A class of well-covered and vertex decomposable graphs arising from rings

Document Type : Research Paper

Authors

1 Department of Mathematics, Science and Research Branch, Islamic Azad University (IAU), Tehran, Iran.

2 Department of Mathematics, Jundi-Shapur University of Technology, Dezful, Iran.

Abstract

Let Zn be the ring of integers modulo n. The unitary Cayley graph of Zn is defined as the graph G(Zn) with the vertex set Zn and two distinct vertices a,b are adjacent if and only if  abU(Zn), where U(Zn) is the set of units of Zn. Let Γ(Zn) be the complement of G(Zn). In this paper, we determine the independence number of Γ(Zn). Also it is proved that  Γ(Zn) is well-covered.  Among other things, we provide condition under which Γ(Zn) is vertex decomposable.

Keywords


[1] A. Alibemani, M. Bakhtyiari, R. Nikandish, M.J. Nikmehr, The annihilator ideal graph of a commutative ring, J. Korean Math. Soc. 52 (2015), 417-429.
[2] R. Akhtar, M. Boggess, T. Jackson-Henderson, I. Jimenez, R. Karpman, A. Kinzel, D. Pritikin, On the unitary Cayley graph of a nite ring, Electron. J. Combin. 16 (2009) R117.
[3] D.F. Anderson, P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999),434-447.
[4] M. F. Atiyah and I. G. Macdonald, Introduction to commutative algebra, Addison Wesley Publishing Co, Reading, Mate.-London-Don Mills, Ont, 1969.
[5] A. Badawi, On the annihilator graph of a commutative ring, Comm. Algebra, 42 (2014), 108-121.
[6] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988), 208-226.
[7] M. Behboodi, Z. Rakeie, The annihilating-ideal graph of a commutative ring I, J. Algebra Appl. 10 (2011), 727-739.
[8] M. Behboodi, Z. Rakeie, The annihilating-ideal graph of a commutative ring II, J. Algebra Appl. 10 (2011), 741-753.
[9] R. Belsho and J. Chapman, Planar zero-divisor graphs, J. Algebra 316 (2007), 471-480.
[10] A. Bjorner, M. L. Wachs, Shellable nonpure complexes and posets. I. Trans. Amer. Math. Soc. 348 (1996), 1299-1327.
[11] A. Bjorner, M. L. Wachs, Shellable nonpure complexes and posets. II. Trans. Amer. Math. Soc. 349 (1997), 3945-3975.
[12] N. Jahanbakhsh Basharlou, M. J. Nikmehr, R. Nikandish On generalized zero-divisor graph associated with a commutative ring. Italian J. Pure Appl. Math., 39 (2018), 128-139.
[13] S. Kiani, H. R. Maimani, S. Yassemi, Well-covered and cohen macaulay unitary cayley graphs. Acta Math. Hungarica 144 (2014), 92-98.
[14] M.Mahmoudi, A. Mousivand, M. Crupi, G. Rinaldo, N. Terai, S. Yassemi, Vertex Decomposibility and Regularityof Very Well-Covered Graphs. J. Pure  Appl. Alg., 215 (2011), 2473-2480.
[15] A. Mousivand, S. A. S. Fakhari, S. Yassemi, A new construction for Cohen-Macaulay graphs. Comm Algebra. 43 (2015), 5104-5112.
[16] J. S. Provan, L. J. Billera, Decompositions of simplicial complexes related to diameters of convex polyhedra. Math. Oper. Res. 5 (1980), 576-594.
[17] T. Tamizh Chelvam, K. Selvakumar, On the connectivity of the annihilating-ideal graphs, Discuss. Math. Gen. Alg. Appl., 35 (2015), 195-204.
[18] R. H. Villarreal, Cohen-Macaulay graphs. Manuscripta Math. 66 (1990), 277-293.
[19] R. Woodroofe, Vertex decomposable graphs and obstructions to shellability. Proc. Amer. Math. Soc. 137 (2009) 3235-3246.