[1] M. Ali, G. Ali, M. Imran, A.Q. Baig, M.K.F. Shaq, On the metric dimension of Mobius ladders, Ars Combin. 105 (2012) 103-410.
[2] Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffmann, M. Mihalak, L.S. Ram, Network dicovery and verication, IEEE J. Sel. Areas Commun. 24 (2006) 2168-2181.
[3] A. Behtoei, A. Davoodi, M. Jannesari, B. Omoomi, A characterization of some graphs with metric dimension two, Discrete Math. Algorithm. Appl. (2017) DOI: 10.1142/S1793830917500276.
[4] J. Caceres, C. Hernando, M. Mora, I.M. Pelayo, M.L. Puertas, C. Seara, D.R. Wood, On the metric dimension of cartesian products of graphs, SIAM J. Discrete Math. 21 (2007) 423-441.
[5] V. Chvatal, Mastermind, Combinatorica, 3 (1983) 325-329 .
[6] G. Chartrand, L. Eroh, M.A. Johnson, O.R. Ollermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math. 105 (2000) 99-113.
[7] F. Harary, R.A. Melter, On the metric dimension of a graph, Ars Combin. 2 (1976) 191-195.
[8] M. Imran, On the metric dimension of barycentric subdivision of Cayley graphs, Acta Math. Appl. Sin. Engl. Ser. 32 (2016) 1067-1072.
[9] M. Janessari, B. Omoomi, Characterization of n-vertex graphs with metric dimension n-3, Math. Bohem. 139 (2014) 1-23.
[10] A. Kelenc, D. Kuziak, A. Taranenko, I.G. Yero, Mixed metric dimension of graphs, Appl. Math. Comput. 314 (2017) 429-438.
[11] S. Khuller, B. Raghavachari, A. Rosenfeld, Landmarks in graphs, Discrete Appl. Math. 70 (1996) 217-229.
[12] R.A. Melter, I. Tomescu, Metric bases in digital geometry, Comput. Gr. Image Process. 25 (1984) 113-121.
[13] M. Salman, I. Javaid, M.A. Chaudhry, Resolvability in circulant graphs, Acta Math. Sin. (Engl. Ser.) 29 (2012) 1851-1864.
[14] A. Sebo, E. Tannier, On metric generators of graphs, Math. Oper. Res. 29 (2004) 383-393.
[15] P.J. Slater, Leaves of trees, Congr. Numer. 14 (1975) 549-559.
[16] G. Sudhakara, A.R. Hemanth Kumar, Graphs with metric dimension two-a characterization, World Academy of Science, Engineering and Technology. 36 (2009) 621-626.