [I5].
Proposition 2.2. Let M be an R-modules. Then
cd(®, M) < sup{cd(®,N) | N is a finitely generated submodule of M}.

Proof. The assertion follows from the facts that Hé) commutes with direct limits and M is a

direct limit of all finitely generated submodules of M.
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Proposition 2.3. Let M be a finitely generated R-module and N an R-module such that
SupprN C SupppM. Then cd(®, N) < cd(P, M).

Proof. First, assume that K is a finitely generated R-module such that SupprK C SupprpM.
Using the same method in the proof of [I5, 2.2], we can claim that cd(®, K) < cd(®, M).

Hence, the assertion follows from Proposition EZ2.

The following result is implied immediately from Proposition E=3.

Corollary 2.4. Let M, N be two finitely generated R-modules such that SupprN = SupprM.
Then cd(®, N) = cd(®, M).

Lemma 2.5. Let M be a finitely generated R-module and b an ideal such that b C AnnpM.
Then
cd(®, M) <cd(®,R/b).

Proof. Let ®(R/b) = {a—g b

Note that M is an R/b-module. We have by [R, 2.5] that Hj (M) = H}
and then

| a € ®} and we see that ®(R/b) is a system of ideals of R/b.

(R/b)<M) for all > 0

cd(®, M) = cd(®(R/b), M)
< cd(®(R/b), R/b)
= ¢d(®, R/b),

where the inequality is followed by Proposition PZ3.

Theorem 2.6. Let M be a finitely generated R-module with cd(®, M) < co. Then
cd(®, M) = sup{cd(®, R/p) | p € SupprM }.

Moreover, there is a minimal element p of SupprM such that cd(®, M) = cd(P, R/p).

Proof. Let p € SupprpM, it follows from Proposition P23 that c¢d(®, R/p) < c¢d(®, M) and then
sup{cd(®, R/p) | p € SupppM} < cd(®, M).

Now let m = sup{cd(®, R/p) | p € SupprpM} and n = cd(®, M). Suppose that m < n, and
we look for a contradiction. It follows from [22, Theorem 6.4] that there is a filtration of

submodules of M
0=MyC M C...CMpy=M
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such that M;/M,;_1 = R/p; for some p; € SupppM for all i =1,2,... k. Let i > 1, the short
exact sequence
0—>Mi_1—>Mi%R/pi—>0

induces a long exact sequence
Hy ™ (R/p;) = HE(Mi—1) — Hg(M;) — HE(R/p;).
Note that HZ(R/p;) = 0 for all ¢ > 1 and HE(M;) = HE(R/p1) = 0. It follows from the long
exact sequence that Hg(M;) = 0 for all 1 < ¢ < k. In particular, 0 = HE(My) = Hg(M),
which is a contradiction.
If p € Suppp M, then there exists q is a minimal element of Suppp M such that q C p. Ac-

cording to Proposition P23, we have cd(®, R/p) < cd(®, R/q). This implies that cd(®, R/q) =
cd(®, M), and the proof is complete.

3. ANNIHILATORS OF LOCAL COHOMOLOGY MODULES WITH RESPECT TO A SYSTEM OF

IDEALS

Our aim of this section is generalized some results on the annihilators of local cohomology

modules with respect an ideals.

Definition 3.1. Let M be a non-zero finitely generated R-module. We denote by Tr(®, M)
the largest submodule of M such that cd(®, Tr(®, M)) < cd(P, M). It is easy to check that

Tr(®, M) = U{N | N is a submodule of M and cd(®, N) < cd(®, M)}.
The first result of this section gives a decomposition of Tr(®, M).

Theorem 3.2. Let M be a non-zero finitely generated R-module with cohomological dimension
¢ = cd(®,M). Assume that 0 = (\'_; N; is a reduced primary decomposition of the zero
submodule of M and N; is a p;-primary submodule of M. Then

Tr(®, M) = N N;.
pi€Assg(M),cd(®,R/p;)=c
Proof. Let
N = ﬂ N; and K = ﬂ N;.
pi€Assgr(M),cd(P,R/p;)=c pi€Assg(M),cd(®,R/p;)<c

Then K NN = 0 and there is an exact sequence
0—-N—M/K.
It follows from Proposition 23 that cd(®, N) < cd(®, M/K). Note that

Assp N C Assp(M/K) = {p € Assp(M) | cd(®, R/p) < c}.
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By Theorem P8, we have cd(®, M/K) < ¢ and then cd(®, N) < ¢. This implies that N C
Tr(®, M).
Now, let z € Tr(®, M) and it is clear that cd(®, Rx) < ¢ and HE(R/p) = 0 for all p €

Assgp(Rx). Therefore, we obtain
Assp(Rx) C{p € Assgr(M) | cd(®, R/p) < c}.

Hence

N vc N p= AR

pEAssp(M),cd(®,R/p)<c pEAssr(Rx)

Let J = ﬂpeASSR(M)’Cd(@7R/p)<Cp, there exists a positive integer m such that
Jmx = 0.

By the primary decomposition of zero submodule of M, we have
J"x € N;

for all 1 < i < n. Assume that there exists an R-module N; such that « ¢ N; and cd(®, R/p;) =
c. Since N; is pj-primary, we can conclude that J™ C p;. This implies that there is an prime

ideal py, € Assp(M) such that cd(®, R/pi) < c and pj; C p;. Consequently, we have
¢ =cd(®, R/p;) < cd(®, R/py) <c,

which is a contradiction. Hence € N and then Tr(®, M) = N.

We are going to state and prove the first main result of this paper. The following theorem

is an extension of [4, Theorem 2.3].

Theorem 3.3. Let M be a non-zero finitely generated R-module with cohomological dimension
c=cd(®,M). Then
AnnpHG(M) = Anng(M/Tr(®, M)).

Proof. The short exact sequence
0—=Tr(®,M) —> M — M/Tr(®,M) — 0
induces the following exact sequence
HE(Tp(®, M)) — H (M) — Hg(M/Tr(®, M)) = 0.
Since cd(®, Tr(®, M)) < ¢, there is an isomorphism

Hg(M) = Hg(M/Tr(®, M)).
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The proof is complete by showing that
AnnpHG(M /Tr(®, M)) = Anng(M/Tr(®, M)).
Let M = M/Tr(®, M) and it is clear that
AnngM C AnngH§(M).
Now, let z € AnngHg (M), we will show € AnngM. The short exact sequence
O%O:Mxéﬁgxﬁ—)()
deduces the long exact sequence
H§(0 i35 2) — HG (M) 5 HE(xM) — 0.

This implies that HS(zM) = xHE(M) = 0 and then cd(®,2M) < c. By the definition of
Tr(®, M), we can conclude that zM = 0. Hence, € Anng M and the proof is complete.

Corollary 3.4. Let R be a ring with cohomological dimension ¢ = cd(®, R). Then

AmpgHg(R) =Tr(®,R) = (]
cd(®,R/p;)=c

where 0 = ﬂpiEAssR(R),Cd(<1>,R/pi):c q; is a reduced primary decomposition of the zero ideal of R,

q; is a p;-primary ideal of R.

Proof. 1t follows from Theorem B2 and Theorem BZ3.

Corollary 3.5. Let R be a ring of finite cohomological dimension cd(®,R) = c. Then the

following conditions are equivalent:
(i) Anng(HE(R)) =0.
(ii) Assg R = {p € SpecR | cd(®, R/p) = c}.

Proof. 1t follows from Corollary B4.

Corollary 3.6. Let R be a domain and cd(®, R) = dim R. Then
AnngH{™ME(R) = 0.

Proof. If R is a domain, then we have Assg R = {0}. The assertion follows from Corollary BZ3.

0
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Corollary 3.7. [, Corollary 2.10] Let R be a domain, a an ideal of R and cd(a, R) = dim R.
Then

AnngHIME(R) = 0.

4. ATTACHED PRIMES OF LOCAL COHOMOLOGY MODULES WITH RESPECT TO A SYSTEM OF

IDEALS

We will generalize some results on the attached primes of Dibaei and Yassemi [13], Atazadeh
et. al. in [@, §]. First, we recall the concept of attached prime ideals which were introduced

by Zoschinger [76].

Definition 4.1 (See [26]). Let M be an R-module. A prime ideal p of Spec R is called attached
to M if there is a submodule N of M such that p = Anng(M/N).

The set of attached prime ideals of M is denoted by AttrpM. In the case, where M is a

representable R-module, this definition is agree with the one of Macdonald [20].

Lemma 4.2 (See [0]). The following statements hold true.

(i) If0 = A— B — C — 0 is an exact sequence of R-modules, then
AttpC C AttrB C AttpC U AttrA.
(ii) If N is a finitely generated R-module, then
Attr(M ®@p N) = AttgM N Suppp N
for all R-module M.
Lemma 4.3. Let R be a ring of finite cohomological dimension cd(®, R) = c. Then
Attr(HE(R)) C {p € Spec R | cd(®, R/p) = c}.
Proof. Let p € Attr(HE(R)), we have by the right exactness of H§ that
0 £ Hy(R)/pH(R) = H(R/p).

Hence cd(®, R/p) = ¢, and the proof is complete.

Theorem 4.4. Let M a non-zero finitely generated R-module of finite cohomological dimension
c:=cd(®,M) < oo. Then

Attr(Hg(M)) C {p € SupprM | cd(®, R/p) = c}.
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Proof. Let R = R/AnngM and it follows from Corollary 24 that cd(®, R) = c. By [§, 2.5],
there is an isomorphism
H§(M) = Hym(M)
where ®R = {aR | a € ®} is a system of ideals in R. On the other hand
Hgm(M) = Hy(R @p M)
= Hyn(R) @ M
since H{ - is a right exact functor. It follows from Lemma A2(ii) that
Att(Hyz(M)) = Attm(Hgx(R)) N SupprM = Attm(Hg=(R)).
By Lemma B=3, we obtain
Attﬁ(Héﬁ(R)) C {p € Spec R | cd(®R, R/p) = c}.
Consequently, one gets

Attr(Hg (M) € {p € SupprM [ cd(®, R/p) = c},

and the proof is complete.

The following result is a generalization of [I3, Theorem A] and R is not a local ring.
Theorem 4.5. Let M be a non-zero finitely generated R-module of finite dimension d. Then
Attr(HE(M)) = {p € Assp M | cd(®, R/p) = d}.

Proof. 1t follows from Theorem B4 that
AttrHE(M) C {p € SupprM | cd(®, R/p) = d}.

Let p € SuppgpM such that cd(®, R/p) = d, this implies that dim R/p = d. Therefore p €
Assgp M and

AttpHE(M) C {p € Assg M | cd(®, R/p) = d}.

Let q € Assg M such that c¢d(®, R/q) = d. There exists a submodule K of M such that
K is g-primary and Assg(M/K) = {q}. It follows from Theorem 2@ that cd(®, M/K) =
cd(®, R/q) = d. By the above argument, we see that

AttrHG(M/K) C {p € Assp M/K | cd(®, R/p) = d} = {q}.
Now the short exact sequence

0—-K—->M-—>M/K—0
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yields the following exact sequence
H(M) — HS(M/K) — 0.

Consequently, we have by Lemma B2 that AttgHE(M/K) C AttgHE(M) and then q €
AttrHE (M), this complete the proof.

We denote by mAssgM the set of minimal elements in Assg M.

Corollary 4.6. Let M be a non-zero finitely generated R-module of finite dimension d. Then
Attp(HL(M)) = {p € mAsspM | dim R/p = d}.

Proof. Let p € Assg M such that cd(®, R/p) = dim M. It is clear that dim R/p = dim M and
then p € mAssp M.
Now, let p € mAssgpM such that dim R/p = d. It follows from Theorem EH that

AttpH§(M/pM) = {q € Assg M/pM | cd(®, R/q) = d} = {p},
where the second equality is get by p € mAssM. The short exact sequence
0—=pM — M — M/pM — 0
induces the following exact sequence
HL(M) — HEL(M/pM) — 0.

By Lemma B2, we obtain that Attg HI(M/pM) C AttpHE(M) and then p € AttgH(M).

Corollary 4.7. Let M be a non-zero finitely generated R-module of dimension d. Assume that
HE(M) # 0. Then
(i) There exists a submodule T' of M such that dim M /T = d,
(ii) Assp(M/T) = {p € Assp M | cd(®, R/p) = d},
(iil) AttgpHZL(M) = Assr(M/T).

Proof. According to Theorem B8, we have AttpHE (M) C Assg M. It follows from [T, p. 263,
Proposition 4] that there is a submodule 7' of M such that Assgp M/T = AttgHE(M) and
AsspT = Assgp M \ Attg HE(M). It is clear that dim M/T = d, and the proof is complete.

Corollary 4.8. [13, Theorem A] Let M be a non-zero finitely generated R-module of finite

dimension d and a an ideal of R. Then

Attp(HI(M)) = {p € Assg M | cd(a, R/p) = d}.
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Before considering the case where cd(®,R) = dim R — 1, we need the following result

concerning on the annihilator of H, gim R=1(R).

Theorem 4.9. Let R be a Noetherian domain of finite dimension d and c¢d(®,R) = d — 1.
Then Anng(H$ '(R)) = 0.

Proof. Let z € AnnR(Hg_l(R)) and suppose that x # 0. Since R is a domain, there is a short
exact sequence
05R%S R— R/a"R—0

for all n > 1. Applying the functor ' to the above short exact sequence, we get a following

exact sequence
HIYR) S HEY(R) — HEY(R/2"R) — 0.
Since a2 € AnnRHg_l(R), there is an isomorphism
HIYR) = HEY(R/2"R)

for all n > 1. Note that dim R/2"R = dim R—1 for all n > 1. By Corollary B8 there is a prime
ideal p € mAssg(R/x™R) such that dim R/p = d — 1. Let g, is the p-primary component of
2" R. It follows from Corollary B that

z € AnngHS Y (R) C g,
for all n > 1. Since p € mAssr(R/2"R), it follows that

for all n > 1. This implies that

n>1
By the Krulls Intersection Theorem, we can conclude that xR, = 0. Since R is a domain, we

have x = 0 which is a contradition.

Theorem 4.10. Let R be a ring of finite cohomological dimension cd(®, R) = dim R—1. Then
Attr(HI™HY(R)) = {p € Spec R | cd(®, R/p) = dim R — 1}.

Proof. By Lemma B3, we have
Attr(HE™ P 1(R)) C {p € Spec R | cd(®, R/p) = dim R — 1}.

Now, let d = dim R and p € Spec R such that cd(®, R/p) = d — 1. Since Hfllfl(R/p) # 0, it
follows that dim R/p > d — 1. Let R = R/p, we have by [8, 2.5] an isomorphism

H (R/p) = HIZ (R).
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Note that dimR = dimR/p > d — 1, it follows from Corollary BB and Theorem Z9
that AnnﬁHgg(E) = 0. Thus, we can claim that AnnRHg_l(R/p) = p and then p €
Att RHg_l(R/p) by Definition B70. On the other hand, the short exact sequence

0—=p—=>R—>R/p—0,
in conjunction with c¢d(®,p) < d — 1, gives rise to a long exact sequence
HE Y p) — HEYR) — HEY(R/p) — 0.

This implies by Lemma B2 that Att RHg_l(R/ p) C Att RHg_l(R). Consequently, p €
Att RHC%_I(R), and the proof is complete.

The following theorem is another main result of this section which extends the main results

of [@, Theorem 3.7], [16, Theorem 2.3(i)] and [d, Theorem 3.3].

Theorem 4.11. Let M be a non-zero finitely generated R-module of finite cohomological
dimension cd(®, M) = dim M — 1. Then

Attp(HI™ M= (M)) = {p € SuppzrM | cd(®, R/p) = dim M — 1}.

Proof. Let R = R/AnngM and d = dim M. It is clear that dim R = dim M and by Corollary
24 we have cd(®, R) = dim M — 1. By [&, 2.5], there is an isomorphism

Hg ' (M) = HIZH(M).
By the same method in the proof of Theorem B we have
Attp(HIZH (M) = Attg(HIZH(R)) N SupprM = Attp(HI-!(R)).
and by Theorem 1T
AttE(Hgg(E)) = {p € Spec R | cd(®R, R/p) = d — 1}.
This implies that
Attp(Hg™ Y1 (M)) = {p € SupppM | cd(®, R/p) = dim M — 1},

which completes the proof.

Corollary 4.12. [8, Theorem 3.3] Let M be a non-zero finitely generated R-module of finite
cohomological dimension ¢cd(®, M) =dim M — 1 and a an ideal of R. Then

Attp(HI™M=L(M)) = {p € SuppxrM | cd(a, R/p) = dim M — 1}.
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5. ATTACHED PRIMES OF LOCAL COHOMOLOGY MODULES WITH RESPECT TO A PAIR OF
IDEALS

In [?5], Takahashi, Yoshino and Yoshizawa introduced an extension of local cohomology
modules which is called the local cohomology modules with respect to a pair ideals. Let I, J

be two ideals of R and
W(I,J)={p € SpecR | I" Cp—+ J for some integer n}.
The functor I'7 ; from the category of R-modules to itself is defined by
I (M)={x € M| Suppp(Rz) C W(I,J)},

where M is an R-module. The functor I'; ; is R-linear and left exact. For an integer i, the
i-th right derived functor of I'7 s is called the i-th local cohomology functor H} ;- Let M be
an R-module, we call H} ;(M) to be the i-th local cohomology modules of M with respect to
(I,J). Let

W(I,J)={ais an ideal of R | I" C a+ J for some integer n}

and we define a partial order on W(I, J) by letting a < bif a D b for a,b € W(I, J). It follows
from |25, Theorem 3.2] that
(M) = lim H(M)
ac€W(1,J)
for all ¢+ > 0 and for any R-module M. It is clear that W(I ,J) is a system of ideals of R. We
denote by
cd(I,J, M) := sup{i | H}J(M) #0}

and call the cohomological dimension of M with respect to (I,.J). It is clear that the local
cohomology modules with respect to a pair of ideals are special cases of local cohomology

modules with respect to a system of ideals. Therefore, we can implies the following results.

Proposition 5.1. Let M be a non-zero finitely generated R-module with cohomological di-
mension ¢ = cd(I,J, M). Then

AnnRHf’J(M) = Anng(M/Tr(I,J, M)),
where Tr(1,J, M) is the largest submodule of M such that cd(I,J, Tr(I,J,M)) < c.

Proof. 1t follows from Theorem B33.

Proposition 5.2. Let M be a non-zero finitely generated R-module of finite dimension d.
Then
Attr(HY ;(M)) = {p € Assg M | cd(I, J, R/p) = d}.
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Proof. 1t follows from Theorem E3.

Proposition 5.3. Let M be a finitely generated R-module of finite cohomological dimension

cd(I,J,M)=dim M — 1. Then

Attp(HMP M1 (M) = {p € SuppgM | cd(I,J, R/p) = dim M — 1}.

Proof. 1t follows from Theorem BT [
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