On the Schur pair of groups

Document Type : Research Paper

Author

Department of mathematics, Faculty of Sciences, Golestan University, Gorgan.

Abstract

In this paper, it is shown that $ (\mathcal{V}, \mathfrak{X}) $ is a Schur pair if and only if the Baer-invariant of an $\mathfrak{X}$-group with respect to $ \mathcal{V}$ is an $\mathfrak{X}$-group. Also, it is proved that a locally $\mathfrak{X}$ class inherited the Schur  pair property of , whenever $\mathfrak{X}$ is closed with respect to forming subgroup, images and extensions of its members. Subsequently,  many interesting predicates  about some generalizations of Schur's theorem and Schur multiplier of groups will be concluded.

Keywords


[1] R. Baer, Endlichkeitskriterien fr Kommutatorgruppen, Math. Ann. 124 (1952), pp. 161-177.
[2] A. Frohlich, On elds of class two, Proc. London Math. Soc. (3) Vol. 4 (1954), pp. 235-256.
[3] D. Gorenstein, Finite simple groups, An introduction to their classi cation, Plenum Press, New York and London, (1982).
[4] J. A. Green, On the number of automorphisms of a nite group, Proc. Roy. Soc. London series A. Vol. 237 (1956), pp. 574-581.
[5] P. Hall, Nilpotent groups, Canad. Math. Cong. Univ. Alberta, (1957). (Queen Mary College Math. Notes, (1970).
[6] C. R. Leedham-Green and S. McKay, Baer-invariants, isologism, varietal laws and homology, Ada Math. Vol. 137 (1976), pp. 99-150.
[7] L. A. Kurdachenko and P. Shumyatsky, The ranks of central factor and commutator groups, Math. Proc. Cambridge Phil. Soc. Vol. 154 No. 10 (2013), pp. 63-69.
[8] A. Mann, The exponents of central factor and commutator groups, Group Theory. Vol. 10 (2007), pp. 435-436.
[9] M. R. R. Moghaddam, On the Schur-Baer property, J. Austral. Math. Soc. series A. Vol. 31 (1981), pp. 43-61.
[10] D. J. Robinson, A Course in the Theory of Groups. Graduate Texts in Math. Vol. 80, Springer Verlag, New York, (1982).
[11] D. J. S. Robinson, Finiteness Conditions and Generalized Soluble Groups, part 1, Springer-Verlag, New ed. (1972).
[12] I. Schur, Uber die Darstellungen der endlichen Gruppen durch gebrochene lineare Substitutionen. J. reine angew. Math. Vol. 127 (1904), pp. 20-50.
[13] I. Schur, Untersuchungen uber die Darstellung der endlichen Gruppen durch gebrochene lineare Subtitutionen', J. Reine Angew. Math. Vol. 132 (1907), pp. 85-137.
[14] R. F. Turner-Smith, Marginal subgroup properties for outer commutator words, Proc. London Math. Soc. Vol. 14 (1964), pp. 321-341.
[15] J. Wiegold, Multiplicators and groups with nite central factor groups. Math. Z. Vol. 89 (1965), pp. 345-347.