[1] P. Agliano and A. Ursini, Ideals and other generalizations of congruence classes, J. Aust. Math. Soc. Ser.
A 53 (1992), 103-115.
[2] P. Agliano and A. Ursini, On subtractive varieties II: General properties, Algebra Universalis 36 (1996),
222-259.
[3] R. Biswas and S. Nanda, Rough groups and rough subgroups, Bull. Polish Acad. Sci. Math. 42 (1994),
251-254.
[4] R. Belohlavek and I. chajda, Congruence classes in regular varieties, Acta Math. Univ. Comenianae 68(1)
(1999), 71-75.
[5] Z. Bonikowski, Algebraic structures of rough sets, Rough sets, fuzzy sets and Knowledge discovery. Springer, London, (1994), 242{247.
[6] S. Burris and H. A. Sankappanavar, A Course in Universal Algebra, Springer, Berlin, 1981.
[7] B. Davvaz, Roughness in rings, Inf. Sci. 164 (2004) 147-163.
[8] B. Davvaz, A short note on algebraic T-rough sets, Inf. Sci. 178 (2008) 3247-3252.
[9] B. Davvaz and M. Mahdavipour, Roughness in modules, Inf. Sci. 176 (2006) 3658-3674.
[10] K. Denecke, M. Erne and S. L. Wismath, Galois connections and applications, volume 565. Springer, 2004.
[11] D. Dubois and H. Prade, Rough fuzzy sets and fuzzy rough sets, International Journal of General Systems 17 (1990), 191-209.
[12] F. Feng, C. Li, B. Davvaz and M.I. Ali, Soft sets combined with fuzzy sets and rough sets: a tentative
approach, Soft Computing 14 (2010), 899-911.
[13] K. Fichtner, Varieties of universal algebras with ideals, Mat. Sbornik 75(117) (1968), 445-453. (In Russian.)
[14] K. Fichtner, Eine Bermerkung ber Mannigfaltigkeiten universeller Algebren mit Idealen, Monatsh. d.
Deutsch. Akad. d. Wiss. (Berlin) 12 (1970), 21-25.
[15] B. Ganter and R. Wille, Formal Concept Analysis, Mathematical Foundations, Springer, Berlin, 1999.
[16] G. Gediga, I. Duntsch, Modal-style operators in qualitative data analysis, in: Proceedings of the 2002 IEEE International Conference in Data Mining (2002), 155-162.
[17] H.P. Gumm and A. Ursini, Ideals in universal algebras, Algebra Universalis 19 (1984), 45-55.
[18] F. Garca Pardo, I. P. Cabrera, P. Cordero and M. Ojeda-Aciego, On Galois connections and soft computing,
Lecture Notes in Computer Science, (2013) 224-235.
[19] G. Gratzer, Universal Algebra, Van Nostrand, Princeton, N.J., 1968.
[20] P. J. Higgins, Groups with multiple operators, Proc. London Math. Soc. 3(3) (1956), 366-416.
[21] M. Irfan Ali, B. Davvaz and M. Shabir, Some properties of generalized rough sets, Inf. Sci. 224 (2013),
170-179.
[22] T. Iwinski, Algebraic approach to rough sets, Bull. Pol. Acad. Sci. Math. 35 (1987) 673-683.
[23] W. Krull, Axiomatische Begrundung der allgemeinen Idealtheorie, Sitzungsberichteder Physikalisch Medizinischen Societatder Erlangen 56 (1924), 47-63.
[24] N. Kuroki and P.P. Wang, The lower and upper approximations in a fuzzy group, Inf. Sci. 90 (1996),
203-220.
[25] N. Kuroki, Rough ideals in semigroups, Inf. Sci. 100 (1997), 139-163.
[26] H. Lai, D. Zhang, Concept lattices of fuzzy contexts: Formal concept analysis vs. rough set theory, International Journal of Approximate Reasoning 50 (2009), 695-707.
[27] R. Magari, Su una classe equazionale di algebre, Ann. Mat. Pura Appl. 75(1) (1967), 277-312.
[28] Z. Pawlak, Rough sets, Int. J. Inf. Comput. Sci. 11 (1982), 341-356.
[29] J. Pomykala and J. A. Pomykala, The stone algebra of rough sets, Bull. Pol. Acad. Sci. Math. 36 (1998),
495-508.
[30] S. Rasouli, Heyting Boolean and pseudo-MV lters in residuated lattices, Journal of Multiple Valued Logic
and Soft Computing 31(4) (2018), 287-322.
[31] S. Rasouli and B. Davvaz, Lattices derived from hyperlattices, Communications in Algebra R ⃝ 38(8) (2010), 2720-2737.
[32] S. Rasouli and B. Davvaz, -relations on implicative bounded hyper BCK-algebras, Hacettepe Journal of
Mathematics and Statistics 39(4) (2010), 461-469.
[33] S. Rasouli and B. Davvaz, Roughness in MV-algebras, Inf. Sci. 180(5) (2010), 737-747.
[34] S. Rasouli and B. Davvaz, Homomorphism, Ideals and Binary Relations on Hyper-MV Algebras, Multiplevalued Logic and Soft Computing 17(1) (2011), 47-68.
[35] S. Rasouli, B. Davvaz, An Investigation on Algebraic Structure of Soft Sets and Soft Filters over Residuated Lattices, ISRN Algebra, vol. 2014, Article ID 635783, 8 pages, 2014. doi:10.1155/2014/635783.
[36] S. Rasouli and B. Davvaz, An investigation on Boolean prime lters in BL-algebras, Soft Computing 19(10)
(2015), 2743-2750.
[37] S. Rasouli and B. Davvaz, An investigation on regular relations of universal hyperalgebras, Algebraic Structures and Their Applications 5(1) (2018), 1-21.
[38] S. Rasouli and B. Davvaz, Rough lters based on residuated lattices, Knowledge and Information Systems
58(2) (2018), 399-424.
[39] S. Rasouli and A. Radfar, PMTL lters, Rl lters and PBL lters in residuated lattices, Journal of Multiple
Valued Logic and Soft Computing 29(6) (2017), 551-576.
[40] S. Rasouli, Z. Zarin and A. Hassankhani, Characterization of a new subquasivariety of residuated Lattice,
Journal of applied logics-The IfCoLog journal of logics and their applications 5(1) (2018), 33-63.
[41] A. Ursini, Sulle varieta di algebre con una buona teoria degli ideali, Boll. Unione Mat. Ital. 6(4) (1972),
90-95.
[42] A. Ursini, Osservazioni sulle varieta BIT, Boll. Unione Mat. Ital. 7(4) (1973), 205-211.
[43] A. Ursini, On subtractive varieties I, Algebra Universalis 31 (1994), 204-222.
[44] R. Wille, Restructuring lattice theory: An approach based on hierarchies of concepts, Ordered Sets, I. Rival (Ed.), Reidel, (1982), 445-470.
[45] Q. Xiaoa, Q. Lia and L. Guo, Rough sets induced by ideals in lattices, Inf. Sci. 271 (2014), 82-92.
[46] S. Yamaka, O. Kazancia and B. Davvaz, Generalized lower and upper approximations in a ring, Inf. Sci.
180 (2010) 1759-1768.
[47] Y.Y. Yao, Constructive and algebraic methods of the theory of rough sets, Inf. Sci. 109 (1998), 21-47.