On the associated primes of the generalized $d$-local cohomology modules

Document Type : Research Paper

Authors

1 Department of Mathematics, Imam Khomeini International University, Qazvin, Iran

2 Department of Mathematics, Imam Khomeini International University, Qazvin, Iran.

3 Department of mathematics, Imam Khomeini International University, Qazvin, Iran

Abstract

The first part of the paper is concerned to relationship between the sets of associated primes of the generalized $d$-local cohomology modules and the ordinary  generalized local cohomology  modules.  Assume that $R$ is a commutative Noetherian local ring, $M$ and $N$  are  finitely generated  $R$-modules and $d, t$ are two integers. We prove that $\Ass H^t_d(M,N)=\bigcup_{I\in \Phi} \Ass H^t_I(M,N)$ whenever $H^i_d(M,N)=0$ for all  $i< t$ and $\Phi=\{I: I  \text{ is an ideal of}\  R \text{ with}\ \dim R/I\leq d \}$. In the second part of the paper, we give some information about  the non-vanishing of the generalized $d$-local cohomology modules. To be more precise, we prove that $H^i_d(M,R)\neq 0$ if and only if $i=n-d$ whenever  $R$ is a Gorenstein ring of dimension $n$ and $pd_R(M)<\infty$. This result leads to an example which shows that $\Ass H^{n-d}_d(M,R)$ is not necessarily a finite set.

Keywords


[1] C. Banica and M. Stoia, Singular sets of a module and local cohomology modules, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 16 (1976) 923-934.
[2] M. H. Bijan-Zadeh, On the Artinian property of certain general local cohomology modules, J. London Math. Soc., 32 (1985) 399-403.
[3] M. H. Bijan-Zadeh, A common generalization of local cohomology theories, Glasgow Math. J., 21 (1980) 173-181.
[4] M. P. Brodmann and A. Lashgari Faghani, A finiteness result for associated primes of local cohomology modules, Proc. Amer. Math. Soc., 128 (2000) 2851-2853.
[5] M. P. Brodmann, C. Rotthous and R. Y. Sharp, On annihilators and associated primes of local cohomology module, J. Pure Appl. Algebra 135 (2000) 197-227.
[6] M. P. Brodmann and R. Y. Sharp, Local cohomology an algebraic introduction with geometric applications, Cambridge University Press, Cambridge, 1998.
[7] K. Divaani Aazar, R. Sazeedeh and M. Tousi, On vanishing of generalized local cohomology modules, Algebra Colloq., 12 (2005) 213-218.
[8] M. Hellus, On the set of associated primes of a local cohomology modules, J. Algebra, 237 (2001) 406-419.
[9] J. Herzog, Komplexe Suosungen und Dualiat in der lokalen Algebra, Universitat Regensburg, Preprint, 1974.
[10] C. Huneke, Problems on local cohomology modules. Free Resolution in Commutative Algebra and Algebraic Geometry. (Sundance, UT, 1990) Res. Notes Math., 2, Jones and Bartlett, Boston, MA, (1992) 93-108.
[11] M. Katzman, An example of an infinite set of associated primes of local cohomology modules, J. Algebra, 252 (2002) 161-166.
[12] T. Marley, Associated primes of local cohomology modules over rings of small dimension, Manuscripta Math., 104 (2001) 519-525.
[13] T. Marley, The associated primes of local cohomology modules over rings of small dimension, Manuscripta Math., 104 (2001) 519-525.
[14] H. Matsumura, Commutative ring theory, Cambridge University Press, Cambridge, 1986.
[15] Z. Rahimi, Sh. Payrovi and S. Babaei, On the associated primes of the d-local cohomology modules, Int. Elec. J. Alg., 25 (2019) 55-63.
[16] J. Rotman, Introduction to homological algebra, Academic Press, Orlando, 1979.
[17] A. K. Singh, p-Tortion element in local cohomology modules, Math. Res. Lett., 7 (2000) 165-176.
[18] N. Suzuki, On the generalized local cohomology and its duality, J. Math. Kyoto Univ., 18 (1978) 71-78.
[19] N. Zamani, M. H. Bijan-Zadeh and M. S. Sayedsadeghi, Cohomology with supported of dimension d, J. Alg. Appl., 15 (2016) 1650042.