[1] A. Ali, I. Gutman and I. Redzepović, Atom-bond sum-connectivity index of unicyclic graphs and some applications, El. J. Math., 5 (2023) 1-17.
[2] S. Alikhani and N. Ghanbari, Randć energy of specific graphs, Applied Math. Comput., 269 (2015) 722-730.
[3] S. B. Bozkurt and A. D. Gungor, I. Gutman, A. S. Cevik, Randić Matrix and randć energy, MATCH Commun. Math. Comput. Chem., 64 (2010) 239-250.
[4] D. M. Cvetković, M. Doob and H. Sachs, Spectra of Graphs, Theory and Applications, Barth Verlag, Heidelberg, 1980.
[5] Y. Gao, W. Gao and Y. Shao, The minimal randić energy of trees with given diameter, Appl. Math. Comput., 411 (2021) 126489.
[6] S. He, Q. Geng and R.-X. Hao, The extremal unicyclic graphs with given diameter and minimum edge revised Szeged index, AIMS Math., 8 (2023) 26301-26327.
[7] R. Horn and C. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 2013.
[8] X. Li, Y. Shi and I. Gutman, Graph Energy, Springer, New York, 2012.
[9] B. Liu, Y. Huang and J. Feng, A note on the randć spectral radius, MATCH Commun. Math. Comput. Chem., 68 (2012) 913-916.
[10] J. A. Rodrıguez and J. M. Sigarreta, On the randić index and conditional parameters of a graph, MATCH Commun. Math. Comput. Chem., 54 (2005) 403-416.
[11] S. Sepidbon, N. Jafari Rad and A. Jahanbani, On the maximal randć energy of trees with given diameter, Alg. Struct. Appl., 11 (2024) 217-228.
[12] H. Song and L. Tian, On the maximal-adjacency-spectrum unicyclic graphs with given maximum degree, Math. Prob. Eng., (2020) ID9861834.
[13] W. -F. Xia and Y. -M. Chu, Schur-convexity for a class of symmetric functions and its applications, J. Ineq. Appl., (2009) 493759.