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ANNIHILATORS AND ATTACHED PRIMES OF LOCAL COHOMOLOGY

MODULES WITH RESPECT TO A SYSTEM OF IDEALS

BUI THI HONG CAM

Abstract. Let Φ be a system of ideals of a commutative Noetherian ring, we study the

annihilators and attached primes of local cohomology modules with respect to a system of

ideals. We prove that if M is a non-zero finitely generated R-module of finite dimension d

and Φ is a system of ideals, then

AttR(H
d
Φ(M)) = {p ∈ AssR M | cd(Φ, R/p) = d}.

Moreover, if the cohomology dimension of M with respect to Φ is dimM − 1, then

AttR(H
dimM−1
Φ (M)) = {p ∈ SuppRM | cd(Φ, R/p) = dimM − 1}.

1. Introduction

Throughout this paper, R is a commutative Noetherian ring and M is an R-module. An

extension of local cohomology theory of Grothendieck which is called local cohomology with
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respect to a system of ideals was introduced by Bijan-Zadeh in [8]. A non-empty set of ideals

Φ of R is called to be Φ a system of ideals of R if whenever a, b ∈ Φ, then there is an ideal

c ∈ Φ such that c ⊆ ab. Let N be an R-module, one can define

ΓΦ(N) = {x ∈ N | ax = 0 for some a ∈ Φ}.

Then ΓΦ is an additive, covariant, R-linear and left exact functor from the category of R-

modules to itself. The functor ΓΦ is called the general local cohomology functor with respect

to Φ. For each integer i ≥ 0, the ith right derived functor of ΓΦ is denoted by H i
Φ. Some

basic properties of the module H i
Φ(M) were shown in [2, 3, 8, 9, 10, 14]. In particular, if

Φ = {an | n ∈ N0}, where a is an ideal of R, then the functor H i
Φ coincides with the ordinary

local cohomology functor H i
a. The determining the annihilators of the ith local cohomology

module H i
a(M) is one of important problems in studying the local cohomology module. Many

authors have shown a lot of results on it, for example [4, 5, 6, 7, 17, 18, 19, 23, 24]. Base on

published results, in this paper, we will investigate the annihilators of the ith local cohomology

module H i
Φ(M). The first main result is Theorem 3.3.

Theorem 1.1 (See Theorem 3.3). Let M be a non-zero finitely generated R-module with

cohomological dimension cd(Φ,M) = c. Then

AnnRH
c
Φ(M) = AnnR(M/TR(Φ,M)),

where TR(Φ,M) is the largest submodule of M such that cd(Φ, TR(Φ,M)) < c.

On the other hand, some properties of the annihilators of the local cohomology modules

can be used in studying the attached primes of these modules. We first recall some facts on

the attached prime ideals of a module. In [20], Macdonald said that a non-zero R-module N

is secondary if for each x ∈ R the multiplication map induced by x on N is either surjective

or nilpotent. If N is secondary, then the ideal p :=
√
AnnRN is a prime ideal and N is called

p-secondary. A secondary representation of an R-module M is an expression of M as a sum of

finitely many secondary submodules ofM. An R-moduleM is said to be representable if it has a

secondary representation. A secondary representation of an R-moduleM = M1+M2+· · ·+Mn

is called minimal if the prime ideals pi =
√
AnnRMi, i = 1, 2, . . . , n are all distinct and none of

Mi is redundant. The set {p1, p2, . . . , pn} is independent of the choice of the minimal secondary

representation of M. This set is called the set of attached prime ideals of M and denoted by

AttR(M).

In [26], Zöschinger gave another definition of attached prime ideals. Let M be an R-module

(not necessarily admitting a secondary representation), a prime ideal p of R is said to be an

attached prime ideal of M if p = AnnR(M/T ) for some submodule T of M. This definition

agrees with the preceding one of attached prime if M admits a secondary representation.
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The attached primes of top local cohomology modules with respect to an ideal have been

studied by Macdonald and Sharp [21], Dibaei and Yassemi [13], Hellus [16], Atazadeh et. al.

[4, 5].

In this paper, we also show some properties of the attached primes of top local cohomology

modules with respect to a system of ideals of R. We will extend some results on the attached

primes of Dibaei, Yassemi [13] and Atazadeh et. al. [4, 5].

Theorem 1.2 (See Theorem 4.5). Let M be a non-zero finitely generated R-module of finite

dimension d. Then

AttR(H
d
Φ(M)) = {p ∈ AssR M | cd(Φ, R/p) = d}.

Theorem 1.3 (See Theorem 4.11). Let M be a non-zero finitely generated R-module of finite

cohomological dimension cd(Φ,M) = dimM − 1. Then

AttR(H
dimM−1
Φ (M)) = {p ∈ SuppRM | cd(Φ, R/p) = dimM − 1}.

The last Section relates to the attached primes of top local cohomology modules with respect

to a pair of ideals which were introduced by Takahashi et. al. [25].

2. Cohomological dimension

First we investigate the cohomological dimension with respect to a system of ideals of R.

The results of this section will be used in the following section.

Definition 2.1. Let Φ be a system of ideals of R and M an R-module. The cohomological

dimension cd(Φ,M) of M with respect to Φ is defined as

cd(Φ,M) := sup{i | H i
Φ(M) ̸= 0},

if this supremum exists, otherwise, we define it −∞.

By [8, Proposition 2.3], there is an isomorphism

H i
Φ(M) ∼= lim−→

a∈Φ
H i

a(M)

for all i ≥ 0. Hence, it is clear that cd(Φ,M) ≤ sup{cd(a,M) | a ∈ Φ} and cd(Φ,M) ≤ dimM.

The following properties are extensions of the ones in [12] and [15].

Proposition 2.2. Let M be an R-modules. Then

cd(Φ,M) ≤ sup{cd(Φ, N) | N is a finitely generated submodule of M}.

Proof. The assertion follows from the facts that H i
Φ commutes with direct limits and M is a

direct limit of all finitely generated submodules of M.



182 Alg. Struc. Appl. Vol. 7 No. 2 (2020) 179-193.

Proposition 2.3. Let M be a finitely generated R-module and N an R-module such that

SuppRN ⊆ SuppRM. Then cd(Φ, N) ≤ cd(Φ,M).

Proof. First, assume that K is a finitely generated R-module such that SuppRK ⊆ SuppRM .

Using the same method in the proof of [15, 2.2], we can claim that cd(Φ,K) ≤ cd(Φ,M).

Hence, the assertion follows from Proposition 2.2.

The following result is implied immediately from Proposition 2.3.

Corollary 2.4. Let M,N be two finitely generated R-modules such that SuppRN = SuppRM.

Then cd(Φ, N) = cd(Φ,M).

Lemma 2.5. Let M be a finitely generated R-module and b an ideal such that b ⊆ AnnRM.

Then

cd(Φ,M) ≤ cd(Φ, R/b).

Proof. Let Φ(R/b) = {a+ b

b
| a ∈ Φ} and we see that Φ(R/b) is a system of ideals of R/b.

Note that M is an R/b-module. We have by [8, 2.5] that H i
Φ(M) ∼= H i

Φ(R/b)(M) for all i ≥ 0

and then

cd(Φ,M) = cd(Φ(R/b),M)

≤ cd(Φ(R/b), R/b)

= cd(Φ, R/b),

where the inequality is followed by Proposition 2.3.

Theorem 2.6. Let M be a finitely generated R-module with cd(Φ,M) < ∞. Then

cd(Φ,M) = sup{cd(Φ, R/p) | p ∈ SuppRM}.

Moreover, there is a minimal element p of SuppRM such that cd(Φ,M) = cd(Φ, R/p).

Proof. Let p ∈ SuppRM, it follows from Proposition 2.3 that cd(Φ, R/p) ≤ cd(Φ,M) and then

sup{cd(Φ, R/p) | p ∈ SuppRM} ≤ cd(Φ,M).

Now let m = sup{cd(Φ, R/p) | p ∈ SuppRM} and n = cd(Φ,M). Suppose that m < n, and

we look for a contradiction. It follows from [22, Theorem 6.4] that there is a filtration of

submodules of M

0 = M0 ( M1 ( . . . ( Mk = M
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such that Mi/Mi−1
∼= R/pi for some pi ∈ SuppRM for all i = 1, 2, . . . , k. Let i ≥ 1, the short

exact sequence

0 → Mi−1 → Mi → R/pi → 0

induces a long exact sequence

Hn−1
Φ (R/pi) → Hn

Φ(Mi−1) → Hn
Φ(Mi) → Hn

Φ(R/pi).

Note that Hn
Φ(R/pi) = 0 for all i ≥ 1 and Hn

Φ(M1) ∼= Hn
Φ(R/p1) = 0. It follows from the long

exact sequence that Hn
Φ(Mi) = 0 for all 1 ≤ i ≤ k. In particular, 0 = Hn

Φ(Mk) = Hn
Φ(M),

which is a contradiction.

If p ∈ SuppRM, then there exists q is a minimal element of SuppRM such that q ⊆ p. Ac-

cording to Proposition 2.3, we have cd(Φ, R/p) ≤ cd(Φ, R/q). This implies that cd(Φ, R/q) =

cd(Φ,M), and the proof is complete.

3. Annihilators of local cohomology modules with respect to a system of

ideals

Our aim of this section is generalized some results on the annihilators of local cohomology

modules with respect an ideals.

Definition 3.1. Let M be a non-zero finitely generated R-module. We denote by TR(Φ,M)

the largest submodule of M such that cd(Φ, TR(Φ,M)) < cd(Φ,M). It is easy to check that

TR(Φ,M) =
∪

{N | N is a submodule of M and cd(Φ, N) < cd(Φ,M)}.

The first result of this section gives a decomposition of TR(Φ,M).

Theorem 3.2. Let M be a non-zero finitely generated R-module with cohomological dimension

c = cd(Φ,M). Assume that 0 =
∩n

i=1Ni is a reduced primary decomposition of the zero

submodule of M and Ni is a pi-primary submodule of M. Then

TR(Φ,M) =
∩

pi∈AssR(M),cd(Φ,R/pi)=c

Ni.

Proof. Let

N =
∩

pi∈AssR(M),cd(Φ,R/pi)=c

Ni and K =
∩

pi∈AssR(M),cd(Φ,R/pi)<c

Ni.

Then K ∩N = 0 and there is an exact sequence

0 → N → M/K.

It follows from Proposition 2.3 that cd(Φ, N) ≤ cd(Φ,M/K). Note that

AssR N ⊆ AssR(M/K) = {p ∈ AssR(M) | cd(Φ, R/p) < c}.
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By Theorem 2.6, we have cd(Φ,M/K) < c and then cd(Φ, N) < c. This implies that N ⊆
TR(Φ,M).

Now, let x ∈ TR(Φ,M) and it is clear that cd(Φ, Rx) < c and Hc
Φ(R/p) = 0 for all p ∈

AssR(Rx). Therefore, we obtain

AssR(Rx) ⊆ {p ∈ AssR(M) | cd(Φ, R/p) < c}.

Hence ∩
p∈AssR(M),cd(Φ,R/p)<c

p ⊆
∩

p∈AssR(Rx)

p =
√
AnnR(Rx).

Let J =
∩

p∈AssR(M),cd(Φ,R/p)<c p, there exists a positive integer m such that

Jmx = 0.

By the primary decomposition of zero submodule of M, we have

Jmx ∈ Ni

for all 1 ≤ i ≤ n. Assume that there exists an R-moduleNj such that x ̸∈ Nj and cd(Φ, R/pj) =

c. Since Nj is pj-primary, we can conclude that Jm ⊆ pj . This implies that there is an prime

ideal pk ∈ AssR(M) such that cd(Φ, R/pk) < c and pk ⊆ pj . Consequently, we have

c = cd(Φ, R/pj) ≤ cd(Φ, R/pk) < c,

which is a contradiction. Hence x ∈ N and then TR(Φ,M) = N.

We are going to state and prove the first main result of this paper. The following theorem

is an extension of [4, Theorem 2.3].

Theorem 3.3. Let M be a non-zero finitely generated R-module with cohomological dimension

c = cd(Φ,M). Then

AnnRH
c
Φ(M) = AnnR(M/TR(Φ,M)).

Proof. The short exact sequence

0 → TR(Φ,M) → M → M/TR(Φ,M) → 0

induces the following exact sequence

Hc
Φ(TR(Φ,M)) → Hc

Φ(M) → Hc
Φ(M/TR(Φ,M)) → 0.

Since cd(Φ, TR(Φ,M)) < c, there is an isomorphism

Hc
Φ(M) ∼= Hc

Φ(M/TR(Φ,M)).
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The proof is complete by showing that

AnnRH
c
Φ(M/TR(Φ,M)) = AnnR(M/TR(Φ,M)).

Let M = M/TR(Φ,M) and it is clear that

AnnRM ⊆ AnnRH
c
Φ(M).

Now, let x ∈ AnnRH
c
Φ(M), we will show x ∈ AnnRM. The short exact sequence

0 → 0 :M x → M
x→ xM → 0

deduces the long exact sequence

Hc
Φ(0 :M x) → Hc

Φ(M)
x→ Hc

Φ(xM) → 0.

This implies that Hc
Φ(xM) = xHc

Φ(M) = 0 and then cd(Φ, xM) < c. By the definition of

TR(Φ,M), we can conclude that xM = 0. Hence, x ∈ AnnRM and the proof is complete.

Corollary 3.4. Let R be a ring with cohomological dimension c = cd(Φ, R). Then

AnnRH
c
Φ(R) = TR(Φ, R) =

∩
cd(Φ,R/pi)=c

qi

where 0 =
∩

pi∈AssR(R),cd(Φ,R/pi)=c qi is a reduced primary decomposition of the zero ideal of R,

qi is a pi-primary ideal of R.

Proof. It follows from Theorem 3.2 and Theorem 3.3.

Corollary 3.5. Let R be a ring of finite cohomological dimension cd(Φ, R) = c. Then the

following conditions are equivalent:

(i) AnnR(H
c
Φ(R)) = 0.

(ii) AssR R = {p ∈ SpecR | cd(Φ, R/p) = c}.

Proof. It follows from Corollary 3.4.

Corollary 3.6. Let R be a domain and cd(Φ, R) = dimR. Then

AnnRH
dimR
Φ (R) = 0.

Proof. If R is a domain, then we have AssR R = {0}. The assertion follows from Corollary 3.5.
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Corollary 3.7. [4, Corollary 2.10] Let R be a domain, a an ideal of R and cd(a, R) = dimR.

Then

AnnRH
dimR
a (R) = 0.

4. Attached primes of local cohomology modules with respect to a system of

ideals

We will generalize some results on the attached primes of Dibaei and Yassemi [13], Atazadeh

et. al. in [4, 5]. First, we recall the concept of attached prime ideals which were introduced

by Zöschinger [26].

Definition 4.1 (See [26]). LetM be an R-module. A prime ideal p of SpecR is called attached

to M if there is a submodule N of M such that p = AnnR(M/N).

The set of attached prime ideals of M is denoted by AttRM. In the case, where M is a

representable R-module, this definition is agree with the one of Macdonald [20].

Lemma 4.2 (See [1]). The following statements hold true.

(i) If 0 → A → B → C → 0 is an exact sequence of R-modules, then

AttRC ⊆ AttRB ⊆ AttRC ∪AttRA.

(ii) If N is a finitely generated R-module, then

AttR(M ⊗R N) = AttRM ∩ SuppRN

for all R-module M.

Lemma 4.3. Let R be a ring of finite cohomological dimension cd(Φ, R) = c. Then

AttR(H
c
Φ(R)) ⊆ {p ∈ SpecR | cd(Φ, R/p) = c}.

Proof. Let p ∈ AttR(H
c
Φ(R)), we have by the right exactness of Hc

Φ that

0 ̸= Hc
Φ(R)/pHc

Φ(R) ∼= Hc
Φ(R/p).

Hence cd(Φ, R/p) = c, and the proof is complete.

Theorem 4.4. Let M a non-zero finitely generated R-module of finite cohomological dimension

c := cd(Φ,M) < ∞. Then

AttR(H
c
Φ(M)) ⊆ {p ∈ SuppRM | cd(Φ, R/p) = c}.
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Proof. Let R = R/AnnRM and it follows from Corollary 2.4 that cd(Φ, R) = c. By [8, 2.5],

there is an isomorphism

Hc
Φ(M) ∼= Hc

ΦR
(M)

where ΦR = {aR | a ∈ Φ} is a system of ideals in R. On the other hand

Hc
ΦR

(M) ∼= Hc
ΦR

(R⊗R M)

∼= Hc
ΦR

(R)⊗R M

since Hc
ΦR

is a right exact functor. It follows from Lemma 4.2(ii) that

AttR(H
c
ΦR

(M)) = AttR(H
c
ΦR

(R)) ∩ SuppRM = AttR(H
c
ΦR

(R)).

By Lemma 4.3, we obtain

AttR(H
c
ΦR

(R)) ⊆ {p ∈ SpecR | cd(ΦR,R/p) = c}.

Consequently, one gets

AttR(H
c
Φ(M) ⊆ {p ∈ SuppRM | cd(Φ, R/p) = c},

and the proof is complete.

The following result is a generalization of [13, Theorem A] and R is not a local ring.

Theorem 4.5. Let M be a non-zero finitely generated R-module of finite dimension d. Then

AttR(H
d
Φ(M)) = {p ∈ AssR M | cd(Φ, R/p) = d}.

Proof. It follows from Theorem 4.4 that

AttRH
d
Φ(M) ⊆ {p ∈ SuppRM | cd(Φ, R/p) = d}.

Let p ∈ SuppRM such that cd(Φ, R/p) = d, this implies that dimR/p = d. Therefore p ∈
AssR M and

AttRH
d
Φ(M) ⊆ {p ∈ AssR M | cd(Φ, R/p) = d}.

Let q ∈ AssR M such that cd(Φ, R/q) = d. There exists a submodule K of M such that

K is q-primary and AssR(M/K) = {q}. It follows from Theorem 2.6 that cd(Φ,M/K) =

cd(Φ, R/q) = d. By the above argument, we see that

AttRH
d
Φ(M/K) ⊆ {p ∈ AssR M/K | cd(Φ, R/p) = d} = {q}.

Now the short exact sequence

0 → K → M → M/K → 0
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yields the following exact sequence

Hd
Φ(M) → Hd

Φ(M/K) → 0.

Consequently, we have by Lemma 4.2 that AttRH
d
Φ(M/K) ⊆ AttRH

d
Φ(M) and then q ∈

AttRH
d
Φ(M), this complete the proof.

We denote by mAssRM the set of minimal elements in AssR M.

Corollary 4.6. Let M be a non-zero finitely generated R-module of finite dimension d. Then

AttR(H
d
Φ(M)) = {p ∈ mAssRM | dimR/p = d}.

Proof. Let p ∈ AssR M such that cd(Φ, R/p) = dimM. It is clear that dimR/p = dimM and

then p ∈ mAssRM.

Now, let p ∈ mAssRM such that dimR/p = d. It follows from Theorem 4.5 that

AttRH
d
Φ(M/pM) = {q ∈ AssR M/pM | cd(Φ, R/q) = d} = {p},

where the second equality is get by p ∈ mAssM. The short exact sequence

0 → pM → M → M/pM → 0

induces the following exact sequence

Hd
Φ(M) → Hd

Φ(M/pM) → 0.

By Lemma 4.2, we obtain that AttRH
d
Φ(M/pM) ⊆ AttRH

d
Φ(M) and then p ∈ AttRH

d
Φ(M).

Corollary 4.7. Let M be a non-zero finitely generated R-module of dimension d. Assume that

Hd
Φ(M) ̸= 0. Then

(i) There exists a submodule T of M such that dimM/T = d,

(ii) AssR(M/T ) = {p ∈ AssR M | cd(Φ, R/p) = d},
(iii) AttRH

d
Φ(M) = AssR(M/T ).

Proof. According to Theorem 4.5, we have AttRH
d
Φ(M) ⊆ AssR M. It follows from [11, p. 263,

Proposition 4] that there is a submodule T of M such that AssR M/T = AttRH
d
Φ(M) and

AssR T = AssR M \AttRHd
Φ(M). It is clear that dimM/T = d, and the proof is complete.

Corollary 4.8. [13, Theorem A] Let M be a non-zero finitely generated R-module of finite

dimension d and a an ideal of R. Then

AttR(H
d
a (M)) = {p ∈ AssR M | cd(a, R/p) = d}.
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Before considering the case where cd(Φ, R) = dimR − 1, we need the following result

concerning on the annihilator of HdimR−1
Φ (R).

Theorem 4.9. Let R be a Noetherian domain of finite dimension d and cd(Φ, R) = d − 1.

Then AnnR(H
d−1
Φ (R)) = 0.

Proof. Let x ∈ AnnR(H
d−1
Φ (R)) and suppose that x ̸= 0. Since R is a domain, there is a short

exact sequence

0 → R
xn

→ R → R/xnR → 0

for all n ≥ 1. Applying the functor ΓΦ to the above short exact sequence, we get a following

exact sequence

Hd−1
Φ (R)

xn

→ Hd−1
Φ (R) → Hd−1

Φ (R/xnR) → 0.

Since xn ∈ AnnRH
d−1
Φ (R), there is an isomorphism

Hd−1
Φ (R) ∼= Hd−1

Φ (R/xnR)

for all n ≥ 1. Note that dimR/xnR = dimR−1 for all n ≥ 1. By Corollary 4.6 there is a prime

ideal p ∈ mAssR(R/xnR) such that dimR/p = d − 1. Let qn is the p-primary component of

xnR. It follows from Corollary 3.4 that

x ∈ AnnRH
d−1
Φ (R) ⊆ qn

for all n ≥ 1. Since p ∈ mAssR(R/xnR), it follows that

xnRp = qnRp

for all n ≥ 1. This implies that

xRp ⊆
∩
n≥1

xnRp.

By the Krulls Intersection Theorem, we can conclude that xRp = 0. Since R is a domain, we

have x = 0 which is a contradition.

Theorem 4.10. Let R be a ring of finite cohomological dimension cd(Φ, R) = dimR−1. Then

AttR(H
dimR−1
Φ (R)) = {p ∈ SpecR | cd(Φ, R/p) = dimR− 1}.

Proof. By Lemma 4.3, we have

AttR(H
dimR−1
Φ (R)) ⊆ {p ∈ SpecR | cd(Φ, R/p) = dimR− 1}.

Now, let d = dimR and p ∈ SpecR such that cd(Φ, R/p) = d − 1. Since Hd−1
Φ (R/p) ̸= 0, it

follows that dimR/p ≥ d− 1. Let R = R/p, we have by [8, 2.5] an isomorphism

Hd−1
Φ (R/p) ∼= Hd−1

ΦR
(R).
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Note that dimR = dimR/p ≥ d − 1, it follows from Corollary 3.6 and Theorem 4.9

that AnnRH
d−1
ΦR

(R) = 0. Thus, we can claim that AnnRH
d−1
Φ (R/p) = p and then p ∈

AttRH
d−1
Φ (R/p) by Definition 4.1. On the other hand, the short exact sequence

0 → p → R → R/p → 0,

in conjunction with cd(Φ, p) ≤ d− 1, gives rise to a long exact sequence

Hd−1
Φ (p) → Hd−1

Φ (R) → Hd−1
Φ (R/p) → 0.

This implies by Lemma 4.2 that AttRH
d−1
Φ (R/p) ⊆ AttRH

d−1
Φ (R). Consequently, p ∈

AttRH
d−1
Φ (R), and the proof is complete.

The following theorem is another main result of this section which extends the main results

of [4, Theorem 3.7], [16, Theorem 2.3(i)] and [5, Theorem 3.3].

Theorem 4.11. Let M be a non-zero finitely generated R-module of finite cohomological

dimension cd(Φ,M) = dimM − 1. Then

AttR(H
dimM−1
Φ (M)) = {p ∈ SuppRM | cd(Φ, R/p) = dimM − 1}.

Proof. Let R = R/AnnRM and d = dimM. It is clear that dimR = dimM and by Corollary

2.4 we have cd(Φ, R) = dimM − 1. By [8, 2.5], there is an isomorphism

Hd−1
Φ (M) ∼= Hd−1

ΦR
(M).

By the same method in the proof of Theorem 4.4 we have

AttR(H
d−1
ΦR

(M)) = AttR(H
d−1
ΦR

(R)) ∩ SuppRM = AttR(H
d−1
ΦR

(R)).

and by Theorem 4.10

AttR(H
d−1
ΦR

(R)) = {p ∈ SpecR | cd(ΦR,R/p) = d− 1}.

This implies that

AttR(H
dimM−1
Φ (M)) = {p ∈ SuppRM | cd(Φ, R/p) = dimM − 1},

which completes the proof.

Corollary 4.12. [5, Theorem 3.3] Let M be a non-zero finitely generated R-module of finite

cohomological dimension cd(Φ,M) = dimM − 1 and a an ideal of R. Then

AttR(H
dimM−1
a (M)) = {p ∈ SuppRM | cd(a, R/p) = dimM − 1}.
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5. Attached primes of local cohomology modules with respect to a pair of

ideals

In [25], Takahashi, Yoshino and Yoshizawa introduced an extension of local cohomology

modules which is called the local cohomology modules with respect to a pair ideals. Let I, J

be two ideals of R and

W (I, J) = {p ∈ SpecR | In ⊆ p+ J for some integer n}.

The functor ΓI,J from the category of R-modules to itself is defined by

ΓI,J(M) = {x ∈ M | SuppR(Rx) ⊆ W (I, J)},

where M is an R-module. The functor ΓI,J is R-linear and left exact. For an integer i, the

i-th right derived functor of ΓI,J is called the i-th local cohomology functor H i
I,J . Let M be

an R-module, we call H i
I,J(M) to be the i-th local cohomology modules of M with respect to

(I, J). Let

W̃ (I, J) = {a is an ideal of R | In ⊆ a+ J for some integer n}

and we define a partial order on W̃ (I, J) by letting a ≤ b if a ⊇ b for a, b ∈ W̃ (I, J). It follows

from [25, Theorem 3.2] that

H i
I,J(M) ∼= lim−→

a∈W̃ (I,J)

H i
a(M)

for all i ≥ 0 and for any R-module M. It is clear that W̃ (I, J) is a system of ideals of R. We

denote by

cd(I, J,M) := sup{i | H i
I,J(M) ̸= 0}

and call the cohomological dimension of M with respect to (I, J). It is clear that the local

cohomology modules with respect to a pair of ideals are special cases of local cohomology

modules with respect to a system of ideals. Therefore, we can implies the following results.

Proposition 5.1. Let M be a non-zero finitely generated R-module with cohomological di-

mension c = cd(I, J,M). Then

AnnRH
c
I,J(M) = AnnR(M/TR(I, J,M)),

where TR(I, J,M) is the largest submodule of M such that cd(I, J, TR(I, J,M)) < c.

Proof. It follows from Theorem 3.3.

Proposition 5.2. Let M be a non-zero finitely generated R-module of finite dimension d.

Then

AttR(H
d
I,J(M)) = {p ∈ AssR M | cd(I, J,R/p) = d}.
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Proof. It follows from Theorem 4.5.

Proposition 5.3. Let M be a finitely generated R-module of finite cohomological dimension

cd(I, J,M) = dimM − 1. Then

AttR(H
dimM−1
I,J (M)) = {p ∈ SuppRM | cd(I, J,R/p) = dimM − 1}.

Proof. It follows from Theorem 4.11.
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