A NOTE ON THE ORDER GRAPH OF A GROUP

HAMID REZA DORBIDI

Communicated by Cheryl E. Praeger

Abstract. The order graph of a group G, denoted by $\Gamma^*(G)$, is a graph whose vertices are non trivial proper subgroups of G and two distinct vertices H and K are adjacent if and only if $|H|||K|$ or $|K|||H|$. In this paper, we study the connectivity and diameter of this graph. Also we give a relation between the order graph and prime graph of a group.

1. Introduction

Let G be a finite group. The order graph of G is the (undirected) graph $\Gamma^*(G)$, whose vertices are non-trivial proper subgroups of G and two distinct vertices H and K are adjacent if and only if either $|H|||K|$ or $|K|||H|$. So $\Gamma^*(G)$ is the empty graph if and only if $|G|$ is a prime number. So we only consider the groups whose orders are not prime. This graph has studied in [5]. In this paper, we study the connectivity and diameter of this graph. We show that the order graph of a non-simple group is a connected graph with diameter less than four with only one family exception. Also we give a connection between prime graph and order graph.

Keywords: Connected graph, Frobenius group, Order graph, Prime graph.

Received: 30 April 2015, Accepted: 07 Feb 2017.

© 2016 Yazd University.
First we recall some facts and notations related to this paper. Throughout this paper G denotes a finite group. The normalizer of a subgroup H is denoted by $N_G(H)$. A subgroup N of G is called a characteristic subgroup if $\sigma(N) \subseteq N$ for all $\sigma \in Aut(G)$. A group G is characteristically simple if the only characteristic subgroups of G are $\{1\}$ and G. We denote gHg^{-1} by H^g. Let $\pi(n)$ be the set of prime divisors of n. We denote $\pi(|G|)$ by $\pi(G)$. The prime graph of a group G is a graph whose vertex set is $\pi(G)$ and two distinct primes p and q are adjacent if and only if G has an element of order pq. The cyclic group of order n is denoted by C_n. The symmetric group on n letters is denoted by S_n. D_n is the dihedral group of order $2n$. The alternating group is denoted by A_n. The finite field with q elements is denoted by \mathbb{F}_q.

Let V be a vector space and $A : V \rightarrow V$ be a linear mapping. A subspace W of V is an A–invariant subspace if $A(W) \subseteq W$. The vector space V is called A–simple if the only A–invariant subspaces of V are 0 and V.

Let Γ be a simple graph with vertex set V. A path between two vertices x and y is a sequence $x = v_0, \ldots, v_n = y$ of vertices such that v_i is adjacent to v_{i-1}. A graph is connected if for any two vertices x, y there is a path between x and y. The length of the shortest path between x and y is denoted by $d(x, y)$. Also $diam(\Gamma) = sup\{d(x, y) : x$ and y are two vertices of $\Gamma\}$ is called the diameter of the graph Γ.

2. Preliminaries

Before proving the main theorems, we need the following definitions, lemma and theorems.

Definition 2.1. If $f : H \rightarrow Aut(N)$ is a homomorphism then $G = N \times H$ with the operation $(n, h)(n', h') = (f(h^{-1})(n)n', hh')$ is called semi-direct product of H and N and is denoted $G = N \rtimes H$. If $G = HN$ and $H \cap N = \{1\}$ where $N \triangleleft G$ then $G \cong N \rtimes H$. If f is the trivial homomorphism then $G = H \times N$ is the direct product of groups.

Lemma 2.1.

1. If N_1 is a characteristic subgroup of N and $N \triangleleft G$ then $N_1 \triangleleft G$.

2. If G is an abelian characteristically simple group then G is an elementary abelian group i.e G is a vector space over a finite field \mathbb{F}_q where q is a prime number.

Proof.

1. Let σ_g be the conjugation by $g \in G$. Since $N \triangleleft G$, so σ_g is an automorphism of N for all $g \in G$. Hence $N_1^g = \sigma_g(N_1) \subseteq N_1$ i.e $N_1 \triangleleft G$.

2. Let q be a prime divisor of $|G|$. So $G_1 = \{g \in G : g^q = 1\}$ is a characteristic subgroup. Thus $G_1 = G$. Hence G is an elementary abelian group i.e G is a vector space over the finite field \mathbb{F}_q. 0.1cm□
Definition 2.2. If there exists a proper subgroup $H \neq \{1\}$ of G such that $H^g \cap H = \{1\}$ for all $g \in G\setminus H$ then G is called a Frobenius group with respect to H.

Remark 2.1. If G is a Frobenius group with respect to H and $H < M < G$ then M is also a Frobenius group with respect to H. It is clear that $Z(G) = 1$. So a Frobenius group G is not a nilpotent group.

The following theorem states some properties of the Frobenius groups.

Theorem 2.2. [4, chapter 16] If G is a Frobenius group with respect to H then $F = G\setminus (\cup_{g \in G} H^g \setminus \{1\})$ is a normal subgroup of G which is called Frobenius kernel of G. Since $G = FH$ and $F \cap H = \{1\}$, H is called a complement of F. Also F is a nilpotent subgroup and $|H||F| - 1$.

Definition 2.3. A Frobenius group G is called a minimal Frobenius group if G has no proper Frobenius subgroup.

3. Main results

In this section we state our main results.

Theorem 3.1. A group G is a minimal Frobenius group if and only if G has a non normal maximal subgroup of prime order.

Proof. Let G be a minimal Frobenius group with complement H and kernel F. If $H < M$ then M is a Frobenius group. So $M = G$ by minimality of G. So H is a maximal subgroup. If $H_1 < H$ is a non-trivial subgroup then $H_1 F \cap H = H_1$. This implies that $H_1 F$ is a Frobenius group with respect to H_1 which is a contradiction. So H has no proper non-trivial subgroup. Hence $|H|$ is a prime number. Conversely, assume G has a non normal maximal subgroup H of prime order. Since $|H|$ is a prime number, so $H \cap H^g = \{1\}$ for all $g \in G\setminus N_G(H)$. But $N_G(H) = H$ by maximality and non normality of H. So G is a Frobenius group with respect to H. Let $G_1 < G$ be a subgroup of G. If $G_1 \cap H^g = \{1\}$ for all $g \in G$ then $G_1 \subseteq F$ is a nilpotent subgroup. So G_1 is not a Frobenius group. Assume $G_1 \cap H^g \neq \{1\}$ for some $g \in G$. Since $|H^g|$ is a prime number, we conclude that $H^g \subseteq G_1$. So $H^g = G_1$ by maximality of H^g. Hence G_1 is not a Frobenius group. Therefore G is a minimal Frobenius group.

Theorem 3.2. Let $p \neq q$ be two prime numbers and n be an integer. $x^{(p-q^n-1)} - 1$ has an irreducible factor of degree n over \mathbb{F}_q if and only if there is an n-dimensional vector space V over \mathbb{F}_q and a linear mapping A such that $A^p = 1$ and V is A-simple.
Proof. Assume $x^{(p,q^n-1)} - 1$ has an irreducible factor $f(x)$ of degree n over \mathbb{F}_q. Let $V = \mathbb{F}_{q^n} = \mathbb{F}_q[\alpha]$ be the splitting field of $f(x)(\alpha$ is a root of $f(x))$. Let $A : V \to V$ be the multiplication by α. Then the minimal polynomial of A is $f(x)$. Since $f(x)|x^p - 1$, so $A^p = 1$. Let $0 \neq v \in V$ and $f_v(x)$ be a polynomial of minimum degree such that $f_v(A)(v) = 0$. Let $V_1 = \langle v, Av, \ldots, A^n(v) \rangle$ be the minimal A–invariant subspace of V which contains v. It is clear that $f_v(x)|f(x)$ and $\dim(V_1) = \deg(f_v(x))$. Since $f(x)$ is irreducible, so $f_v(x) = f(x)$. Thus $V = V_1$. Hence V has no non trivial A–invariant subspaces. Conversely, Assume V is an n–dimensional vector space over \mathbb{F}_q and there is a linear mapping A such that $A^p = 1$ and V is A–simple. Let $f_A(x)$ be the minimal polynomial of A over \mathbb{F}_q of degree m. Since $A^p = 1$, so $f_A(x)|x^p - 1$. If $f_A(x) = h(x)g(x)$ then $\ker(g(A))$ is an A–invariant subspace. So $\ker(g(A)) = V$ or $\ker(g(A)) = 0$. If $\ker(g(A)) = V$ then $g(A) = 0$. So $g(x) = f_A(x)$ by definition of $f_A(x)$. If $\ker(g(A)) = 0$ then $h(A) = 0$ since $\im(h(A) \subseteq \ker(g(A))) = 0$. So $h(x) = f_A(x)$ by definition of $f_A(x)$. Hence $f_A(x)$ is an irreducible polynomial. If $v \neq 0$ then $V_1 = \langle v, Av, \ldots, A^{m-1}(v) \rangle$ is an A–invariant subspace. So $V_1 = V$ and $m = n$. It is a standard fact in finite field theory that every irreducible polynomial of degree n over \mathbb{F}_q is a factor of $x^{q^n} - x$. Since A is invertible, $f_A(x)|x^{q^n-1} - 1$. Hence $f_A(x)|(x^{q^n-1} - 1, x^p - 1) = x(q^n-1,p) - 1$. □

Definition 3.1. Let $p \neq q$ be two prime numbers and n be an integer. Assume that $x^{(q^n-1,p)} - 1$ has an irreducible factor $f(x)$ of degree n over \mathbb{F}_q. Let $V = \mathbb{F}_{q^n} = \mathbb{F}_q[\alpha]$ be the splitting field of $f(x)$. Let $A : V \to V$ be the multiplication by α. Since $A^p = 1$, so there is a homomorphism from C_p to $\text{Aut}(V)$. Let $A(p,q,n) = V \rtimes C_p$ be the semi direct product of action of C_p on V. The set of all $A(p,q,n)$ is denoted by A. Every element of A is called an A–group.

Remark 3.1. If $n = 1$ and $p \nmid q - 1$ then $A(p,q,1) = C_p \times C_q \cong C_{pq}$. If $n = 1$ and $p|q - 1$ then $A(p,q,1) = C_{pq}$ or $A(p,q,1) = C_q \rtimes C_p$. Also if $n > 1$ then $p|q^n - 1$. Note that C_p is normal in $A(p,q,n)$ if and only if $n = 1$ and $A(p,q,1) = C_{pq}$.

The following theorem gives the structure of minimal Frobenius groups.

Theorem 3.3. A group G is a minimal Frobenius group if and only if G is an A–group and $G \not\cong C_{pq}$.

Proof. Let G be a minimal Frobenius group with kernel F and complement H. So H is a maximal subgroup of prime order p. If F_1 is a characteristic subgroup of F then $F_1 < G$ by Lemma 2.1 and $H < HF_1 < G$ which is a contradiction. Hence F is a characteristically simple group. Since F is a nilpotent group and $Z(F)$ is a characteristic subgroup, so $Z(F) = F$. Thus it is an elementary abelian group by Lemma 2.1 i.e it is a vector space over a finite field \mathbb{F}_q where q is a prime number. Also conjugation by the generator of H is a linear map of order p.
Since G is a minimal Frobenius group, so F has no invariant subspaces. So G is an A–group. Conversely, assume $G = V \rtimes C_p$ is an A–group. So $H = C_p$ is a non normal subgroup of prime order by remark 3.1. If $H < T < G$ then $T \cap V < V$ is a non-trivial invariant subspace of V which is a contradiction. So H is a maximal subgroup of prime order. Hence G is a minimal Frobenius group by Theorem 3.1.

Theorem 3.4. Assume G is not an A–group. Let N be a nontrivial normal subgroup of G and H be a subgroup of G. Then $d(H, N) \leq 3$ where d is distance in the order graph. Moreover, if $d(H, N) = 3$ then $G = HN$ and $(|H|, |N|) = 1$.

Proof. Assume $d(H, N) \geq 3$. If $p | (|H|, |N|)$ and P is a subgroup of order p then $H - P - N$ is a path of length two between H, N which is a contradiction. Hence $(|H|, |N|) = 1$. If $HN < G$ then $H - HN - N$ is a path of length two between H and N which is a contradiction. Thus $G = HN$. Now assume $d(H, N) > 3$. If $|H|$ is not a prime number then H has a subgroup H_1. Then $H - H_1 - H_1N - N$ is a path between H, N. So $d(H, N) \leq 3$. Hence $|H|$ is a prime number. If $H < M < G$ then $M = H(M \cap N)$. So $H - M - M \cap N - N$ is a path between H, N. Thus $d(H, N) \leq 3$. Hence H is a maximal subgroup of G. If $H < G$ then $|N|$ is also a prime number similarly. So $G \cong C_{pq}$. Hence G is an A–group which is a contradiction. If $H \not\triangleleft G$ then G is a minimal Frobenius group by Theorem 3.1. So G is an A–group by Theorem 3.3 which is a contradiction.

Theorem 3.5. Let G be a non simple group. Then $\Gamma^*(G)$ is connected if and only if G is not an A–group. moreover if $\Gamma^*(G)$ is connected then its diameter is at most 4.

Proof. Let N be a nontrivial normal subgroup of G and H, K be two subgroups of G. First assume G is not an A–group. Suppose $d(H, N) = 3$. Hence $G = HN$ and $(|H|, |N|) = 1$ by Theorem 3.4. If $p | (|H|, |K|) > 1$ and P is a subgroup of order p then $H - P - K$ is a path of length two between H, K. So $d(H, K) \leq 2$. Now assume $(|H|, |K|) = 1$. Thus $|K||G| = |H||N|$. So $|K|||N|$. Hence K and N are adjacent and $d(H, K) \leq 4$. By symmetry, if $d(K, N) = 3$ then $d(H, K) \leq 4$. If $d(H, N), d(K, N) \leq 2$ then $d(H, K) \leq 4$. Conversely suppose that $G = A(p, q, n)$ is an A–group then the subgroups of G are of order p and q^i. So $\Gamma^*(G)$ is a disconnected graph.

Example 3.6. Let G be group of order $147 = 3 \times 7^2$. Since $x^3 - 1 = (x - 1)(x - 2)(x - 4)$ over \mathbb{F}_7, so G is not an A–group by Definition 3.1. Hence $\Gamma^*(G)$ is a connected graph.
Theorem 3.7. [4] P. Hall’s theorem,p 7|Let G be solvable and $|G| = mn$ with $(m, n) = 1$. Then G contains subgroups of order m, and all these are conjugate in G. If $U \leq G$ and $|U|$ divides m, then there exists $H \leq G$ such that $|H| = m$ and $U \leq H$.

Theorem 3.8. Let G be a finite solvable group which is not an A–group. Then $\text{diam}(\Gamma^*(G)) \leq 4$. If $|\pi(G)| \geq 3$ then $\text{diam}(\Gamma^*(G)) \leq 3$.

Proof. Since G is solvable, so it is not a simple group. So $\text{diam}(\Gamma^*(G)) \leq 4$ by Theorem 3.5. Assume $|\pi(G)| \geq 3$ and H, K be two subgroups of G. If $p|(|H||K|) > 1$ and P is a subgroup of order p then $H - P - K$ is a path of length two between H, K. So $d(H, K) \leq 2$. Assume now that $p|(|H||K|) = 1$. Without loss of generality, assume $|\pi(H)| \geq |\pi(K)|$. Let P be a subgroup of order $p||H|$. It is easily seen that $p|K||m$ where $(m, \frac{|G|}{m}) = 1$. Hence G has a Hall-subgroup M of order m. Thus $H - P - M - K$ is a path between H, K. So $d(H, K) \leq 3$. \[\square\]

In [5], it is proved that the diameter of the order graph of an abelian group is at most four. We improve this bound by the following theorem.

Theorem 3.9. Let $G \not\cong C_{pq}$ be a finite nilpotent group. Then $\text{diam}(\Gamma^*(G)) \leq 3$.

Proof. First note that if G is a nilpotent group and $d||G|$ then G has a (normal) subgroup of order d. If $|\pi(G)| \geq 3$ then $\text{diam}(\Gamma^*(G)) \leq 3$ by Theorem 3.8. So assume that $|\pi(G)| = 2$. Since $|G| \neq pq$, so $|G| = p^aq^b$ where p, q are prime numbers and $a > 1$. Let H be the unique subgroup of order p^a. Also G has a subgroup K of order $p^{a-1}q^b$. Let K_1 be a subgroup of K of order p^{a-1}. Then every subgroup of G is adjacent to H or K. Also $d(H, K) = 2$ by the path $H - K_1 - K$. Let N and M be two subgroups of G. If $(|M|, |N|) > 1$ then $d(M, N) \leq 2$. If $(|M|, |N|) = 1$ then $|M| = p^{a'}$ and $|N| = q^{b'}$. If $a' < a$ then $M - K - N$ is a path of length two. If $a' = a$ then $M - K_1 - K - N$ is a path of length three. So $\text{diam}(\Gamma^*(G)) \leq 3$. If G is a p–group then $\Gamma^*(G)$ is a complete graph and $\text{diam}(\Gamma^*(G)) = 1$. \[\square\]

Remark 3.2. Let $G = \mathbb{Z}_{12}$. So G has 4 nontrivial proper subgroups. So $\Gamma^*(G)$ is the path $(2), (3), (4), (6)$. Hence $\Gamma^*(G)$ has diameter three.

The following theorem gives a relation between the order graph of a group and its prime graph.

Theorem 3.10. If the prime graph of G is a connected graph then $\Gamma^*(G)$ is a connected graph.
Proof. Let S be the set of subgroups of prime orders. So every subgroup of G is adjacent to an element of S in \(\Gamma^*(G) \). It suffices to prove that there is a path between any two elements of S. Let \(p \neq q \in \pi(G) \) be two adjacent vertices of the prime graph of G. So there is an element \(g_{pq} \) in G of order \(pq \). Hence \(P - \langle g_{pq} \rangle - Q \) for every \(P, Q \in S \) such that \(|P| = p, |Q| = q \). Since the prime graph is a connected graph, so there is a path between any two elements of S. Hence \(\Gamma^*(G) \) is a connected graph. \(\square \)

Remark 3.3. Let \(G = A_5 \) and \(H \cong A_4 \) and \(K \cong D_5 \) be the subgroups of order 12 and 10 of G. The prime graph of G has three isolated vertices 2, 3, 5. So it is not a connected graph. The orders of subgroups of \(A_5 \) are 2, 3, 4, 5, 6, 10, 12. So every subgroup is adjacent to H or K. Also H and K are adjacent to any subgroup of order two. Hence \(\Gamma^*(A_5) \) is a connected graph. So the converse of Theorem 3.10 is not true.

Theorem 3.11. If \(n \geq 5 \) then \(\Gamma^*(A_n) \) is a connected graph. Moreover, If \(n \) is not a prime number then \(\text{diam}(\Gamma^*(A_n)) \leq 4 \) else \(\text{diam}(\Gamma^*(A_n)) \leq 5 \).

Proof. It is clear that \(A_{n-1} < A_n \). Also if \(p|n! \) then \(p \leq n \). Let H be a subgroup of \(A_n \) and P be a subgroup in H of prime order p. First assume \(p < n \). Hence \(p|\frac{(n-1)!}{2} \). So P is adjacent to \(A_{n-1} \). Thus \(H - P - A_{n-1} \) is a path between H and \(A_{n-1} \). So assume \(n = p \) and \(P < H \). Since \(p \nmid (p-1)! \), so \(\frac{|H|}{p} \) has a prime factor \(q \neq p \). Hence \(q|\text{order of } A_{n-1} \). Let Q be the subgroup of order q in H. So Q is adjacent to \(A_{n-1} \). Thus \(H - Q - A_{n-1} \) is a path between H and \(A_{n-1} \). If \(n = p \) and \(H = P \) then H is a subgroup of dihedral group \(D_p \) in \(A_p \). So H is not a maximal subgroup of \(A_n \). Let M be a subgroup which \(H < M < G \). So \(d(M, A_{n-1}) \leq 2 \) and \(d(H, A_{n-1}) \leq 3 \). Let K be another subgroup of \(A_n \). If \(n \) is not a prime number then \(d(H, A_{n-1}) \leq 2 \) and \(d(K, A_{n-1}) \leq 2 \). So \(d(H, K) \leq 4 \). If \(n = p \) is a prime number then without loss of generality \(|K| \neq p \). Hence \(d(H, A_{n-1}) \leq 3 \) and \(d(K, A_{n-1}) \leq 2 \). So \(d(H, K) \leq 5 \). \(\square \)

Remark 3.4. Since \(A_4 \) has no subgroup of order six, so \(\Gamma^*(A_4) \) is a disconnected graph. Also \(A_4 \cong (C_2 \oplus C_2) \rtimes C_3 = A(3, 2; 2) \) is an \(A \)-group.

4. **Conclusion and future research**

In this paper, we obtained some results about the order graph of a group. We have obtained a necessary and sufficient condition for a non simple group which ensures us that the order graph is connected. Also a relation between prime graph and order graph is given. It is proved that the order graph \(A_n \) is connected for \(n \geq 5 \). But for other simple groups the problem of connectedness of the order graph is unsolved.
Competing Interests

The author declares that no competing interests exist.

REFERENCES

(no 1) (2014), 1-10.

Hamid Reza Dorbidi

Department of Basic Sciences

University of Jiroft, P.O.Box 78671-61167, Jiroft, Kerman, Iran hr.dorbidi@ujiroft.ac.ir